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Abstract— We propose a model reduction technique for
quadratic-bilinear descriptor systems. The approach involves
approximating the system by a bilinear descriptor system using
Carleman bilinearization [1]. It is shown that, by assuming a
particular structure of the matrix pencil, the bilinearization
process preserves the structure of the matrix pencil in the
bilinearized system. Further, we extend the use of the bilinear
iterative rational Krylov algorithm (B-IRKA) [2] to descriptor
systems to identify a locally H2-optimal reduced-order system
for the bilinearized system under the assumption that the H2

norm of the system exists. Applications to the simulation of a
nonlinear RC circuit and a lid-driven cavity flow are presented
to illustrate the proposed methodology.

I. INTRODUCTION

We consider a single-input single-output (SISO) quadratic-
bilinear descriptor system

Eẋ(t) = Ax(t) +H(x⊗ x) +Nx(t)u(t) +Bu(t), (1a)
y(t) = Cx(t) +Du(t), x(0) = 0, (1b)

where x(t) ∈ Rn is the state vector, and u(t), y(t) de-
note the input and output of the system, respectively. Also
E, A, N, B and C are state-space matrices with dimensions
fixed by the state, input and output of the system, while H is
a matricization of the Hesse tensor of the right-hand side of
the system of differential-algebraic equations (DAEs) in (1a).
All our considerations can also be extended to multi-input
multi-output systems, however for simplicity of representa-
tion, we stick to the single-input single-output (SISO) case.
There are many applications including the simulation of fluid
flow and the dynamics of electrical circuits [3], which are
naturally in quadratic-bilinear form. Also a large class of
nonlinear systems can be transformed to quadratic-bilinear
systems [4]. Often these models are of large scale, and thus,
model order reduction (MOR) may become necessary before
deriving observers or controllers.

MOR approximates these quadratic-bilinear systems by a
reduced-order system in an efficient way. Various approaches
have been proposed in the literature to tackle the problem
of MOR for nonlinear systems. These include trajectory-
based methods such as proper orthogonal decomposition
(POD) [5], [6], [7] and its extensions [8], the reduced
basis method [9], and the trajectory piecewise linear method
(TPWL) [10]. All these methods are dependent on the
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trajectory of the original state vector for a given input.
However if the input function is varied, which is common in
control problems, the approximations obtained through these
methods for the first input may not capture the state trajectory
associated with the varied input.

An alternative method is also available. There, the
reduced-order system is constructed such that it approxi-
mates the input-to-output behavior of the original system
and thus, the reduced-order model generation is independent
of the input variations. The approach extends the concept
of interpolation or moment matching for linear systems to
quadratic-bilinear systems [3], [11], [4]. The moments of the
quadratic-bilinear system are defined by an infinite series of
subsystems that are associated with the quadratic system.
Each of the subsystems defines a moment at a particular
frequency and the structure of these moments becomes more
and more complex as the number of subsystems increases.

To avoid these issues, another approach has been used in
the literature for reducing the quadratic-bilinear system. This
involves first identifying an approximate bilinearized system
using Carleman bilinearization and then applying the well-
established bilinear model reduction techniques. Although
the bilinearized system looses the quadratic-bilinear structure
and increases the dimension of the system, it simplifies the
MOR procedure. Note that just dropping the quadratic term
in (1) also leads to a bilinear system, but completely ignoring
the quadratic nonlinearity usually will yield a reduced-order
model which may not capture the dynamics of the system.

The bilinearization allows us to utilize the bilinear iterative
rational Krylov algorithm (B-IRKA) [2] for bilinear systems.
Carleman bilinearization for nonlinear ODE systems has
been discussed, e.g., in [1]. However, for descriptor systems,
it still requires further research. In this paper our main focus
is on the Carleman bilinearization of descriptor systems and
on describing how a particular structure of the matrix pencil
λE −A propagates with the bilinearization process.

We begin with Carleman bilinearization of the quadratic-
bilinear system (1) in Section 2. Also in this section, a
particular structure is considered allowing one to show that
the bilinearization preserves the structure of the system. In
Section 3, we briefly outline the B-IRKA method which is
utilized on the bilinearized system to compute a reduced-
order system. In Section 4, we present the numerical results,
and we close with conclusions and future directions.

II. CARLEMAN APPROXIMATION

In this section, we discuss the Carleman bilinearization
steps for descriptor systems and show how the properties of
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the matrix pencil λE − A propagate in the bilinearization
process. Consider the application of Carleman bilineariza-
tion [1] to the quadratic-bilinear system (1) to obtain the
following bilinear system, after neglecting the cubic term:

E⊗ẋ⊗(t) = A⊗x⊗(t) +N⊗x⊗(t)u(t) +B⊗u(t),

y⊗(t) = C⊗x⊗(t) +Du(t),
(2)

where

E⊗ =

[
E 0

0 E ⊗ E

]
, N⊗ =

[
N 0

L(E,B) L(E,N)

]
,

A⊗ =

[
A H

0 L(E,A)

]
, B⊗ =

[
B

0

]
, C⊗ =

[
CT

0

]T
in which x⊗ =

[
xT xT ⊗ xT

]T
and L(A,B) = A⊗ B +

B ⊗ A. In the following, we assume a special structure of
the matrix pencil λE −A with

E =

[
E11 0
0 0

]
and A =

[
A11 A12

A21 A22

]
, (3)

in which the n rows and columns of E and A are partitioned
into n1 and n2, implying that E11 ∈ Rn1×n1 and A22 ∈
Rn2×n2 . It is assumed that E11 and A22 are both invertible,
ensuring that the pencil has a nilpotency index 1, see [12]
for details on the index concept. Also, the other matrices in
(1) are partitioned in a similar fashion:

N =

[
N11 N12

N21 N22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

The main purpose of assuming a particular structure is to
be able to identify the nilpotency index of the matrix pencil
λE⊗ − A⊗. For this, we do some simple transformations
before presenting the main results.

Let the system in (2) be transformed by using x⊗ = Qz(t),
where Q = [ I 0

0 P ] is the transformation matrix, in which
P ∈ Rn2×n2

is an invertible matrix. Then

QTE⊗Q︸ ︷︷ ︸
Ẽ

ż(t) = QTA⊗Q︸ ︷︷ ︸
Ã

z(t) +QTN⊗Q︸ ︷︷ ︸
Ñ

z(t)u+B⊗u(t),

y⊗(t) = C⊗z(t) +Du(t).
(4)

Note that QTB⊗ = B⊗ and C⊗Q = C⊗. The structure
of the remaining block matrices in the transformed system
becomes

Ẽ=

[
E 0

0 PT (E⊗E)P

]
, z(t) =

[
x(t)

P−1(x⊗ x)

]
,

Ã=

[
A HP

0 PTL(E,A)P

]
,

Ñ =

[
N 0

PTL(E,B) PTL(E,N)P

]
.

(5)

Next, we want to exploit the structure of these matrices
during Carleman bilinearization in order to determine the
nilpotency index of the bilinearized system (2). The follow-
ing theorem suggests a suitable choice of the matrix P so

that the Kronecker products in (4) can be written as the
corresponding Tracy-Singh product, see for example [13],
[14] regarding details of these matrix products.

Theorem 2.1: Let A,B ∈ Rn×m be block matrices that
are partitioned as

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12
B21 B22

]
.

Then there exist permutation matrices Pj ∈ Rnj ,nj

, j = 1, 2,
such that

PT
1 (A⊗ B)P2 = A ◦ B, (6)

where A ◦ B represents the Tracy-Singh product defined by

A ◦ B =

[
A11 ◦ B A12 ◦ B
A21 ◦ B A22 ◦ B

]
,

where Aij ◦ B =

[
Aij ⊗ B11 Aij ⊗ B12
Aij ⊗ B21 Aij ⊗ B22

]
.

Remarks:
• If A and B are both square matrices of the same size,

and Aii and Bkk are square block matrices, then A ◦B
and A⊗B are permutation similar. That is, P1 = P2.

• Let A and/or B be partitioned as row block matrices.
Then A ◦ B = PT

1 (A ⊗ B)I, where I is an identity
matrix of appropriate size.

• Since P1 and P2 are permutation matrices, P−1j = PT
j

for j = 1, 2.
This means that the Kronecker products in (5) can be

represented by Tracy-Singh products, if one chooses P as
in Theorem 2.1. That is,

PT (E ⊗ E)P = E ◦ E, PTL(A,E)P = A ◦ E + E ◦A,
PTL(B,E) = B ◦ E + E ◦B, PT (x⊗ x) = x ◦ x,
PTL(N,E)P = N ◦ E + E ◦N.

Using the special structure in (3) and Theorem 2.1, the
permutation matrix P modifies the transformed state-space
matrices in (5) to become

PTL(E,A)P =

L(A11, E11) E11 ⊗A12 A12⊗E11 0
E11 ⊗A21 E11⊗A22 0 0
A21 ⊗ E11 0 A22⊗E11 0

0 0 0 0

,

PTL(E,N)P =

L(N11, E11) E11⊗N12 N12⊗E11 0
E11 ⊗N21 E11⊗N22 0 0
N21 ⊗ E11 0 N22⊗E11 0

0 0 0 0

,

PT(E⊗E)P =

[
E11⊗E11 0

0 0

]
, PTL(B,E)=

L(B1, E11)
E11 ⊗B2

B2 ⊗ E11

0

,

PT (x⊗ x) =

x1 ⊗ x1

x1 ⊗ x2

x2 ⊗ x1

x2 ⊗ x2

, HP =

[
H̃11 H̃12 H̃13 H̃14

H̃21 H̃22 H̃23 H̃24

]
,

where HP is partitioned into 2 block rows of size n1 and
n2 and 4 block columns of size n21, n1n2, n1n2, and n22,
respectively. Let xi⊗xj be represented by xij for i, j = 1, 2.
Then, the following lemma shows how to represent x21 in
terms of x12 or vice versa.
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Lemma 2.1: For A ∈ Rp×q and B ∈ Rr×s,

B ⊗A = Sp,r(A⊗B)Sq,s,

where Sm,n =
∑m

i=1(eTi ⊗ In ⊗ ei) ∈ Rmn,mn, in which ei
is the i-th column of the m×m identity matrix.

This implies that x21 = Sn1,n2
x12, where Sn1,n2

∈
Rn1n2,n1n2 . The above observations show that some rows
and columns of the transformed system for the special struc-
ture are zero and therefore, the system includes redundant
states. The next theorem helps in identifying and eliminating
these redundant states to obtain a trimmed bilinear system
with a specific structure of the matrix pencil similar to (3).

Theorem 2.2: Let a quadratic-bilinear DAE system with
the matrix pencil λE − A as in (3) be transformed to a
bilinear DAE system of the form (4). Then, the transformed
bilinear system can be represented by a trimmed bilinear
DAE system

Etẋt(t) = Atxt(t) +Ntxt(t)u(t) + Btu(t),

yt(t) = Ctxt(t) +Dtu(t),
(7)

where

At =


A11 H̃11 A12 H̃12 + H̃13Sn1,n2

0 L(E11, A11) 0 SI
n1

(E11 ⊗A12)

A21 H̃21 A22 H̃22 + H̃23Sn1,n2

0 E11 ⊗A21 0 E11 ⊗A22

 ,

Et =


E11 0 0 0
0 E11⊗E11 0 0
0 0 0 0
0 0 0 0

 ,Bt =


B1

0
B2

0

 , Ct =


CT

1

0
CT

2

0


T

,

Nt =


N11 0 N12 0

L(E11, B1) L(E11, N11) 0 SI
n1
E11 ⊗N12

N21 0 N22 0
E11 ⊗B2 E11 ⊗N21 0 E11 ⊗N22

 ,
xt =

[
xT1 xT11 xT2 xT12

]T
, Dt =D,

in which SI
n1

= I+
n1∑
i=1

(eTi ⊗ In1
⊗ ei). Also, the nilpotency

index of the matrix pencil (E,A) is inherited by (Et,At).
That is, (Et,At) has nilpotency index 1.

Proof: Let the state-space equations in the transformed
bilinear system (4) be re-arranged such that the state vector
z(t) becomes z̃(t) =

[
xTt xT21 xT22

]T
. Thus, if we can

show that the rows and columns corresponding to x21 and
x22 are redundant and the remaining variables satisfy (7),
then we are done. To see this, note that the columns in E⊗

and rows in all matrices corresponding to x22 in (4) are all
zero for the special structured matrix pencil in (3). Thus, the
complete row and all columns corresponding to x22 can be
removed, since the initial condition is zero.

As the two algebraic block equations in the bilinear DAE
system (4) corresponding to x12 and x21 are permutation
equivalent, the following two equations are also permutation

equivalent:

(E11 ⊗A21)x11 + (E11 ⊗A22)x12 + (E11 ⊗N21)x11u(t)

+ (E11 ⊗N22)x12u(t) + (E11 ⊗B2)x1u(t) = 0, (8)
(A21 ⊗ E11)x11 + (A22 ⊗ E11)x21 + (A21 ⊗ E11)x11u(t)

+ (N22 ⊗ E11)x21u(t) + (B2 ⊗ E11)x1u(t) = 0. (9)

To see this, we begin with the first equation,

(E11 ⊗A21)(x1 ⊗ x1) + (E11 ⊗A22)(x1 ⊗ x2)

+ (E11 ⊗N21)(x1 ⊗ x1)u(t)

+ (E11 ⊗N22)(x1 ⊗ x2)u(t) + (E11 ⊗B2)x1u(t) = 0,

which turns into

(E11x1 ⊗A21x1) + (E11x1 ⊗A22x2)

+ (E11x1 ⊗N21x1)u(t) + (E11x1 ⊗N22x2)u(t)

+ (E11 ⊗B2)x1u(t) = 0.

Using Lemma 2.1, this can be re-written as

Sn1,n1

(
A21x1 ⊗ E11x1) + (A22x2 ⊗ E11x1)

+ (N21x1 ⊗ E11x1)u(t) + (N22x2 ⊗ E11x1)u(t)

+ (B2 ⊗ E11)x1u(t)
)

= 0,

and, finally, we obtain

Sn1,n1

(
(A21 ⊗ E11)(x1 ⊗ x1) + (A22 ⊗ E11)(x2 ⊗ x1)

+ (N21 ⊗ E11)(x1 ⊗ x1)u(t)

+ (N22 ⊗ E11)(x2 ⊗ x1)u(t) + (B2 ⊗ E11)x1u(t)
)

= 0,

which reduces to (9) because Sn1,n1
is invertible. Thus, we

can get rid of one of these constraints in the bilinear DAE
system. Based on the above reasoning, we eliminate (9)
from the system. Now by utilizing x21 = Sn1,n1

x12, we
can combine the two columns associated with x12 and x21.
The above changes result in a trimmed bilinear DAE with
structure as in (7) and the order of the system reduces from
n(n+ 1) to n(n1 + 1).

Note that the matrix pencil of the trimmed bilinear DAE
(7) can be partitioned as

Et =

[
Et11 0
0 0

]
, At =

[
At11 At12

At21 At22

]
,

where Et11 and At22 are the square and block triangular
matrices of size n1(n1+1) and n2(n1+1), respectively, and
has a structure as in (7). Clearly Et11 and At22 are invertible
and thus the pencil has nilpotency index 1.

The above results are useful for reducing a quadratic-
bilinear DAE system of order n = n1 + n2 to a trimmed
bilinear DAE system of order ñ = n(n1 + 1). Although
the dimension of the bilinear system is still much higher
than the dimension of the original system (1), the hope is to
get a satisfactory reduced-order bilinear system of dimension
much smaller than n. Thus our goal is to identify a reduced
system of order r � n that approximates the bilinearized
DAE system which is expected to capture the dynamics of
the original quadratic-bilinear DAE system as well.
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III. MODEL REDUCTION APPROACH

In this section, we begin with a brief review of the bilinear
iterative rational Krylov algorithm (B-IRKA) [2], [15] and
see how B-IRKA can be utilized to reduce the trimmed
bilinear DAE system (7). We first consider a bilinear system
of the form

ΣB =

{
Eẋ = Ax+Nxu+Bu,

y = Cx, x(0) = 0,
(10)

where E is a non-singular matrix. The aim is to construct a
reduced-order system of the form

Σ̂B =

{
Ê ˙̂x = Âx̂+ N̂ x̂u+ B̂u,

ŷ = Ĉx, x̂(0) = 0,
(11)

such that ŷ ≈ y for all admissible inputs u(t). We construct
such a reduced system by applying B-IRKA to the system
in (10). B-IRKA will converge to a locally H2 optimal
reduced system satisfying the necessary conditions derived
in [2] for H2 optimality, if it converges. This means that
the resulting reduced-order bilinear system of dimension r
locally minimizes the H2 norm of the error system.

The H2 norm for bilinear systems is introduced in [16]
and can be expressed in terms of the reachability Gramian,
P , or the observability Gramian, Q, as

‖ΣB‖H2
=
√
CPCT =

√
BTQB,

where the Gramians P and Q are solutions of the following
generalized Lyapunov equations:

APET + EPAT +NPNT +BBT = 0,

ATQE + ETQA+NTQN + CTC = 0.

In the following, we outline the main steps of B-IRKA
for constructing the required H2-optimal reduced bilinear
system. (Here, vect(M) denotes the reshaping operation of
stacking the columns of M on top of each other.)

Algorithm 1 B-IRKA for Bilinear Descriptor Systems
1: Input: E,A,N,B,C.
2: Choose an initial guess for Ê, Â, N̂ , B̂, Ĉ.
3: while not converged do
4: Choose S,R such that SÂR = Λ and SÊR = Ir.
5: Define B̃ = B̂TST , C̃ = ĈR, Ñ = RT N̂TST and

P = Λ⊗ E + Ê ⊗A+ ÑT ⊗N.
6: vect(X) = −P−1(B̃T ⊗B)Im, Iq = vect(Iq).
7: vect(Y ) = −P−T (C̃T ⊗ CT )Ip.
8: V = orth(X), W = orth(Y ).
9: Ê = WTEV, Â = WTAV, N̂ = WTNV,

B̂ = WTB, Ĉ = CV .
10: end while
11: Output: Ê, Â, N̂ , B̂, Ĉ.

In case of descriptor systems, i.e., singular E, one can
still apply the above extended version of B-IRKA to obtain
a reduced-order system as long as the reduced matrix Ê

i
=

u
(
t
)

v1

g
(
v
) C

g(v) g(v)

v2

C C

g(v)

vn1−1

C

g(v)

vn1

C

vn1+1

R R R

vn

Fig. 1. RC Circuit Diagram.

is nonsingular and each subsystem of the original bilinear
descriptor system has zero polynomial part. In other words,

lim
s1,s2,...,sk→∞

Hk(s1, s2, . . . , sk) = 0,

where

Hk(s1, . . . , sk) = C(skE −A)−1N · · ·N(s1E −A)−1B

represents the k-dimensional multivariate transfer function
associated with the k-th subsystem of the bilinear system. For
details, we refer to [1], [17]. It can be seen that Algorithm 1
extends IRKA for index-1 linear descriptor systems [18] to
bilinear descriptor system in case of zero polynomial parts.
Its use in practice is demonstrated by the examples in the
next section, while its theoretical properties require further
investigation.

IV. NUMERICAL RESULTS

In this section, we present our results for Carleman
bilinearization and model reduction of quadratic-bilinear
descriptor systems. The stopping criterion for Algorithm 1 is
based on the relative change of the norm of the poles of the
reduced-order system. The algorithm stops when the relative
change is below a tolerance value, tol =

√
ε, where ε denotes

machine precision.

A. Nonlinear RC Circuit

As a first example, we consider a simple extension of the
nonlinear RC circuit [4] as shown in Figure 1. All the linear
resistors R and the capacitors C are set to the fixed values of
1 and 500, respectively. The nonlinearity in the system is due
to the diode I-V characteristics, given by g(vD) = e40vD−1,
where vD is the voltage difference between the two nodes.
The input and output of the system are current (i) and voltage
at node 1, v1(t), respectively. Using similar steps as in [4],
we model the RC circuit as a quadratic-bilinear descriptor
system with matrices E and A of structure as shown in (3).
Due to space limitations, we skip the modeling details of the
circuit in Figure 1. We choose n1 = 20 and n = 30, which
gives a quadratic-bilinear descriptor system of order 50.

The proposed Carleman bilinearization is used to obtain
a bilinearized descriptor system of order ñ = 2050, and
is reduced by utilizing the version of B-IRKA given in
Algorithm 1, with the order of the resulting reduced-order
system set to r = 5. To show the accuracy of the bilinearized
system and the reduced-order bilinear system, we plot the
time-domain simulation of the systems in Figure 2 and
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Fig. 2. Transient response, u(t) = e−t.
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Fig. 3. Relative errors between the transient response for u(t) = e−t.

the relative error associated with the approximate systems
in Figure 3. Here, we choose an exponentially decaying
input function. Similar results are obtained using other input
functions. These results show that the important dynamics of
the quadratic-bilinear system are captured by the bilinearized
system and are approximated by the reduced-order system.

B. Lid-Driven Cavity Flow

We consider a lid-driven cavity problem which is a
well-known benchmark example for incompressible fluid
flow [19], [20]. The system includes a square cavity with
three rigid walls and a moving lid with unit velocity as shown
in Figure 4. The flow dynamics of the system are given by
(”vorticity-stream function formulation”)

∂ω

∂t
=
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
+

1

Re
∇2ω, (12)

∇2ψ = −ω, (13)

where ω, ψ and Re represent vorticity, stream function and
Reynolds number, respectively, and∇2 denotes the Laplacian
operator. The boundary conditions on the system are set to
mixed Dirichlet and Neumann conditions

ψ = 0, ω = −∂
2ψ

∂y2
on Γ1 and Γ2,

ψ = 0, ω = −∂
2ψ

∂x2
on Γ3 and Γ4.

Γ1

Γ2

Γ
3

Γ
4

Moving Lid

Fig. 4. Lid-driven cavity with boundary conditions.

The moving lid conditions can be captured by the bound-
ary conditions for ψ and ω, since these are related to the
velocity of the lid as

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

where u and v are the x and y components of the velocity,
respectively. To get a mathematical model from the above
governing equations together with the boundary conditions,
we use a centered finite-difference discretization on an
equidistant k×k mesh on the unit square with nodes ωij and
ψij . Let Ap be the Poisson matrix and Ax, Ay the matrices

obtained from the operators
∂

∂x
and

∂

∂y
, respectively. Then,

if ω = vect(ωij), ψ = vect(ψij), we have

ω̇ = Axψ.
∗Ayω −Ayψ.

∗Axω +Apω,

Apψ = ω,
(14)

where a.∗b denotes the element by element product of a
and b. We have a Dirichlet condition in ψ which can be
easily imposed in the system (14), while Neumann boundary
conditions on ω can be written in terms of ψin, where ψin

represents the stream function value of interior nodes. After
simple manipulations, the system (14) leads to the quadratic-
bilinear uncontrolled problem with constant lid velocity

ω̇in = A11ωin +A12ψin +H ωin ⊗ ψin +B,

0 = ωin +A22ψin,
(15)

where H is obtained by re-writing the element-by-element
(Hadamard) product of two vectors into Kronecker form.
Also, it is easy to see that

E =

[
I 0
0 0

]
, A =

[
A11 A12

I A22

]
and N = 0.

Now let k = 12, so that the discretized quadratic descriptor
system has order 2k2 = 288, with one input and k outputs
as stream function variables in the full domain. Also, the
Reynolds number (Re) of the system is set to 10. We
apply the proposed bilinearization procedure which yields a
bilinearized system of dimension n = 41760. The dimension
of the reduced system is set to r = 5. The results are shown
in Figure 5, where the implicit Euler method is used to get the
time domain representations of the original and the reduced-
order systems. The error contours between the original and
the bilinearized systems, and between the original and the
reduced-order systems, are also given in Figure 6.
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Clearly the reduced model has captured most of the
dynamics of the quadratic-bilinear system very well.

V. CONCLUSIONS

In this paper, we have shown the use of Carleman
bilinearization for quadratic-bilinear descriptor systems to
obtain an approximate bilinear descriptor system. Also we
showed that the bilinearization process preserves the index-
1 (nilpotency index) property of the linear matrix pencil part
of the bilinearized system. Assuming that the H2 norm of
the system exists, we pointed out that the recently developed
B-IRKA method can be used to identify a locallyH2-optimal
reduced bilinear system.

As further research, it would be interesting to extend the

B-IRKA approach for general descriptor systems. In this
regard, one possibility would be to identify a strictly proper
and polynomial part of the original bilinear system and
utilize B-IRKA only on the strictly proper part as is done
in the linear case [18]. Another issue is to see how a higher
nilpotency index of the matrix pencil corresponding to the
nonlinear descriptor systems propagates in the bilinearized
system obtained from Carleman bilinearization.
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