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Abstract In this paper, we discuss truncated Gramians (TGrams) for bilinear control
systems and their relations to Lyapunov equations. We show how TGrams relate to
input and output energy functionals, and we also present interpretations of control-
lability and observability of the bilinear systems in terms of these TGrams. These
studies allow to determine the states, which are less important for the system dy-
namics via an appropriate transformation based on the TGrams. Furthermore, we
discuss advantages of the TGrams over the Gramians for bilinear systems as pro-
posed in [1]. We illustrate the efficiency of the TGrams in the framework of model
order reduction via a couple of examples, and compare to approaches based on the
full Gramians for bilinear systems.

1 Introduction

Direct numerical simulations are one of the conventional methods to study physi-
cal phenomena of dynamical systems. However, extracting all the complex system
dynamics generally leads to large state-space dynamical systems, whose direct sim-
ulations are inefficient and involve a huge computational burden. Hence, there is a
need to consider model order reduction (MOR), aiming to replace these large-scale
dynamical systems by systems of much smaller state dimension. MOR for linear
systems has been investigated intensively in recent years and are widely used in nu-
merous applications; see, e.g., [2, 8, 23]. In this work, we consider MOR for bilinear
control systems, which can be considered as a bridge between linear and nonlinear
systems and are of the form:
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ẋ(t) = Ax(t)+∑
m
k=1 N(k)x(t)uk(t)+Bu(t),

y(t) =Cx(t), x(0) = 0,
(1)

where x(t) ∈ Rn,u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors
of the system, respectively. The numbers m and p represent the quantity of inputs
and outputs. All system matrices are of appropriate dimensions. The applications of
bilinear systems can be seen in various fields [11, 18, 21]. Further, the applicability
of the systems (1) in MOR for stochastic control problems is studied in [7, 17] and
for MOR of a certain class of linear parametric systems [4]. Our goal is to construct
another low-dimensional bilinear system

˙̂x(t) = Âx̂(t)+∑
m
k=1 N̂(k)x̂(t)uk(t)+ B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,
(2)

where Â, N̂(k) ∈ Rr×r, B̂ ∈ Rr×m and Ĉ ∈ Rp×r with r � n, ensuring y ≈ ŷ for
all admissible inputs u ∈ L2[0,∞). Analogous to linear systems, we aim to obtain
the reduced matrices via projection. For this, we construct two projection matrices
V,W ∈ Rn×r such that W TV is invertible, which allows us to determine the reduced
matrices as:

Â = (W TV )−1W T AV, N̂(k) = (W TV )−1W T N(k)V, for k ∈ {1, . . . ,m},
B̂ = (W TV )−1W T B and Ĉ =CV.

Clearly, it can be seen that the quality of the reduced system (2) depends on the
choice of the projection matrices. Several methods for linear systems have been ex-
tended to bilinear systems such as balanced truncation [7] and interpolation-based
MOR [3, 5, 10, 13]. In this work, we mainly focus on a balanced truncation based
MOR technique for bilinear systems. Balanced truncation for linear systems, Nk = 0
in (1), has been studied in, e.g., [2, 19], which relies on controllability and observ-
ability Gramians of the system. Later on, the balancing concept for general nonlinear
systems has been extended in a series of papers; see, e.g., [14, 16, 22], where a new
notion of controllability and observability energy functionals has been introduced.
Although theoretically the balancing concept for nonlinear systems is appealing, it
is seldom applicable from the computational perspective. This is due to the fact that
the energy functionals are solutions of nonlinear Hamilton-Jacobi equations, which
are extremely expensive to solve for large-scale systems.

Subsequently, the generalized Gramians for bilinear systems have been devel-
oped in regards to MOR; see, e.g. [1], which are the solutions of generalized Lya-
punov equations of the form

AP+PAT +∑
m
k=1 N(k)P

(
N(k)

)T
=−BBT , (3a)

AT Q+QA+∑
m
k=1

(
N(k)

)T
QN(k) =−CTC, (3b)
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where A,N(k),B and C are as in (1). The connections between these Gramians and
the energy functionals of bilinear systems have been studied in [15]. Furthermore,
the relations between the Gramians and the controllability and observability of bilin-
ear systems have already been studied in [7]. However, the main bottleneck in using
these Gramians in the MOR context is the computation of the Gramians, though re-
cently there have been methodologies to determine the low-rank solutions of these
generalized Lyapunov equations (3); see [6, 24].

Therefore, it motivates us to investigate an alternative pair of Gramians for bi-
linear systems, which we call Truncated Gramians (TGrams). Regarding this, in
Section 2 we recall balanced truncation for bilinear systems based on the Grami-
ans (3). In Section 3, we propose TGrams for bilinear systems and investigate their
connections with the controllability and observability of the bilinear system. More-
over, we reveal the relation between these TGrams and energy functionals of the
bilinear systems. Then, we discuss the advantages of considering these TGrams in
the MOR context. Subsequently in Section 4, we provide a couple of numerical
examples to illustrate the applicability of the TGrams for MOR of bilinear systems.

2 Background Work

In this section, we outline some basic concepts of balanced truncation MOR. For
this, let us consider a bilinear control system as in (1), then the controllability and
observability of a state x ∈ Rn can be defined based on energy functionals as fol-
lows [22]:

Ec(x0) = inf
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1
2

∫ 0

−∞

‖u(t)‖2dt,

Eo(x0) = sup
x(0)=x0, x(∞)=0

1
2

∫
∞

0
‖y(t)‖2dt,

respectively. The functional Ec is measured in terms of the minimal input energy
required to steer the system from x(−∞) = 0 to a desired state x0 at time t = 0. If the
state x0 is uncontrollable, then it requires infinite energy; that means Ec(x0) = ∞.
On the other hand, the functional Eo characterizes the output energy determined by
a particular initial state x0 using the uncontrolled system. If the state x0 is unob-
servable, then it produces no output energy; Eo(x0) = 0. In the linear case (Nk = 0),
these energy functionals can be represented exactly by the Gramians of the linear
system:

Ec(x) =
1
2
〈x,P#

l x〉 and Eo(x) =
1
2
〈x,Qlx〉,
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where 〈·, ·〉 represents the Euclidean inner product, P#
l denotes the Moore-Penrose

pseudo inverse of Pl , and Pl and Ql are the unique and positive semidefinite solutions
of the following Lyapunov equations:

APl +PlAT +BBT = 0 and AT Ql +QlA+CTC = 0, (5)

respectively. In case of a nonlinear setting, the functionals Ec and Eo can be de-
termined by solving Hamilton-Jacobi nonlinear PDEs, which are quite expensive
to solve for large-scale settings. For more details on these PDEs, we refer to [22].
However, for MOR of bilinear systems, the Gramians, namely the controllability
(P) and the observability (Q) Gramian, are defined as

P =
∞

∑
k=1

∫
∞

0
· · ·
∫

∞

0
P̄k(t1, . . . , tk)P̄k(t1, . . . , tk)T dt1 · · ·dtk,

Q =
∞

∑
k=1

∫
∞

0
· · ·
∫

∞

0
Q̄k(t1, . . . , tk)Q̄k(t1, . . . , tk)T dt1 · · ·dtk,

(6)

respectively, where

P̄1(t1) = eAt1B, P̄k(t1, . . . , tk) = eAtk
[
N(1), . . . ,N(k)

]
P̄k−1,

Q̄1(t1) = eAT t1CT , Q̄k(t1, . . . , tk) = eAT tk
[(

N(1)
)T

, . . . ,
(

N(k)
)T ]

Q̄k−1.
(7)

Then, the connection between these Gramians and Lyapunov equations are derived
in [1]. Therein, it is shown that these Gramians satisfy the generalized Lyapunov
equations stated in (3). Though energy functionals for bilinear system cannot be
determined exactly in terms of the Gramians of the latter system, the Gramians
provide a lower and an upper bound for the input (controllability) and the output
(observability) energy functional as follows:

Ec(x)> (1/2)〈x,P−1x〉, x 6= 0 and Eo(x)< (1/2)〈x,Qx〉, x 6= 0, (8)

in the small open neighborhood of the origin [15], where in (8) we assume that P,Q
and at least one N(k) are of full rank.

However, in the general case with P,Q ≥ 0 it is shown in [7] that if the desired
state x0 does not belong to ImP, then Ec(x0) = ∞, and similarly if an initial state
x0 belongs to KerQ, then Eo(x0) = 0. This shows that the states x0 with x0 ∈ KerQ
or x0 6∈ ImP do not play any role in the dynamics of the system; hence they can
be removed. The main idea of balanced truncation lies in furthermore neglecting
the almost uncontrollable and almost unobservable states (hard to control/observe
states).

In order to guarantee that hard to control and hard to observe states are truncated
simultaneously, we need to find a transformation x 7→ T−1x, leading to a transformed
bilinear system, whose controllability and observability Gramians are equal and di-
agonal, i.e.,
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T−1PT−T = T T QT = Σ = diag(σ1,σ2, . . . ,σn) . (9)

Analogous to the linear case (see, e.g., [2]), having the factorizations of P = LLT

and LT QL = UΣ 2UT , one finds the corresponding transformation matrix in T =
LUΣ−1/2. Now, w.l.o.g, we consider the following bilinear system being a balanced
bilinear system:[

ẋ1(t)
ẋ2(t)

]
=

[
A11 A12
A21 A22

][
x1(t)
x2(t)

]
+

m

∑
i=1

[
N(k)

11 N(k)
12

N(k)
21 N(k)

22

][
x1(t)
x2(t)

]
uk(t)+

[
B1
B2

]
u(t),

y(t) =
[
C1 C2

][
xT

1 (t) xT
2 (t)

]T
,

having the controllability and observability Gramian equal to Σ :

Σ = diag(σ1,σ2, . . . ,σn)

with σi ≥ σi+1 and x1(t) ∈ Rr and x2(t) ∈ Rn−r. Fixing r such that σr > σr+1, we
determine a reduced-order system of order r by neglecting x2 as follows:

ẋ1(t) = A11x1(t)+∑
m
i=1 N(k)

11 x1(t)uk(t)+B1u(t),

yr(t) =C1x1(t).
(10)

This provides a good local reduced-order system, but unlike in the linear case, it is
not clear how to quantify the error, occurring due to x2 being removed.

3 Truncated Gramians for Bilinear Systems

As discussed in the preceding section, we need to solve two generalized Lyapunov
equations in order to compute reduced-order systems via balanced truncation. Solv-
ing these generalized Lyapunov equations is a numerically challenge for large-scale
settings, although there have been many advancements in this direction in recent
times; see, e.g. [6, 24]. In this section, we seek to determine TGrams for bilinear
systems and discuss their advantages in the balancing-type MOR.

We define TGrams for bilinear systems by considering only the first two terms in
the series in (6), which are dependent on the first two kernels of the Volterra series
of the bilinear system, as follows:

PT =
∫

∞

0
P̄1(t1)P̄T

1 (t1)dt +
∫

∞

0

∫
∞

0
P̄2(t1, t2)P̄T

2 (t1, t2)dt1dt2, (11a)

QT =
∫

∞

0
Q̄1(t1)Q̄T

1 (t1)dt1 +
∫

∞

0

∫
∞

0
Q̄2(t1, t2)Q̄T

2 (t1, t2)dt1dt2, (11b)

where P̄i and Q̄i are defined in (7). Next, we establish the relations between these
truncated Gramians and the solutions of Lyapunov equations.
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Lemma 1. Consider the bilinear system (1) and let PT and QT be the truncated
controllability and observability Gramians of the system as defined in (11). Then,
PT and QT satisfy the following Lyapunov equations:

APT +PT AT +∑
m
k=1 N(k)Pl

(
N(k)

)T
+BBT = 0, (12a)

AT QT +QT A+∑
m
k=1

(
N(k)

)T
QlN(k)+CTC = 0, (12b)

where Pl and Ql are the Gramians of the linear systems as shown in (5).

The above lemma can be proven in a similar way as done in [1, Thm. 1]. Therefore,
and due to the space limitations, we omit the proof. Next, we compare the energy
functionals of the bilinear system and the quadratic forms given by the TGrams in a
similar fashion as done in [15] by using the Gramians for bilinear systems. Before
we state the corresponding lemma, we introduce the homogeneous bilinear system,
which is used to characterize the observability energy in the system, as follows:

ẋ(t) = Ax(t)+∑
m
i=1 N(k)x(t)uk(t),

y(t) =Cx(t), x(0) = x0.
(13)

Lemma 2. Given the bilinear system (1), with an asymptotically stable A, being
asymptotically reachable from 0 to any state x in the neighborhood W of 0. Let
P,Q> 0 be the Gramians of the system, and PT ,QT > 0 be the TGrams of the system
defined in (11), and at least one N(k) be of full rank. Then, the following relation
holds in the neighborhood W of 0, where the system is asymptotically stable:

Ec(x)> (1/2)xT P−1
T x > (1/2)xT P−1x.

Furthermore, there exists a neighborhood Ŵ of 0, where the following holds:

Eo(x)< (1/2)xT QT x < (1/2)xT Qx,

where Ec and Eo are the controllability and observability energy functionals defined
in (4).

Proof. By using analyticity of Ec(x), it is shown in [15] that there exists an open
ball Bδ ⊂W of radius δ , where the following relation holds:

Ec(x) = (1/2)xT P−1
l x+O(‖x‖3),

where Pl is a solution of (5). Taking the difference of (12a) and (5), we get

PT −Pl =
∫

∞

0
eAt

(
m

∑
k=1

N(k)Pl

(
N(k)

)T
)

eAT tdt.

Since Pl > 0 and at least one N(k) is assumed to be full rank, clearly, P−1
T < P−1

l .
Next, we define the following set of real positive numbers in terms of the functional
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Ec(x) and the Gramians:

λ (δ ) = inf
x∈Bδ

1
2

xT (P−1
l −P−1

T )x
xT x

> 0 and ε(δ ) = sup
x∈Bδ

|Ec(x)− 1
2 xT P−1

l x|
xT x

≥ 0.

If the radius δ is contracted by a factor 0< γ ≤ 1 and if we substitute δ by δγ = γ ·δ ,
then we observe that λ (δ ) = λ (δγ) and ε(δγ) = γ ·ε(δ ). Therefore, one can choose
γ , which ensures λ (δγ)> ε(δγ). Hence,

Ec(x)> (1/2)xT P−1
T x, (15)

where x ∈W := Bδγ
and x 6= 0. Furthermore, if the controllability Gramian of the

bilinear system, which is the solution of (3a), is determined as a series [12], then it
is easy to conclude that P > PT > 0. That means,

xT P−1x < xT P−1
T x. (16)

Combining (15) and (16) proves the first part of the lemma. For a bounded input
‖u‖L2 ≤ β , the output energy of the system can be given as

Eo(x0,u) =
1
2

∫
∞

0
‖y(t)‖2

2dt,

assuming Eo(x0,u) is finite, which can then also be written as

Eo(x0,u) =
1
2

∫
∞

0
‖Cx(t)‖2

2dt

=
1
2

∫
∞

0
−2xT (t)QT Ax(t)−

m

∑
k=1

xT (t)
(

N(k)
)T

QlN(k)x(t)dt.

Replacing Ax(t) using the system (13), yields

Eo(x0,u) =
∫

∞

0
−xT (t)QT ẋ(t)+ xT (t)

m

∑
k=1

(
QT N(k)uk(t)−

(
N(k)

)T
QlN(k)

)
x(t)dt

=
1
2

∫
∞

0
− d

dt

(
xT (t)QT x(t)

)
dt

+
∫

∞

0
xT

m

∑
k=1

(
QT N(k)uk(t)−

(
N(k)

)T
QlN(k)

)
x(t)dt.

This implies

Eo(x0,u)− (1/2)xT
0 QT x0 =

∫
∞

0
xT R(t)x(t)dt,

where R(t) =
m
∑

k=1

(
QT N(k)uk(t)−

(
N(k)

)T
QlN(k)

)
. For sufficiently small input u

and assuming that at least one N(k) is full rank, it can immediately be observed that
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R(t) is a negative definite matrix. Hence, we get

Eo(x0,u)− (1/2)xT
0 QT x0 < 0 ⇒ Eo(x0,u)< (1/2)xT

0 QT x0.

Moreover, if the observability Gramian is determined as a series with positive
semidefinite summands, then it can also be seen that Q > QT ; hence

Eo(x0,u)< (1/2)xT
0 QT x0 < (1/2)xT

0 Qx0.

This concludes the proof. �

To illustrate the relation between energy functionals, Gramians and TGrams of bi-
linear systems as stated in the above lemma, we consider the same scalar example
considered in [15].

Example 1. Consider a scalar example (a,b,c,n). We assume a < 0, n2+2a < 0 and
bc 6= 0, which is sufficient to ensure the existence of P > 0 and Q > 0. The energy
functionals of the system can be easily determined by solving the corresponding
nonlinear PDEs [15], which are:

Ec(x) =
2a
n2

[ nx
nx+b

+ log
( b

nx+b

)]
and Eo(x) =

1
2

c2

−2a
x2.

The approximations of the energy functionals using the Gramians are:

E(G)
c (x) =

1
2

n2 +2a
−b2 x2 and E(G)

o (x) =
1
2
−c2

n2 +2a
x2.

The approximations of the energy functionals using TGrams are:

E(T )
c (x) = a ·

(
−b2 +

n2b2

2a

)−1

x2 and E(T )
o (x) =

1
4a

(
−c2 +

n2c2

2a

)
x2.

The comparison of these quantities by taking numerical values for −a = b = c =
n = 1 is illustrated in Figure 1.

Next, we recall the discussion in [7] about definiteness of Gramians and controlla-
bility/observability of the bilinear system. Following this discussion, we also show
how controllability/observability of the bilinear system are related to the TGrams.

Theorem 1.

(a) Consider the bilinear system (1) and define its truncated controllability Gramian
PT as in (11a). If the final state x0 /∈ ImPT , then Ec(x0) = ∞.

(b) Consider the homogeneous bilinear system (13) and assume that the truncated
observability Gramian QT is defined as in (11b). If the initial condition x0 ∈
KerQT , then the output y(t) is zero for all t ≥ 0, i.e. Eo(x0) = 0.

Proof. The above theorem can be proven along the lines of [7, Thm. 3.1] using one
of the important properties of positive semidefinite matrices. It is that the null space
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−0.2 0 0.2
0

2
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8

·10−2

x

Controllability energy comparison

Ec(x)

E(G)
c (x)

E(T )
c (x)

−0.2 0 0.2
0

1

2

3

·10−2

x

Observability energy comparison

Eo(x)

E(G)
o (x)

E(T )
o (x)

Fig. 1: The figure shows the comparison of the energy functionals of the system and
their approximations via Gramians and TGrams as stated in Lemma 2.

of the matrix C , which is the sum of two positive semidefinite matrices A and B, is
an intersection of the null space of A and B. In other words, if the vector v belongs
to null space of C , then A v = 0 and Bv = 0 as well. However, we skip a detailed
proof due to the limited space. �

From Lemma 2 and Theorem 1, it is clear that the TGrams for bilinear systems can
also be used to determine the states that absorb a lot of energy, and still produce
very little output energy. However, there are several advantages of considering the
TGrams over the Gramians for bilinear systems. Firstly, TGrams approximate the
energy functionals of the bilinear systems more accurately as proven in Lemma 2
and illustrated in Example 1. Secondly, in order to compute TGrams, we require the
solutions of four conventional Lyapunov equations, whereas the Gramians require
the solutions of the generalized Lyapunov equations (3), which are indeed much
more computationally cumbersome. Lastly, TGrams are of smaller rank as com-
pared to Gramians; i.e. P > PT and Q > QT . It indicates that σi(P ·Q)> σi(PT ·QT ),
where σi(·) denotes the i-th largest eigenvalue of the matrix. This can be shown us-
ing Weyl’s inequality [25]. Hence, if one uses to truncate at machine precision, then
the reduced system based on TGrams is to be of a small order; however, the relative
decay of the Hankel singular values

(√
σi(PT ·QT )

)
so far lacks any analysis.

4 Numerical Results

In this section, we illustrate the efficiency of the reduced-order systems obtained
via the proposed TGrams for the bilinear system and compare it with that of the full
Gramians [7]. We denote the Gramians for the bilinear system by SGrams (standard
Gramians) from now on. In order to determine the low-rank factors of the Gramians
for bilinear systems, we employ the most recently proposed algorithm in [24], which
utilizes many of the properties of inexact solutions and uses the extended Krylov
subspace method (EKSM) to solve the conventional Lyapunov equation up to a
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desired accuracy. To determine the low-rank factors of the linear Lyapunov equation,
we also utilize EKSM. All the simulations were carried out in MATLAB® version
7.11.0(R2010b) on a board with 4 Intel® Xeon®E7-8837 CPUs with a 2.67-GHz
clock speed, 8 Cores each and 1TB of total RAM.

4.1 Burgers’ equation

At first, we consider a viscous Burgers’ equation, which is one of the standard test
example for bilinear systems; see, e.g. [10]. Therein, one can also find the govern-
ing equation, boundary conditions and initial condition of the system. As shown
in [10], a spatial semi-discretization of the governing equation using k equidistant
nodes leads to an ODE system with quadratic nonlinearity. However, the quadratic
nonlinear system can be approximated by a very well-known technique, the so-
called Carleman bilinearization: see, e.g., [21]. The dimension of the approximated
bilinearized system is n = k + k2. We set the viscosity µ = 0.1 and k = 40, and
choose the observation vector C such that it yields an average value for the variable
v in the spatial domain. The bilinearized system is not an H2 system, which can be
checked by looking at the eigenvalues of the matrix X := (I⊗A+A⊗ I +N⊗N).
If σ(X ) 6⊂ C−, then the series determining its controllability Gramians diverges.
To overcome this issue, we choose a scaling factor γ , which multiplies with the ma-
trices B and Nk, and the input u(t) is scaled by 1/γ. For this example, we set γ = 0.1,
ensuring σ(X )⊂ C−.

We determine reduced systems of orders r = 5 and r = 10 using SGrams and
TGrams, and compare the quality of these reduced-order systems by using two ar-
bitrary control inputs as shown in Figure 2. More importantly, we also show the
CPU-time to determine the low-rank factors of SGrams and TGrams in the same
figure.

Figure 2 shows that computing TGrams are much cheaper than SGrams. More-
over, we also observe that the reduced-order systems based on TGrams are very
much competitive to those of SGrams for both control inputs and both orders of
reduced systems.

4.2 Electricity cable impacted by wind

Below, we discuss an example studied in [20]. Therein, a damped wave equation
with Lévy noise is considered, transformed into a first order stochastic PDE (SPDE)
and then discretized in space. The governing equation, which models the lateral
displacement of an electricity cable impacted by wind, is

∂ 2

∂ t2 X(t,z)+2
∂

∂ t
X(t,z) =

∂ 2

∂ z2 X(t,z)+ e−(z−
π
2 )

2
u(t)+2e−(z−

π
2 )

2
X(t−,z)∂M(t)

∂ t
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(a) Comparison of CPU-time to compute SGrams and TGrams for bilinear system.
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(b) For an input u(t) = t · e−t · sin(πt).
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(c) For an input u(t) = t · e−t +1.

Fig. 2: Comparisons of CPU-time and time-domain responses of the original and
reduced-order systems for two different orders and for two inputs.

for t,z ∈ [0,π], where M is a scalar, square integrable Lévy process with mean zero.
The boundary and initial conditions are:

X(t,0) = X(t,π) = 0 and X(0,z) = 0,
∂

∂ t
X(t,z)

∣∣∣∣
t=0
≡ 0.

An approximation for the position of the middle of the cable represents the output

Y (t) =
1

2ε

∫ π
2 +ε

π
2−ε

X(t,z)dz, ε > 0.

Following [20], a semi-discretized version of the above SPDE has the following
form with x(0) = 0 and t ∈ [0,π]:

dx(t) = [Ax(t)+Bu(t)]dt +Nx(s−)dM(s), y(t) =Cx(t). (17)

Here, A, N ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m, x(t−) := lims↑t x(s) and y is the corre-
sponding output. We, moreover, assume that the adapted control satisfies ‖u‖2

L 2
T

:=

E
∫ T

0 ‖u(t)‖2
Rm dt < ∞. For more details, we refer to [20].

In contrast to [20], we fix a different noise process, which allows the wind to
come from two directions instead of just one. The noise term we choose is rep-
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resented by a compound Poisson process M(t) = ∑
N(t)
i=1 Zi with (N(t))t∈[0,π] being

a Poisson process with parameter 1. Furthermore, Z1,Z2, . . . are independent uni-
formly distributed random variables with Zi ∼U

(
−
√

3,
√

3
)
, which are also inde-

pendent of (N(t))t∈[0,π]. This choice implies E [M(t)] = 0 and E
[
M2(1)

]
= 1. BT for

such an Ito type SDE (17) with the particular choice of M is also based on Gramians,
which fulfill equations (3) with m = 1 and N := N(1). We fix the dimension of (17)
to n = 1000, set u(t) = ew(t) sin(t) and run several numerical experiments.

We apply BT based on SGrams as described in [9] and compute the reduced
systems of order r = 3 and r = 6. Similarly, we determine the reduced systems of
the same orders using TGrams. Next, we discuss the quality of these derived reduced
systems and computational cost to determine the low-rank factors of SGrams and
TGrams. In Figure 3, we see that the TGrams are computationally much cheaper as
compared to the SGrams.

For the r = 3 case, clearly the reduced systems based on TGrams outperform
the ones based on the SGrams for all three trajectories (see Figure 4a). This is also
true for the mean deviation as shown in the Figure 4c (left). For the r = 6 case, it
is not that obvious anymore. The reduced system obtained by SGrams seems to be
marginally more accurate, but still both methods result in very competitive reduced-
order systems, see Figures 4b and 4c (right).

0 20 40 60 80 100 120 140 160

SGrams

TGrams

138.57
64.22

Time [s]

Fig. 3: Comparison of CPU-time to compute SGrams and TGrams of the system.

5 Conclusions

In this paper, we have proposed truncated Gramians for bilinear systems. These al-
low us to find the states, which are both hard to control and hard to observe, like
the Gramians for bilinear systems. We have also shown that the truncated Gramians
approximate the controllability and observability energy functionals of bilinear sys-
tems better as compared to the Gramians of the latter systems. Moreover, we have
discussed advantages of the truncated Gramians in the model reduction context. In
the end, we have demonstrated the efficiency of the proposed truncated Gramians in
model reduction by means of two numerical examples.
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SGram TGram

0 1 2 3
−8
−6
−4
−2

0

Time [s]

0 1 2 3

−10

−5

0

Time [s]
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(a) ln
(
|y(ω,t)−yr(ω,t)|
|y(ω,t)|

)
with reduced order dimension r = 3.
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(b) ln
(
|y(ω,t)−yr(ω,t)|
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)
with reduced order dimension r = 6.
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(c) ln
(
E|y(t)−yr(t)|

E|y(t)|

)
, where r = 3 (left),6 (right).

Fig. 4: Comparison of the quality of reduced-order systems obtained using
SGrams and TGrams for u(t) = ew(t) sin(t).
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