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Abstract. We consider optimal control-based boundary feedback stabilization
of flow problems for incompressible fluids. We follow an analytical approach
laid out during the last years in a series of papers by Barbu, Lasiecka, Trig-
giani, Raymond, and others. They have shown that it is possible to stabilize
perturbed flows described by Navier-Stokes equations by designing a stabi-
lizing controller based on a corresponding linear-quadratic optimal control
problem. For this purpose, algorithmic advances in solving the associated
algebraic Riccati equations are needed and investigated here. The compu-
tational complexity of the new algorithms is essentailly proportional to the
simulation of the forward problem.
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1. Introduction

The aim of this work is to develop numerical methods for the stabilization of solu-
tions to flow problems. This is to be achieved by action of boundary control using
feedback mechanisms. In recent work by Raymond [48, 49, 50] and earlier attempts
by Barbu [8], Barbu and Triggiani [11] and Barbu, Lasiecka, and Triggiani [9], it
is shown analytically that it is possible to construct a linear-quadratic optimal
control problem associated to the linearized Navier-Stokes equation so that the re-
sulting feedback law, applied to the instationary Navier-Stokes equation, is able to
exponentially stabilize unstable solution trajectories assuming smallness of initial
values.

The work described in this paper was supported by Deutsche Forschungsgemeinschaft, Prior-

ity Programme 1253, project BA1727/4-1 and BE2174/8-1 “Optimal Control-Based Feedback
Stabilization in Multi-Field Flow Problems”.
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To be more precise, consider the following situation. The flow velocity field
v and pressure χ fulfill the incompressible Navier-Stokes equations

∂tv + v · ∇v − 1
Re

∆v +∇χ = f, (1a)

div v = 0, (1b)

on Q∞ := Ω × (0,∞) with a bounded and connected domain Ω ⊆ Rd, d = 2, 3,
with boundary Γ := ∂Ω of class C4, a Dirichlet boundary condition v = g on
Σ∞ := Γ×(0,∞), and appropriate initial conditions (the latter are discussed, e.g.,
in [3]).

Now assume we are given a regular solution w of the stationary Navier-Stokes
equations

w · ∇w − 1
Re

∆w +∇χs = f, (2a)

divw = 0, (2b)

with Dirichlet boundary condition w = g on Γ. Moreover, the given flow field w is
assumed to be an unstable solution of (1).

If one can determine a Dirichlet boundary control u so that the corresponding
controlled system

∂tz + (z · ∇)w + (w · ∇)z + (z · ∇)z − 1
Re

∆z +∇p = 0 in Q∞, (3a)

div z = 0 in Q∞, (3b)

z = bu in Σ∞, (3c)

z(0) = z0 in Ω, (3d)

is stable for initial values z0 sufficiently small in an appropriate subspace X(Ω) of
the space of divergence-free L2 functions with z ·n = 0, called here V 0

n (Ω), then it
can be shown for several situations (see below) that z decreases exponentially in the
norm of X(Ω) and thus the solution to the instationary Navier-Stokes equations
(2) with flow field v = w+z, pressure χ = χs+p, and initial condition v(0) = w+z0

in Ω is controlled to the stationary solution w. The initial value z0 can be seen as
a small perturbation of the steady-state flow w and the considered problem can
be interpreted as designing a feedback control in order to stabilize the perturbed
flow back to the steady-state solution. Note that the operator b in the boundary
control formulation (3c) is the identity operator if the control acts on the whole
boundary and can be considered as a restriction operator if the control is localized
in part of the boundary.

The following analytical solutions to the control problem described above are
discussed in the literature. For w ∈ L∞(Ω) and z0 ∈ V 0

n (Ω) ∩ L4(Ω) =: X(Ω), the
existence of a stabilizing boundary control is proved in [29], but no constructive
way to derive a boundary control in feedback form is derived. In the 3D case,
the existence of an exponentially stabilizing feedback control for an appropriately
defined subspace X(Ω) is proved in [30].
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Stabilization of the Navier-Stokes system with feedback control based on an
associated linear-quadratic optimal control problem has been recently discussed by
several authors. The situation as described above with a distributed control local-
ized in an open subset Ωu ⊂ Ω of positive measure instead of a boundary control
is discussed in [8, 10, 11]. The only numerical study of such an approach known to
the authors is [39] and treats the special case of a rectangular driven cavity and a
control with zero normal component. The problem considered above with Dirichlet
boundary control, b being the identity operator, and a control with zero normal
component is studied in [9]. The first treatment of the problem considered above
in the case when the control has nonzero normal components (which is often the
relevant case in engineering applications) and is localized on parts of the bound-
ary is given in [48, 49, 50, 3]. The stabilization results described in [48, 49, 50, 3]
are constructive in that they allow the computation of a Dirichlet feedback law
which stabilizes the Navier-Stokes system (1) in the sense that its solution (v, χ)
is controlled to the steady-state solution (w,χs) associated to (2). We will briefly
outline this construction for the 2D case as described in [48, 49]—the 3D case is
treated similarly [50], but the derivation is quite more involved. The stabilizing
feedback law is derived from a perturbed linearization of the Navier-Stokes system
(3), given by

∂tz + (z · ∇)w + (w · ∇)z − 1
Re

∆z − ωz +∇p = 0 in Q∞, (4a)

div z = 0 in Q∞, (4b)

z = bu in Σ∞, (4c)

z(0) = z0 in Ω, (4d)

where ω > 0 is a positive constant. The perturbation term −ωz (note the sign!)
is required to achieve exponential stabilization of the feedback law. Together with
the cost functional

J(z, u) =
1
2

∫ ∞
0

〈z, z〉L2(Ω) + 〈u, u〉L2(Γ) dt, (5)

the linear-quadratic optimal control problem associated to (3) becomes

inf
{
J(z, u) | (z, u) satisfies (4), u ∈ L2((0,∞);V 0(Γ))

}
, (6)

where V 0(Γ) = {g ∈ L2(Γ) | 〈g · n, 1〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0}. Then it is shown in

[48, 49] that the feedback law

u = −R−1
A bB∗ΠPz (7)

is exponentially stabilizing for small enough initial values z0. The operators defin-
ing the feedback law are

– the linearized Navier-Stokes operator A;
– the Helmholtz projector P : L2(Ω) 7→ V 0

n (Ω);
– the control operator B := (λ0I − A)DA, where DA is the Dirichlet operator

associated with λ0I −A and λ0 > 0 is a constant;
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– RA := bD∗A(I − P )DAb+ I;
– the Riccati operator Π = Π∗ ∈ L(V 0

n (Ω)) which is the unique nonnegative
semidefinite weak solution of the operator Riccati equation

0 = I + (A+ ωI)∗Π + Π(A+ ωI)−Π(BτB∗τ +BnR
−1
A B∗n)Π, (8)

where Bτ and Bn correspond to the projection of the control action in the
tangential and normal directions derived from the control operator B.

Note that a simpler version of the Riccati equation and feedback control law with
RA = I is discussed in [3].

Thus, the numerical solution of the stabilization problem for the Navier-
Stokes equation (1) requires the numerical solution of the operator Riccati equa-
tion (8). To achieve this, we propose to proceed as in classical approaches to
linear-quadratic optimal control problems for parabolic systems described, e.g., in
[4, 5, 41, 42]. That is, first we discretize (4) in space using a finite element (FEM)
Galerkin scheme, then solve the associated finite-dimensional algebraic Riccati
equation (ARE) from which we obtain a finite-dimensional controller in feedback
form as in (7). The finite-dimensional controller is then applied to (1). The stabi-
lizing properties of such a finite-dimensional controller in case of internal control
are discussed in [11] and for linear parabolic systems in [36, 45]. For the bound-
ary control problem considered here, the approximation and convergence theory
is an open problem. As far as the numerical solution of the described stabilization
problems is concerned, we are only aware of the abovementioned paper [39] and
preliminary results for stabilization of Kármán vortex streets presented by Ray-
mond in [47] which, in both cases, lead to dimensions of the FEM ansatz space
so that the associated ARE can still be solved with classical methods based on
associated eigenvalue problems (see [14, 26, 52] for overviews of available methods).

We also would like to point out that there exists a variety of different ap-
proaches to the stabilization of flow problems based, e.g., on gradient or adjoint
methods, see the recent books [1, 34] and the references therein. Another recent
contribution treats the 3D Navier-Stokes system in the exterior of a bounded do-
main [31]. Here, a control is derived based on an optimality system involving the
adjoint Oseen equations. In contrast to all these approaches, the ansatz followed
here does not require the sometimes infeasible computation of gradient systems
or the solution of adjoint systems. We pursue the feedback stabilization approach
as it allows to incorporate current information on the perturbed flow, which is
not possible when using a pre-computed open-loop control as often obtained from
optimization-based methods. That is, our approach allows to also deal with per-
turbations “on the fly” in contrast to open-loop control schemes. Of course, in
practical situations, our approach will be best utilized in order to compensate for
perturbations of an optimized flow profile that is obtained through open-loop con-
trol, i.e., the feedback control loop is added to optimal control obtained by other
methods. If the deviation from the optimized flow profile is sensed fast enough,
the smallness assumption of the initial values is well justified and our scheme will
steer the flow back to the desired flow exponentially fast.
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In the following section we describe a strategy for the numerical computa-
tion of the stabilizing feedback boundary control law based on solving a discretized
version of (8). We will see that here, several problems occur as compared to the
standard case of discretized operator Riccati equations associated to linear para-
bolic linear-quadratic optimal control problems. Remedies for those problems are
described in Section 3. We provide an outlook on future work in Section 4.

2. Numerical Solution of the Operator Riccati Equation

The general problem encountered with the Riccati approach in the context of
feedback control for PDEs is that the expected dimensions of the FEM ansatz
spaces, called n, required to achieve a reasonable approximation error will be far
beyond the abilities of ARE solvers known from systems and control theory as the
number of unknowns in the Riccati solution is essentially n2. In the following, we
will therefore discuss the computational challenges encountered after the spatial
FEM discretization is performed.

First note that a Galerkin FEM discretization of (4) (employing the Helmholtz
decomposition so that Pz becomes the new state variable) yields a finite-dimensional
linear-quadratic optimal control problem for an evolution equation of the form

Mhżh(t) = −Khzh(t) +Bhuh(t), zh(0) = Qhz0, (9)

where Mh, Kh are the mass and stiffness matrices, Bh is the discretized bound-
ary control operator, and Qh is the canonical projection onto the FEM ansatz
space. The stabilizing feedback law for the finite-dimensional approximation to
the optimal control problem (6) then becomes

uh(t) = −BTh ΠhMhzh(t) =: −Fhzh(t), (10)

where Πh = ΠT
h is the unique nonnegative semidefinite solution to the ARE

0 = R(Πh) = Mh −KT
h ΠhMh −MhΠhKh −MhΠhBhB

T
h ΠhMh. (11)

This matrix-valued nonlinear system of equations can be considered as a finite-
dimensional approximation to the operator Riccati equation (8). Under mild as-
sumptions, it can be proved that for linear parabolic control systems, Πh converges
uniformly to Π in the strong operator topology, see, e.g., [5, 22, 36, 45, 41, 42].
Convergence rates and a priori error estimates are derived in [40] under mild as-
sumptions for linear parabolic control systems. Note that similar results are not
yet available for the situation considered above despite first results in the station-
ary case [25]. The major computational challenge in this approach is that in order
to solve the finite-dimensional problem for computing a feedback law uh as in (10)
for approximating u from (7), we need to solve (11) numerically. As the solution is
a symmetric matrix, we are faced with n(n+1)/2 unknowns, where n is the dimen-
sion of the FEM ansatz space. This is infeasible for 3D problems and even most
2D problems. Even if there were algorithms to handle this complexity, it would in
general not be possible to store the solution matrix Πh in main memory or even
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on a contemporary hard disk. In recent years, several approaches to circumvent
this problem have been proposed.

One major ingredient necessary to solve AREs for large-scale systems arising
from PDE-constrained optimal control problems is based on the observation that
often the eigenvalues of Πh decay to zero rapidly. Thus, Πh can be approximated
by a low-rank matrix ZhZTh , where Zh ∈ Rn×r, r � n. Current research focuses on
numerical algorithms to compute Zh directly without ever forming Πh. A promising
possibility in this direction is to employ Newton’s method for AREs. Such methods
have been developed in recent years, see [4, 20, 15, 16]. The basis for these methods
is the efficient solution of the Lyapunov equations to be solved in each Newton
step,

(Kh +BhB
T
h Πh,jMh)TNjMh +MhNj(Kh +BhB

T
h Πh,jMh)−R(Πh,j) = 0, (12)

where Πh,j are the Newton iterates and Πh,j+1 = Πh,j + Nj . It is mandatory to
employ the structure in the coefficient matrices: sparse (stiffness, mass) matrix
plus low-rank update. This can be achieved utilizing methods based on the ADI
iteration [20, 43, 54], so that the computational complexity of the Newton step
can be decreased from an infeasible O(n3) to merely the complexity of solving
the corresponding stationary PDE. Note that the method used in [4] is similar to
the one discussed in [20, 15, 16], but the latter one exhibits a better numerical
robustness and enhanced efficiency. In the situation considered here, the cost for
one Newton step is expected to become proportional to solving the stationary lin-
earized Navier-Stokes problem. This requires some research into the direction of
appropriate linear solvers for nonsymmetric saddle point problems, including pre-
conditioners as discussed in [27]. Another issue is that using standard finite-element
methods (like for instance the Taylor-Hood elements) for Navier-Stokes equations,
the mass matrices in (11) and (12) are singular due to the incompressibility condi-
tion. None of the existing solvers for large-scale Lyapunov equations and AREs is
able to deal with these issues. Therefore, we first intended to use divergence-free
elements computed using explicit Helmholtz projection. A recent new algorithmic
idea [35] in this direction inspired a new approach (see Subsection 3.1 below).

Moreover, the efficiency of the discussed approach is much enhanced, when
instead of the identity operator I, a nonnegative semidefinite operator W or Wh

is employed in (8) or (11). This is the case, e.g., if an observation equation is
employed: y = Cz, where C is a restriction operator, so that only information
localized in some subdomain of Ω or Γ is used in the cost functional. Note that it
is quite natural in technical applications that not the complete state is available
for optimization and control, but only selected measurements can be employed.
Thus, it is reasonable to consider such an observation equation.

Other approaches for large-scale AREs arising in a PDE control context are
multigrid approaches [51, 32] and a sign function implementation based on format-
ted arithmetics for hierarchical matrices proposed in [33]. Both approaches seem
not feasible for the matrix structures that will result from the FEM discretization
of the linearized Navier-Stokes problems considered here. Also, approaches based
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on Krylov subspace methods have been investigated for solving large-scale Riccati
and Lyapunov equations [18, 37, 38]. These methods are not guaranteed to com-
pute the requested nonnegative semidefinite solution of the ARE and in general
are not competitive to the Newton-ADI approach. For these approaches, too, the
singularity of the mass matrices is an obstacle and would require deeper investiga-
tions itself. Therefore, we will concentrate on the modification of the Newton-ADI
approach using the ideas from [35] as this appears to be most promising.

Even though the computational complexity of new methods for large-scale
AREs has decreased considerably, the number of columns in Zh may still be too
large in case of 3D problems or if convection is the dominating effect in the flow
dynamics. Nonetheless, there are some approaches that allow a direct iteration on
the approximate feedback operator Fh [4, 20, 16]. Thus, Zh need not be computed,
and the storage requirements are limited by the number of rows in Fh which equals
the number of input variables. It is therefore of vital importance to model the
problem such that the number of resulting control variables is as small as possible.
If this can be achieved, then the method discussed in [20, 16] is applicable also for
2D and 3D problems while in [4, 40, 51], only 1D problems are considered. Further
investigation of the case of a positive definite W and Wh as in the case of W = I
is required here. The feedback iteration, too, needs to be adapted in order to be
able to deal with the singular mass matrix.

In order to apply our control strategy in practice, we need to find the stabi-
lizing solution of the operator Riccati equation (8). If for the moment we assume
that we discretize this equation after the Helmholtz decomposition is performed so
that we work with the state variable Px in the set of divergence-free functions, in
the end we have to solve numerically the ARE (11). In order to simplify notation,
in the following we will write this Helmholtz-projected ARE in the form

0 = M + (A+ ωI)TXM +MX(A+ ωI)−MXBBTXM. (13)

Before solving this equation with the now well established low-rank Newton-ADI
method, several problems have to be solved:

1. In order to arrive at the matrix representation (13) of (8), the discretization
of the Helmholtz-projected Oseen equations (4) would require divergence-free
finite elements. As our approach should work with a standard Navier-Stokes
solver like NAVIER [6], where Taylor-Hood elements are available, we have
to deal in some way with the Helmholtz projector P .

2. Each step of the Newton-ADI iteration with A0 := A + ωI requires the
solution of

ATj Zj+1Z
T
j+1M +MZj+1Z

T
j+1Aj = −WjW

T
j = −M −M(ZjZTj B)(ZjZTj B)TM,

where nv := rankM = dim of ansatz space for velocities. This leads to the
need to solve nv +m linear systems of equations in each step of the Newton-
ADI iteration, making the approach less efficient.

3. The linearized system associated with A+ ωI is unstable in general. But to
start the Newton iteration, a stabilizing initial guess is needed.
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In order to deal with the Helmholtz projector, the first strategy employed
was to explicitly project the ansatz functions. This requires the solution of one
saddle-point problem per ansatz function. Thus, this approach becomes fairly ex-
pensive already for coarse-grain discretizations. Nevertheless, we could verify our
stabilization strategy using these ideas, first presented in [7]. In particular, with
this strategy, the third issue from above is not problematic as several stabiliza-
tion procedures available for standard linear dynamical systems can be employed.
Here, we chose an approach based on the homogeneous counterpart of (13), i.e.,
the algebraic Bernoulli equation

0 = (A+ ωI)TXM +MX(A+ ωI)−MXBBTXM, (14)

which can be solved for the stabilizing solution X efficiently, e.g., with methods
described in [12, 13] if the dimension of the problem is not too large.

In order to evaluate the solution strategies, we decided to test the developed
numerical algorithms first for the Kármán vortex street. We try to stabilize the
flow behind an elliptic obstacle at Re = 500. We use a parabolic inflow profile
and a “do-nothing” outflow condition. The uncontrolled flow profile is shown in
Figure 1. Clearly, the obstacle produces the expected vortex shedding behind the
obstacle.

Figure 1. Kármán vortex street, uncontrolled.

For testing the strategy described above, we chose w as solution of the sta-
tionary Navier-Stokes equations for Re = 1.

As a coarse mesh was employed (approx. 5.000 degrees of freedom for the
velocities), the explicit projection of all ansatz functions onto the set of divergence-
free functions is possible, so that we arrive at a standard ARE as in (11) that can
be solved, e.g., by the method described in [15, 16, 20]. The controlled system
using the Dirichlet boundary feedback control approach based on the solution of
this ARE is displayed in Figure 2. The figures show the velocity field v of the
stabilized flow at various time instances, where the control acts by blowing or
sucking at two positions: one at the top of the obstacle, and one at its bottom.
Clearly, the desired stabilization of the flow behind the obstacle can be observed.

In the following section, we will describe the developed solution strategies for
the encountered problems as described above.
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Figure 2. Kármán vortex street, controlled, at t = 1 (top left),
t = 5 (top right), t = 8 (bottom left), and t = 10 (bottom right).

3. Remedies of Problems Encountered by the ARE Solver

3.1. Avoiding divergence-free FE

A standard FE discretization of the linearized Navier-Stokes system (4) using
Taylor-Hood elements yields the following system of differential-algebraic equa-
tions (DAEs):

E11żh(t) = A11zh(t) +A12ph(t) +B1u(t)

0 = AT12zh(t) +B2u(t) (15)
zh(0) = zh,0,

where E11 ∈ Rnv×nv is symmetric positive definite, AT12 ∈ Rnp×nv is of rank np.

zh ∈ Rnv and ph ∈ Rnp are the states related tot he FEM discretization of velocities
and pressure, and g ∈ Rng the system input derived from the Dirichlet boundary
control.

Unfortunately, the ARE corresponding to the DAE (15) in the form (13) (with

M = diag(E11, 0), A + ωI =
24 A11 A12

A12 0

35, etc., does not yield the information

required about the stabilizing feedback. It is well-known (see, e.g., [44]) that if M
is singular, (13) may or may not have solutions, no matter whether the correspon-
ding DAE is stabilizable. Moreover, the positive semidefinite solution of (13), if it
exists, may not be stabilizing. In [24] we suggest a projected ARE using spectral
projectors onto the deflating subspaces of the matrix pair (A,M) corresponding to
the finite eigenvalues. It can then be proved that under standard assumptions on
stabilizability of descriptor systems (linear systems in DAE form), the so-obtained
ARE has a unique stabilizing positive semidefinite solution as in the regular case
of invertible M . As a corollary, we can show that the projected version of (13) has
a unique stabilizing positive semidefinite solution. Unfortunately, the theory and
methods derived in [24] require the explicit availability of the spectral projectors.

Inspired by a similar approach in [35], it turns out that one can avoid the
computation of these spectral projectors. First observe that forming these projec-
tors in the form

Ph := Inv
−A12(AT12E

−1
11 A12)−1,
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and applying the Newton-ADI iteration to the projected version of the ARE (13),
it turns out that in each step of the iteration, we have to solve the Lyapunov
equation

ATj Zj+1Z
T
j+1PhE11P

T
h + PhE11P

T
h Zj+1Z

T
j+1Aj = −WjW

T
j ,

where

Aj := Ph(A11 −B1B
T
1 PhZjZ

T
j PhE11)Ph,

Wj :=
[
PhC

T PhE11PhZjZ
T
j PhB1

]
.

Thus, a low-rank factor so that Xj+1 ≈ Zj+1Z
T
j+1 can be computed as

Zj+1 =
√
µ
[
Bj,µ, Aj,µBj,µ, A

2
j,µBj,µ, . . . , A

j
j,µBj,µ

]
,

where Bj,µ solves the saddle point problem[
E11 + µ(A11 −B1B

T
1 ZjZ

T
j E11) A12

AT12 0

] [
Bj,µ
∗

]
=
[
CT E11ZjZ

T
j B1

0 0

]
,

The multiplication by Aj,µ is realized by the solution of a saddle-point problem
with the same coefficient matrix. Hence, the projector Ph needs not be formed ex-
plicitly, and we can advance the Newton iteration by solving saddle point problems
associated to stationary Oseen-like problems.

3.2. Removing Mh from the right-hand side of Lyapunov equations

The solution strategy employed here can be based on a strategy already suggested
for standard AREs

0 = AX +XAT −XBBTX +W. (16)
Thus, for simplicity, consider the following Lyapunov equation arising in the New-
ton step when applying Newton-ADI to (16):

ATj (Xj +Nj)︸ ︷︷ ︸
=Xj+1

+Xj+1Aj = −W −XjBB
TXj for j = 1, 2, . . .

By subtracting the two consecutive Lyapunov equations for j − 1, j from each
other, we obtain

ATj Nj +NjAj = −Nj−1BB
TNj−1 for j = 1, 2, . . . (17)

See [4, 19, 46] for details and applications of this variant. By the subtraction, the
constant term W vanishes from the right-hand side of the Lyapunov equation to
be solved in the Newton-ADI step. Thus, we are now facing a Lyapunov equation
with low-rank right-hand side as desirable for an efficient application of the low-
rank ADI method. In particular, this rank equals the number of inputs used for
stabilization. In general, this will be fairly low: mostly, 1 ≤ m ≤ 10. This strategy
can be applied without changes to our situation. Also note that (17) can be written
in factored form as required by the low-rank ADI method for Lyapunov equations.

One remaining problem is that in order to start the Newton-ADI iteration
based on (17), we need a guess for N0 = X1 −X0, i.e., besides a stabilizing inital
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guess X0 = Z0Z
T
0 , we also need X1 = Z1Z

T
1 . Finding X0 is a task on its own

(this is actually Problem 3 in the above list and will be discussed in the following
subsection).

One possibility here is to compute X0 and X1 from the full, dense Lyapunov
equations obtained from a coarse grid discretization of (4), and prolongate these to
the fine grid, leading naturally to low-rank factorized forms as required. It remains
to investigate the accuracy required for the approximation of X1. Some results in
this direction can probably be derived using an interpretation of this approach as
inexact Newton method. Recent work on inexact Newton-Kleinman for standard
AREs [28] sheds some light on this situation.

A possible refinement of the proposed strategy could involve coarse grid cor-
rections using Richardson iteration or a nested iteration for AREs as in [32].

3.3. Computing a stabilizing initial feedback

If we use the same notation as in (13), this task can be described as finding a
matrix F0 such that all finite eigenvalues of the matrix pair (A−BBTF0,M) are
contained in the open left half of the complex plane.

There are basically three approaches discussed in the literature to compute
such an F0:

• pole placement (see [26] for an overview of algorithms in the standard case
that M is invertible, for descriptor systems see [53]);

• Bass-type algorithms based on solving a Lyapunov equation, described for
standard systems in [2] while for descriptor systems, see [53, 17, 24];

• F0 = BTX0, where X0 is the stabilizing solution of the algebraic Bernoulli
equation (14). For standard systems, see [12, 13] for algorithms to compute
X0, while descriptor systems are treated in [17].

The Bernoulli stabilization algorithm from [17] was tested so far for a descriptor
system obtained from discretizing a Stokes-like equation that can be derived from
the linearized Navier-Stokes equations (4) by neglecting the convective terms in
(4a). Figure 3 shows that stabilization is achieved even in a case where an arti-
ficially strong de-stabilization parameter ω = 1000 is used. This algorithm will
be our first choice as stabilization procedure as it turns out to be a lot more ro-
bust to the effects of the ill-conditioning of the stabilization problem than all pole
placement and Bass-type algorithms; for details see the numerical experiments in
[17].

It remains to apply the described strategies in the situation discussed here,
i.e., to perturbed flow problems described by the Navier-Stokes system (1). At this
writing, the implementation of the ideas described in this section is underway and
numerical results obtained with this will be reported elsewhere.
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Figure 3. Bernoulli stabilization of a Stokes-/Oseen-type de-
scriptor system: shown are the finite eigenvalues of (A,M) (open-
loop poles) and of (A−BBTF0,M) (closed-loop poles) (left) with
a close-up around the origin (right).

4. Conclusions and Outlook

We have described a method to stabilize perturbed flow problems, described by the
incompressible Navier-Stokes equations, by Dirichlet boundary control. The con-
trol may act tangential as well as normal to the boundary. It allows to compensate
for disturbances of optimized flow profiles, where an open-loop control may have
been obtained by optimization methods. The stabilizing control is of feedback-type
so that a closed-loop control system is obtained. The feedback is computed using
an associated linear-quadratic optimal control problem for the linearized Navier-
Stokes system, projected onto the space of divergence-free functions, arising from
linearizing the actual system about a desired stationary solution. The numerical
solution of this linear-quadratic optimal control problem is obtained by solving a
large-scale algebraic Riccati equation. Several modifications of existing algorithms
for this task are necessary in order to achieve an efficient and applicable solution
strategy. We have described these modifications here. Their implementation and
application to realistic flow control problems is under current investigation.

In the future, we plan to extend the techniques described in this paper to
flow problems governed by the incompressible Navier-Stokes equations coupled
with field equations describing reactive, diffusive, and convective processes.

Further improvements in the efficiency of the Lyapunov and Riccati solvers
using the ADI-Galerkin hybrid method suggested in [21, 23] which often signif-
icantly accelerate the ADI and Newton iteration for the Lyapunov and Riccati
equations will also be investigated.
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