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Abstract—Linearizing constraint equations of motion around
equilibrium points in mechanics or coupling electrical and me-
chanical parts in mechatronics one obtains large sparse second-
order index-1 differential algebraic (DAE) models. To get reduced
order models of such systems, first they can be rewritten into
first-order models. Then, model reduction techniques are applied
to these first order representations to get a reduced first-order
index-1 or standard state space model. Unfortunately, it is not
possible to go back to second order formulation from these
reduced systems, though it is often desirable to work with second
order surrogate models. In this paper, we present algorithms to
retrieve reduced index-1 DAE or standard second order ODE
systems and apply these to a micro-mechanical piezo-actuated
structural FEM model of a certain building block of a machine
tool. Numerical results illustrate the efficiency of the techniques.

Index Terms—piezo actuator, second order index-1 systems,
model reduction, balanced truncation, ADI-methods.

I. INTRODUCTION

The model that we consider throughout this paper has the
following form:

Mz̈(t) +Dż(t) +Kz(t) = Hu(t),
y(t) = Lz(t),

(1)

where M,D,K ∈ Rn×n are the sparse FEM-matrices re-
sulting from the modeling and known as mass, damping and
stiffness matrices respectively. H ∈ Rn×p is the input matrix
describing the external access to the system and L ∈ Rm×n
represents the measurements. Correspondingly, u ∈ Rp and
y ∈ Rm are the control input to the system and the measured
output. M,D,K,B andC respectively, have the following
structures:

M =

[
Mvv 0

0 0

]
, D =

[
Dvv 0

0 0

]
, K =

[
Kvv KvΦ

KT
vΦ KΦΦ

]
,

H =

[
Bv
BΦ

]
, and L =

[
Cv CΦ

]
,

where Mvv, Dvv,Kvv ∈ Rnd×nd and KΦΦ ∈ Rna×na is
always invertible. The first order state space representations
of such systems turn out to be index-1 descriptor systems [1]
(see also [2]). Therefore, we define such systems as second
order index-1 differential algebraic systems. In the special
case of the piezo-mechanical system used in the numerical
experiments z = (vT ,ΦT )T , where v is the vector of mechan-
ical displacements and Φ is the vector of electrical potentials
[3]. Eliminating the algebraic parts from (1) employing Schur

complements, one can put this into the following compact form

Mv̈(t) +Dv̇(t) +Kv(t) = Bu(t),
y(t) = Cv(t) +Dau(t),

(2)

where M = Mvv,D = Dvv,K = Kvv −KvΦK
−1
ΦΦk

T
vΦ,

B = Bv −KvΦK
−1
ΦΦBΦ, C = Cv − CΦK

−1
ΦΦk

T
vΦ, and

Da = CΦK
−1
ΦΦBΦ.

Equation (1) and (2) are equivalent, because both have the
same finite eigenvalues and they are different realizations [4]
of the transfer function matrix defined by

G(s) = C(Ms2 +Ds+K)−1B +Da, (3)

with s ∈ C. G(s) maps the inputs to the outputs of the system
in frequency domain. However, computing the K, B and C
matrices explicitly inverting KΦΦ makes the previously sparse
data from the FEM modeling dense [5] and should be avoided
in practice.

We want to approximate (2) by a much lower dimensional
surrogate system

M̂¨̂v(t) + D̂ ˙̂v(t) + K̂v̂(t) = B̂u(t),

ŷ(t) = Ĉv̂(t) +Dau(t),
(4)

where M̂ is invertible, D̂, K̂ ∈ R`×`, B ∈ R`×p, C ∈ Rm×`
and ` � n. The reduced order model here is supposed to
fulfill some certain approximation requirements, for instance
the approximation error ‖y(t) − ŷ(t)‖, or correspondingly
‖G(.) − Ĝ(.)‖, (where Ĝ(.) is the transfer function matrix
of the reduced model) should be small in some suitable norm,
e.g., the H∞ or H2 norms (see [4]).

The methods to form balanced truncation based reduced
order models (4) from (2) are already discussed in [6], [7],
[8]. Unfortunately it is prohibitive to form the representation
(2) from (1) due to memory restriction and computational cost,
since it becomes densely populated, as mentioned above.

The main contribution of this paper is to form (2) only
implicitly and work on the sparse formulation of the original
model (1). Moreover, a small algebraic manipulation of (4)
turns out a reduced second order index-1 model if that is
desired.

II. BALANCED TRUNCATION

Balanced truncation [4] is a technique to find a balanced
system realization, where the system controllability and ob-
servability Gramians are equal and diagonalized. The diagonal
elements, which are decreasingly ordered, are the system’s
Hankel singular values. When a system is balanced it can
easily be identified via the Hankel singular values which
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states contribute only little in passing energy in a system
[4]. Therefore forming a reduced order model by truncating
singular values, i.e., less important states, is sufficient from an
energetic point of view.

The main ingredient in the derivation of the truncating
projection matrices for forming the reduced order model in
balanced truncation is to compute the controllability Gramian
(P ) and observability Gramian (Q), which are the solutions
of the two generalized continuous time algebraic Lyapunov
equations

APET + EPAT = −BBT and
ATQE + ETQA = −CTC, (5)

respectively, corresponding to the generalized system

Eẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Dau(t). (6)

The system in (2) can always be transformed into the form
(6). There are however multiple choices to form E,A,B andC
[5], all having their advantages and disadvantages. The most
common practice is as follows:

E =

[
0 F
M D

]
, A =

[
F 0
0 −K

]
, B =

[
0
B

]
,

C =
[
0 C

]
, and Da = −Da,

(7)

where F can be any invertible matrix. For example, choosing
F as the identity matrix (I) is the simplest or F = M
makes the system matrices in (6) symmetric when M, D and
K are symmetric. We assume that the original model (1) is
asymptotically stable, i.e., all finite eigenvalues of the model
lie in the open left half plane [9]. Then P and Q are the unique
positive semi-definite solutions of the above two Lyapunov
equations and will be block subdivided as

P =

[
P11 P12

P21 P22

]
, Q =

[
Q11 Q12

Q21 Q22

]
,

according to the block sizes in E and A.
Due to the fact, that the new state variable in this phase

space representation is formed by stacking positions (or
displacements) on top of velocities (time derivatives of the
displacements), we denote the sub-Gramians P11, P22 as
position and velocity controllability Gramians and analogously
Q11, Q22 are called position and velocity observability Grami-
ans [7].

The classical algorithm to perform balanced truncation is
the square root method which can be characterized in the
following few steps

Step 1 Compute the Cholesky factors of P and Q such that

P = SST and Q = RRT . (8)

Step 2 Compute the singular value decomposition

RTES = UΣV T =
[
U1, U2

] [Σ1

Σ2

] [
V T1
V T2

]
.

(9)
Step 3 Then the balancing truncation operators are defined

as

Tl := RU1Σ
− 1

2
1 , Tr := SV1Σ

− 1
2

1 . (10)

Step 4 Finally, the reduced order model is computed by pre-
and post-multiplication of the system matrices in (6)
with TTl and Tr, respectively.

The same procedure can be applied to find a second
order reduced order model by balancing the system apply-
ing position-position, velocity-velocity, position-velocity or
velocity-position balancing (see [7] for further details), which
simply replaces the full Gramians by the corresponding com-
bination of position and velocity Gramians in the above
procedure. The reduced order model (4) is then formed in the
fourth step by computing the low dimensional system matrices
M̂, D̂, K̂, B̂, and Ĉ as:

M̂ = TTl MvvTr, D̂ = TTl DvvTr,

K̂ = K̂vv − K̂vΦK
−1
ΦΦK̂

T
vΦ,

B̂ = B̂v − K̂vΦK
−1
ΦΦBΦ, Ĉ = Ĉv − CΦK

−1
ΦΦK̂

T
vΦ,

(11)

where

K̂vv = TTl KvvTr, K̂vΦ = TTl KvΦ, K̂T
vΦ = KT

vΦTr,

B̂v = TTl Bv, Ĉv = CvTr.

A simple algebraic manipulation gives a reduced second
order index-1 system

M̂ ¨̂z(t) + D̂ ˙̂z(t) + K̂ẑ(t) = Ĥu(t),

ŷ(t) = L̂ẑ(t),
(12)

with

M̂ =

[
M̂ 0
0 0

]
, D̂ =

[
D̂ 0
0 0

]
, K̂ =

[
K̂vv K̂vΦ

K̂T
vΦ KΦΦ

]
,

Ĥ =

[
B̂v
BΦ

]
, and L̂ =

[
Ĉv CΦ

]
,

and M̂, D̂, K̂vv, K̂vΦ, K̂
T
vΦ, B̂1, and Ĉ1 obtained as above.

Note that in the large scale setting we are interested in
here, the triangular Cholesky factors in Step 1 are replaced
by rectangular low rank Cholesky factors which are computed
successively columnwise using, e.g., a low rank alternating
directions implicit (ADI) iteration as described in the next
section. Note further that having computed the factors of the
full Gramians, we can easily determine factors for the position
and velocity Gramians from the correspondingly sized upper
and lower blocks in S and R, i.e., P11 = S1S

T
1 , P22 = S2S

T
2 ,

Q11 = R1R
T
1 , Q22 = R2R

T
2 , where

S =

[
S1

S2

]
, R =

[
R1

R2

]
.

III. SOLUTION OF LYAPUNOV EQUATIONS

A. Generalized Sparse Low-Rank Cholesky Factor (GSLRCF)
ADI-methods

In the previous sections we have seen that the main ingredi-
ents of balancing a system are the two factors of two Gramians
that can be found by solving two Lyapunov equations. For
a large scale problem, the ADI-method [10] is our preferred
solver to compute low rank factors of the two Gramians. In
[8] the authors introduced efficient algorithms solving such
Lyapunov equations for the ODE systems like (2), where the
matrices M, D, K are sparse. Recently, these methods have
been extended to the case of index-1 DAE systems [8], [5],
[1] where one is interested in a first order standard state space
reduced order model. There, the ideas in [11] are exploited to
form the system (2) as present here only implicitly.

The key idea for efficient computations in all cases is the
exploitation of the block structure of the matrices in (7). Doing
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Algorithm 1 Second order GSLRCF-ADI methods
Input: M,D,K,B and shift parameters {µ1, µ2, · · · , µJ}.
Output: S1 and S2.

1: Solve (µ2
1M− µ1D +K)x1

2 = −B.
2: S1

2 = V 1
2 =

√
−2µ1x

1
2 and S1

1 = V 1
1 = −µ1V

1
2 .

3: for i = 2 : imax do
4: Solve

(µ2
iM− µiD +K)xi2 = (µiM−D)V i−1

2 −MV i−1
1

5: xi1 = V i−1
2 − µixi2

6: V i1 =
√

Re(µi)
Re(µi−1) (V i−1

1 − (µi + µ∗i−1)xi1),

7: V i2 =
√

Re(µi)
Re(µi−1) (V i−1

2 − (µi + µ∗i−1)xi2).

8: Si1 =
[
Si−1

1 V i1
]

and Si2 =
[
Si−1

2 V i2
]
.

9: end for

so, the low rank ADI results in Algorithm 1 for computing the
observability Gramians.

Applying the algorithm to MT , DT , KT , CT results in the
computation of the observability Gramians R1, R2 and thus
R.

In the previous section we have seen that K, B and C are
dense. As a result, solving a linear system in each iteration step
in Algorithm 1 is prohibitively expensive. Therefore, instead
of solving such a linear system in each iteration step, following
[1] we solve the following linear system:[

µ2
iMvv − µiDvv +Kvv KvΦ

KT
vΦ KΦΦ

] [
xi2
Λ

]
=

[
f1

f2

]
. (13)

where f1 = Bv and f2 = BΦ for i = 1, or f1 = (µiM−
D)V i−1

2 − MV i−1
1 and f2 = 0, otherwise. Although the

dimension of this system is higher, the solution is computed
much faster since one can exploit the sparse matrices.

B. ADI-shift Parameter Computation

For fast convergence of GSLRCF ADI-methods, a proper set
of shifts plays a crucial role. Here we consider the heuristic
shift computation procedure going back to [12].

In this procedure first one approximates a subset of the
spectrum S = {S+,S−} by computing a number of large
magnitude Ritz-values S+ (k+ many) and a number of small
magnitude Ritz-values S− (k− many) for the system of inter-
est. In the case of (1) we clearly need to restrict ourselves to
the finite spectrum, such that in fact we better use the form
(2) in the Ritz value computation. Since this is performed
by an Arnoldi method again we never need to form the
matrices explicitly, but can work with functions implementing
the application by successive propagation through the matrix,
i.e., especially we need not form the inverse, but perform a
linear system solve there. Then the shifts µj for Algorithm 1
are computed from S by solving the restricted ADI mini-max
problem

min
µ1,µ2,··· ,µJ

max
λ∈S

J∏
i=1

| µi − λ |
| µi + λ |

. (14)

For more details see, e.g, [12].

IV. NUMERICAL RESULTS

The accuracy and performance of the proposed technique,
is illustrated by applying to a set of data for the finite element
discretization of an adaptive spindle support (ASS) [3] with
290 137 degrees of freedom.
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Fig. 1. Sigma plot (maximum singular values) of full and reduced order
models.
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Fig. 2. Absolute error in the sigma plot of full and reduced order models.
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Fig. 3. Relative error in the sigma plot of full and reduced order models.
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Fig. 4. Frequency responses for input 9 to output 1 relation of full and
reduced models
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Fig. 5. Absolute error in frequency responses for input 9 to output 1

101 102 103 104
10−10

10−7

10−4

ω

|G
1
,9

(j
ω
)−
Ĝ
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Fig. 6. Relative error in frequency responses for input 9 to output 1

All results have been obtained by using MATLAB®7.11.0
(R2010b) on a board with 4 Intel® Xeon® E7-8837 CPUs with
a 2.67-GHz clock speed, 8 Cores each and 1TB of total RAM.
An amount of 8-16GB of RAM (depending on the desired
accuracy) should however be sufficient for the execution easily.
We compute 50 ADI-shift parameters out of k+ = 80 large
and k− = 70 small magnitude Ritz values using Penzl’s
heuristic procedure mentioned above. Then compute the low-
rank factors of both position and velocity controllability and
observability Gramians applying the algorithm discussed in
Section III-A. In the computation of the low-rank Gramian
factors, we restrict ourselves to a maximum of 300 iteration
steps in both cases to limit the memory consumption.

Following the procedure in (9) – (11) we form exemplary
reduced order models of dimension 152 and 65 respectively via
position-velocity balancing. The overall computation including
the computation of the reduced order model, as well as
the numerical error analysis (which is only needed for the
presentation of the accuracy here) takes roughly 6-8 hours
depending on the desired accuracy again. Here about half of
the time goes into the error analysis stage.

Figure 1 shows the frequency responses (largest singular
value of G(ω)) of full and both the 152 and the 65 dimensional
reduced order models in frequency domain over the frequency
(ω) range of 101 to 104. In Figure 2, the absolute error
between the frequency responses of full and reduced (152
and 65) models are shown. The relative errors of both lower
dimensional models from full models are depicted in Figure 3.

Consider the single input single output relations for example
input 9 (electric potential at one of the actuators) to output
1 (mechanical displacement), Figure 4 shows the frequency
responses of both lower dimensional models nicely match

the full model. Figures 5 and 6 respectively, show absolute
and relative deviation between full and both reduced systems.
Analyzing the errors in all figures we have seen that the 152

dimensional reduced order model is better than 65 dimensional
one, but both show relative errors far below the percent range
and should perform well in ROM-based controller design.

V. CONCLUSIONS

We have presented a second order to second order balancing
strategy for second order index-1 differential algebraic systems
arising, e.g., in the modeling of piezo actuated vibrational
models. We extended earlier work, where a first order reduced
order model was created. As in that case also our new strategy
allows to work on the original FEM matrices and exploit
their sparsity in the solver. The efficiency and accuracy has
been demonstrated for one large FEM model of an adaptive
spindle support employing piezo actuators with almost 300 000
degrees of freedom, proving the applicability of our method
in real world applications.
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