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Abstract— We consider model order reduction of stochastic
linear systems by balanced truncation. Two types of Gramians
are suggested, both satisfying generalized Lyapunov equations.
The first is motivated by energy functionals, the second is
taylored to yield an error bound for the truncated system.
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I. INTRODUCTION
Model order reduction by balanced truncation is a standard

method, which has been introduced in [9], [11] for linear
deterministic control systems of the form

ẋ = Ax+Bu, y = Cx, σ(A) ⊂ C− , (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x(t) ∈ Rn,
y(t) ∈ Rp, u(t) ∈ Rm are the state, output and input of
the system, respectively, while σ(A) is the spectrum of A.
Balanced truncation preserves asymptotic stability and pro-
vides guaranteed error bounds. The balancing transformation
is computed from the Gramians P and Q, which solve the
dual Lyapunov equations

AP + PAT = −BBT , ATQ+QA = −CTC . (2)

These equations are essential in the characterization of
stability, controllability and observability of system (1).

In the case of an asymptotically mean-square stable
stochastic linear systems of Itô-type,

dx = Axdt+Nxdw +Budt , y = Cx , (3)

the Lyapunov equations typically have to be replaced by the
generalized Lyapunov equations (e.g. [8], [7], [4]),

AP + PAT +NPNT = −BBT , (4)

ATQ+QA+NTQN = −CTC , (5)

where A,B,C are as in (1) and N ∈ Rn×n. Therefore it
seems natural that P and Q can be interpreted as Gramians of
stochastic systems and that the method of balanced truncation
can be carried over. This has partly been worked out in [3]
and will be summarized in this note.

However, there are some open questions concerning the
existence of error bounds for the reduced system. Here, as
an alternative, we present a modified pair of Gramians which
leads to an H∞-type error bound of the same form as for
deterministic systems.

1Tobias Damm is with the Department of Mathematics, University of
Kaiserslautern, 67653 Kaiserslautern, Germany
damm@mathematik.uni-kl.de

2Peter Benner is with the Max Planck Institute for Dynamics of
Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany;
benner@mpi-magdeburg.mpg.de

II. GRAMIANS BASED ON ENERGY
FUNCTIONALS

Consider a stochastic linear control system of Itô-type

dx = Axdt+Nxdw +Budt , y = Cx , (6)

where w = (w(t))t∈R+
is a zero mean real Wiener process

on a probability space (Ω,F , µ) with respect to an increasing
family (Ft)t∈R+

of σ-algebras Ft ⊂ F (e.g. [2], [10]).
Let L2

w(R+,Rq) denote the corresponding space of non-anti-
cipating stochastic processes v with values in Rq and norm

‖v(·)‖2L2
w

:= E
(∫ ∞

0

‖v(t)‖2dt
)
<∞,

where E denotes expectation. We assume that the homoge-
neous equation dx = Axdt+Nxdw is asymptotically mean-
square-stable, i.e. E(‖x(t)‖2)

t→∞−→ 0, for all initial conditions
x(0) = x0. Its fundamental solution will be denoted by Φ, so
that x(t) = Φ(t, 0)x0. Since stochastic differential equations
in general can only be solved forward in time (e.g. [10]),
note that Φ(t, τ) is only defined for t ≥ τ . For t ≥ τ = 0 let
us write Φ(t) = Φ(t, 0). By time-invariance of (A,N,B,C),
for arbitrary K ≥ 0 we have

E(Φ(t, τ)) = E(Φ(t− τ)) ,

E(Φ(t, τ)KΦ(t, τ)T ) = E(Φ(t− τ)KΦ(t− τ)T ) .

Let L : L2
w(R+,Rm) → L2

w(R+,Rp) denote the input-
output operator, which maps input signals u to output signals
y if x(0) = 0 (see [6]). By the stability assumption the
Lyapunov equations (4) and (5) have nonnegative definite
solutions P,Q ≥ 0 , which can be written (cf. [4]) as

P = E
(∫ ∞

0

Φ(t)BBTΦ(t)T dt

)
(7)

Q = E
(∫ ∞

0

Φ(t)TCTCΦ(t) dt

)
. (8)

Let x0 ∈ Rn be given and write x(t) = x(t, x0, u) for
the solution with initial value x(0) = x0 and input u.
We determine the minimal energy of an input u, so that
E(x(T, 0, u)) = x0 for some T > 0, that is, u steers the
mean state from 0 to x0 over an arbitrary time interval [0, T ].
Similarly, we consider the output energy produced by x0 and
define the energy functionals

Ec(x0) = inf
u∈L2

w [0,T ],T>0

E(x(T,x0,u))=0

E

(∫ T

0

‖u(t)‖2 dt

)
,

Eo(x0) = E
(∫ ∞

0

‖y(t, x0, 0)‖2 dt
)
.



Note that Ec(x0) = ∞, if the mean state x0 cannot be
reached from 0. It is easy to see that this is equivalent to
x0 6∈ ImP . We have the following characterization of the
energies (where P † denotes the Moore-Penrose-Inverse).

Theorem II.1 Consider the stochastic system (6) and the
Gramians P and Q defined by (4), (5). If x0 ∈ ImP then

Ec(x0) = xT0 P
†x0 .

For arbitrary x0 ∈ Rn we have Eo(x0) = xT0Qx0 .

Proof: For T > 0 let PT = E
(∫ T

0
Φ(t)BBTΦ(t)T dt

)
and

for fixed x0 ∈ ImPT = ImP , define u : [0, T ] → Rm via
u(t) = BTΦ(T, t)TP †Tx0. Then we have

E (x(T, 0, u)) = E
(∫ T

0

Φ(T, t)Bu(t) dt
)

= E
(∫ T

0

Φ(T, t)BBTΦ(T, t)TP †Tx0 dt
)

= E
(∫ T

0

Φ(T − t)BBTΦ(T − t)TP †Tx0 dt
)

= E
(∫ T

0

Φ(τ)BBTΦ(τ)T dτ
)
P †Tx0

= PTP
†
Tx0 = x0 .

Moreover, u is the unique control with E(x(T, 0, u)) = x0
and minimal L2

w[0, T ]-norm

‖u‖2L2
w

= E
(∫ T

0

‖u(t)‖2 dt
)

= E
(∫ T

0

xT0 P
†
TΦ(t)BBTΦ(t)TP †Tx0 dt

)
= xT0 P

†
TPTP

†
Tx0 = xT0 P

†
Tx0 .

To prove minimality, assume that ũ = u + û is another
solution to the control problem. Then

x0 = E
(∫ T

0

Φ(T, t)B(u(t) + û(t)) dt
)
,

⇒ E
(∫ T

0

Φ(T, t)Bû(t) dt
)

= 0 .

This implies E
( ∫ T

0
u(t)T û(t) dt

)
= 0, so that

‖ũ‖2L2
w[0,T ] = ‖u‖2L2

w[0,T ] + ‖û‖2L2
w[0,T ] ≥ ‖u‖

2
L2

w[0,T ] .

Hence Ec(x0) = infT>0 x
T
0 P
†
Tx0. By the definitions, PT is

monotonically increasing and limT→∞ PT = P . Hence P †T
is decreasing and the infimum is given by xT0 P

†x0.
On the other hand, if the system starts in state x0 and is not
controlled, then the corresponding output is y(t) = CΦ(t)x0.
Thus

Eo(x0) = xT0 E
(∫ ∞

0

Φ(t)TCTCΦ(t) dt
)
x0 = xT0Qx0

which concludes the proof. �

Based on these Gramians we can apply balanced trun-
cation to the given stochastic system. Under a similarity
transformation

(A,N,B,C) 7→ (S−1AS, S−1NS, S−1B,CS)

the Gramians transform contragrediently as

(P,Q) 7→ (S−1PS−T , STQS) .

Choosing e.g. S = LV Σ−1/2, with Cholesky factoriza-
tions LLT = P , RTR = Q and a singular value decompo-
sition RL = UΣV T , we have S−1 = Σ−1/2UTR and

S−1PS−T = STQS = Σ = diag(σ1, . . . , σn) .

The numbers σ1 ≥ . . . ≥ σn ≥ 0 can be seen as generalized
Hankel singular values. After suitable partitioning

Σ =

[
Σ1 0
0 Σ2

]
, S =

[
S1 S2

]
, S−1 =

[
T1
T2

]
a truncated system is given in the form

(A11, N11, B1, C1) = (T1AS1, T1NS1, T1B,CS1) .

If the diagonal entries of Σ2 are small, then those states have
been cut off, which are both hard to reach and hard to ob-
serve. Hence it is expected that the truncation error is small.
In fact this is supported by an H2-error bound obtained in
[12]. Additionally, however, from the deterministic situation
(see [9], [1]), one would also hope for an H∞-type error
bound of the form

‖y − yr‖L2
w(R+,Rp)

?
≤ α trace Σ2‖u‖L2

w(R+,Rm) (9)

with some number α > 0. Unfortunately, the following
example shows that no such general α exists.

Example II.2 Let A =

[
−1 0
0 −a2

]
, N =

[
0 0
1 0

]
,

B =

[
1
0

]
, C =

[
0 1

]
, where a > 1.

The Gramians are P =

[
1
2 0
0 1

4a2

]
, Q =

[
1

4a2 0
0 1

2a2

]
with σ(PQ) = { 1

8a2 ,
1

8a4 } so that Σ = diag(σ1, σ2), where
σ1 = 1√

8a
and σ2 = 1√

8a2
. The system is balanced by the

transformation S =

[
2a2 0
0 1/2

]1/4
.

Then CS = 1
21/4

[
0 1

]
so that Cr = 0 for the truncated

system of order 1. Thus the output of the reduced system is
yr ≡ 0, and the truncation error ‖L − Lr‖ is equal to the
stochastic H∞-norm (see [6]) of the original system,

‖L‖ = sup
x(0)=0,‖u‖L2

w
=1

‖y‖L2
w
.

We show now that this norm is equal to 1√
2a

= 2aσ2.
Thus, depending on a, the ratio of the truncation error and
trace Σ2 = σ2 can be arbitrarily large.



According to the stochastic bounded real lemma (see [6]),
‖L‖ is the infimum over all γ so that the Riccati inequality

0 < ATX +XA+NTXN − CTC − 1

γ2
XBBTX (10)

=

[ −2x1 + x3 − 1
γ2x

2
1 −(a2 + 1)x2 − 1

γ2x1x2
−(a2 + 1)x2 − 1

γ2x1x2 −2a2x3 − 1
γ2x

2
2 − 1

]

possesses a solution X =

[
x1 x2
x2 x3

]
< 0.

If a given matrix X satisfies this condition then so does the
same matrix with x2 replaced by 0. Hence we can assume
that x2 = 0, and end up with the two conditions x3 < − 1

2a2

and (after multiplying the upper left entry with −γ2)

0 > x21 + 2γ2x1 − γ2x3 = (x1 + γ2)2 − γ2(γ2 + x3)

> (x1 + γ2)2 − γ2(γ2 − 1
2a2 ) .

Thus necessarily γ2 > 1
2a2 , i.e. γ > 1√

2a
. This already

proves that ‖L‖ ≥ 1√
2a

= 2aσ2, which suffices to disprove
the existence of a general bound α in (9). Taking infima, it
is easy to show that indeed ‖L‖ = 1√

2a
.

We will now introduce a modification of the Gramians,
for which we can prove a bound of the form (9) with α = 2.

III. A NEW CONTROLLABILITY GRAMIAN AND
A GUARANTEED ERROR BOUND

We have seen that the control energy actually is charac-
terized by P−1 (or P †) rather than P . In the deterministic
case, P−1 satisfies the Bernoulli equation

ATP−1 + P−1A = −P−1BBTP−1 . (11)

On the left side of the equation, we have the Lyapunov
operator X 7→ ATX + XA of the observability Gramian
applied to P−1, while on the right we have −P−1BBTP−1.

We transfer this formal recipe to the asymptotically mean-
square stable stochastic linear system (6).

The Lyapunov operator of the observability Gramian now
takes the form X 7→ ATX+XA+NTXN . Thus, a formal
analogue of equation (11) (different from (4)) is given by

AT P̂−1 + P̂−1A+NT P̂−1N = −P̂−1BBT P̂−1 , (12)

or equivalently (if P̂ > 0)

P̂AT +AP̂ + P̂NT P̂−1NP̂ = −BBT . (13)

Criteria for the existence of a positive definite matrix P̂
satisfying this equation still have to be clarified. But actually
(see (17) below), we will consider the inequality

AT P̂−1 + P̂−1A+NT P̂−1N + P̂−1BBT P̂−1 ≤ 0, (14)

which is always solvable under our stability assumption. For
brevity, we call P̂ > 0 satisfying (14) a (new) Gramian, too.

Lemma III.1 Assume that dx = Axdt+Nxdw is asymp-
totically mean-square-stable.
Then inequality (14) is solvable with P̂ > 0.

Proof: By the stability assumption, for a given Y < 0, there
exists a P̃ > 0, so that AT P̃−1 + P̃−1A+NT P̃−1N = Y
(see (7), or e.g. [4, Thm. 3.6.1], [13]). Then P̂ = ε−1P̃ , for
sufficiently small ε > 0, satisfies

AT P̂−1 + P̂−1A+NT P̂−1N = εY < −ε2P̃−1BBT P̃−1

so that (14) holds even in the strict form. �

Remark III.2 (a) In view of our application, we aim at a
Gramian P̂ , so that (some of) the eigenvalues of P̂Q are
particularly small, since they provide the error bound.
Choosing a very small ε in the previous proof can be
contrary to this aim. Hence some optimization over all
solutions of (14) can be required.

(b) Note also that a matrix P̂ > 0 satisfies (14), if and only
if it satisfies the linear matrix inequality[

P̂AT +AP̂ +BBT P̂NT

NP̂ −P̂

]
≤ 0 . (15)

Thus, LMI optimal solution techniques are applicable
to solve the problem raised in (a) (see Example IV-B).
However, we need to gain control of the numerical com-
plexity. This can be a topic for further investigations.

It is easy to see that a state space transformation

(A,N,B,C) 7→ (S−1AS, S−1NS, S−1B,CS)

leads to a contragredient transformation of the Gramians,
Q 7→ STQS, P̂ 7→ S−1P̂S−T . That is, P̂ satisfies (14), if
and only if S−1P̂S−T does so for the transformed data. As
before, we can assume the system to be balanced with

P̂ = Q = Σ = diag(σ1I, . . . , σνI) =

[
Σ1

Σ2

]
, (16)

where σ1 > σ2 > . . . > σν > 0 and σ(Σ1) = {σ1, . . . , σr},
σ(Σ2) = {σr+1, . . . , σν}. Again, we call the numbers σj
which are the positive square roots of the eigenvalues of
P̂Q (generalized) Hankel singular values of the system.
Partitioning A, N , B, C like Σ, we write the system as

dx1 = (A11x1 +A12x2) dt+ (N11x1 +N12x2) dw +B1u

dx2 = (A21x1 +A22x2) dt+ (N21x1 +N22x2) dw +B2u

y = C1x1 + C2x2 .

The reduced system obtained by truncation is

dxr = A11xr +N11xr dw +B1u , yr = C1xr .

The index r is the number of different singular values that
have been kept in the reduced system.
Note that P̂1 = Q1 = Σ1 only satisfy the inequalities

AT11Σ−11 + Σ−11 A11 +NT
11Σ−11 N11 ≤ −Σ−11 B1B

T
1 Σ−11

AT11Σ1 + Σ1A11 +NT
11Σ1N11 ≤ −CT1 C1

even if P̂ and Q satisfy the equations (12) and (5).



Hence, we will now assume (after balancing) that a
diagonal matrix Σ as in (16) is given which satisfies

ATΣ−1 + Σ−1A+NTΣ−1N ≤ −Σ−1BBTΣ−1

ATΣ + ΣA+NTΣN ≤ −CTC .
(17)

All partitionings and truncations are defined as above with
respect to this Σ.

Theorem III.3 If x(0) = 0 and xr(0) = 0, then for all
T > 0, we have

‖y − yr‖L2
w[0,T ] ≤ 2(σr+1 + . . .+ σν)‖u‖L2

w[0,T ] .

Proof: Recall a general consequence of Itô’s Lemma:
If dξ = Aξ dt+Nξ dw +Bu and V ∈ Rn×n, then

d

dt
E(ξTV ξ) = E

(
ξT (ATV + V A+NTV N)ξ

+ ξTATV Bu+ uTBTV Aξ
)
. (18)

Thus (with ξ = x1 − xr and V = Σ1)
d

dt
E
(
(x1 − xr)TΣ1(x1 − xr)

)
= 2E

(
(x1 − xr)TΣ1([A11, A12]

[
x1−xr
x2

]
)
)

+ E
(
([N11, N12]

[
x1−xr
x2

]
)TΣ1([N11, N12]

[
x1−xr
x2

]
)
)

and (with ξ = x2 and V = Σ2)
d

dt
E
(
xT2 Σ2x2

)
= 2E

(
xT2 Σ2(A21x1 +A22x2 +B2u)

)
+ E

(
(N21x1 +N22x2)TΣ2(N21x1 +N22x2)

)
.

Now consider y − yr = [C1, C2]
[
x1−xr
x2

]
. From the second

inequality in (17) we obtain

− E
(
‖y − yr‖2

)
= −E

[
x1 − xr
x2

]T
CTC

[
x1 − xr
x2

]
≥ E

[
x1 − xr
x2

]T (
ATΣ + ΣA+NTΣN

)[
x1 − xr
x2

]
= 2E

(
(x1 − xr)TΣ1[A11, A12]

[
x1−xr
x2

])
+ 2E

(
xT2 Σ2[A21, A22]

[
x1−xr
x2

])
+ E

(
([N11, N12]

[
x1−xr
x2

]
)TΣ1[N11, N12]

[
x1−xr
x2

])
+ E

(
([N21, N22]

[
x1−xr
x2

]
)TΣ2[N21, N22]

[
x1−xr
x2

])
.

Comparing these equations we find that

− E
(
‖y − yr‖2

)
≥ d

dt
E
(
(x1 − xr)TΣ1(x1 − xr)

)
+
d

dt
E
(
xT2 Σ2x2

)
− 2E

(
xT2 Σ2(A21xr +B2u)

)
− E

(
(N21xr)

TΣ2(2N21x1 + 2N22x2 −N21xr)
)
.

Since x(0) = 0 and xr(0) = 0 it follows that∫ T

0

E
(
‖y − yr‖2

)
dt (19)

≤ 2

∫ T

0

E
(
xT2 Σ2(A21xr +B2u)

)
dt

+ 2

∫ T

0

E
(
(N21xr)

TΣ2(N21x1 +N22x2)
)
dt .

Our next step is to show that

4

∫ T

0

E
(
‖u‖2

)
dt ≥ 2

∫ T

0

E
(
xT2 Σ−12 (A21xr +B2u)

)
dt

+ 2

∫ T

0

E
(
(N21xr)

TΣ−12 (N21x1 +N22x2)
)
dt . (20)

To this end we consider the first inequality in (17). By the
Schur complement definiteness criterion it implies that[

ATΣ−1 + Σ−1A+NTΣ−1N Σ−1B
BTΣ−1 −I

]
≤ 0 .

This again is equivalent to[
0 0
0 I

]
≥
[
A B
I 0

]T [
0 Σ−1

Σ−1 0

] [
A B
I 0

]
+

[
NTΣ−1N 0

0 0

]
.

We multiply this inequality from the right by
[
x1+xr
x2
2u

]
and

from the left by [ x1+xr x2 2u ]. Taking expectations, we get

4E
(
‖u‖2

)
≥ 2E

(
(x1 + xr)

TΣ−11 ([A11, A12]
[
x1+xr
x2

]
+ 2B1u)

)
+ 2E

(
xT2 Σ−12 ([A21, A22]

[
x1+xr
x2

]
+ 2B2u)

)
+ E

(
([N11, N12]

[
x1+xr
x2

]
)TΣ−11 [N11, N12]

[
x1+xr
x2

])
+ E

(
[N21, N22]

[
x1+xr
x2

]
)TΣ−12 [N21, N22]

[
x1+xr
x2

])
.

Like above (using (18)), we compare these terms with

d

dt
E
(
(x1 + xr)

TΣ−11 (x1 + xr)
)

= 2E
(
(x1 + xr)

TΣ−11 ([A11, A12]
[
x1+xr
x2

]
+ 2B1u)

)
+ E

(
([N11, N12]

[
x1+xr
x2

]
)TΣ−11 [N11, N12]

[
x1+xr
x2

])
,

d

dt
E
(
xT2 Σ−12 x2

)
= 2E

(
xT2 Σ−12 (A21x1 +A22x2 +B2u)

)
+ E

(
(N21x1 +N22x2)TΣ−12 (N21x1 +N22x2)

)
.

Then (20) follows from

4E
(
‖u‖2

)
≥ d

dt
E
(
(x1 + xr)

TΣ−11 (x1 + xr)
)

+
d

dt
E
(
xT2 Σ−12 x2

)
+ 2E

(
xT2 Σ−12 (A21xr +B2u)

)
+ E

(
(N21xr)

TΣ2(2N21x1 + 2N22x2 +N21xr)
)
.

If Σ2 = σνI , then Σ2 = σ2
νΣ−12 . In this case, the right

hand side of (20) multiplied with σ2
ν equals the right hand

side of (19). Hence, for all T > 0 we have

‖y − yν−1‖L2
w[0,T ] ≤ 2σν‖u‖L2

w[0,T ] .

We can repeat this procedure step by step to remove
σν−1, . . . , σr+1. By the triangle inequality we find that

‖y − yr‖L2
w[0,T ] ≤

ν−1∑
j=r

‖yj+1 − yj‖L2
w[0,T ]

≤ 2(σν + . . .+ σr+1)‖u‖L2
w[0,T ] .

which concludes the proof. �



Example III.4 Let the system (A,N,B,C) and the
Gramian Q be as in Example II.2. The matrix

P̂ =

[
1 +
√

1− p̂ 0
0 p̂

]−1
> 0 , where 0 < p̂ ≤ 1 ,

satisfies inequality (14). As in Example II.2, we have Lr = 0
for the corresponding reduced system of order 1, so that the
truncation error again is 1√

2a
, independently of p̂ ∈ ]0, 1].

On the other hand we have

σ2
2 = minσ(P̂Q) =

1

4a2(1 +
√

1− p̂)
≤ 1

8a2
,

with equality for p̂→ 0. Theorem III.3 thus gives the sharp
error bound 2σ2 = 1√

2a
. Note, that there is no P̂ > 0

satisfying the equation (13).

The previous example illustrates the problem of optimizing
over all solutions of inequality (14).

IV. NUMERICAL EXAMPLES

As we have just seen, the new controllability Gramian
satisfying equation (13) may not exist. Therefore, in general,
it is better to work with the inequality (14). On the other
hand, it is instructive to consider systems where both types
of controllability Gramians exist. In our first example we
construct such systems artificially. In the second example
we consider a discretized two-dimensional heat equation
with stochastic boundary effects and compute a solution of
inequality (14) with an LMI-solver.

By L and Lr, we always denote the original and the r-th
order approximated system. The stochastic H∞-type norm
‖L−Lr‖ is computed by a binary search of the infimum of
all γ such that the Riccati inequality (10) is solvable. The
latter is solved via a Newton iteration as in [4]. Finally, the
Lyapunov equations (2) are solved by preconditioned Krylov
subspace methods described in [5].

A. Systems with known Gramians

Systems, for which we know in advance that both equa-
tions

AP + PAT +NPNT = −BBT (21)

AP̂ + P̂AT + P̂NP̂−1NT P̂ = −BBT (22)

possess solutions P̂ , P > 0, can be designed as follows.
We start with a mean-square stable stochastic system

(A,N) and some generic matrix B̃ (satisfying a control-
lability condition). Then we solve

ZA+ATZ +NTZN + B̃B̃T = 0 , (23)

for Z > 0, which is possible by the stochastic version of
Lyapunov’s matrix theorem. Setting P̂ = Z−1 > 0, B =
P̂ B̃, and multiplying (23) from both sides with P̂ , we have

AP̂ + P̂AT + P̂NT P̂−1NP̂ +BBT = 0 ,

i.e. P̂ is the new controllability Gramian of the system with
the modified B-matrix, given by (A,N,B). For this system
we can also compute the old Gramians P and Q according

to (4), (5). Clearly, this construction of B is artificial, but it
provides us with some examples to compare.

We chose random data A,N ∈ R500×500 with σ(A) ⊂ C−
and N scaled such that the stability assumption is satisfied,
B ∈ R500×50 and C the vector of all ones in R1×500.

In the following two figures we compare the reduced
systems in both cases, where old and new refer to the old and
new Gramian definitions in (4) and (12), respectively. The
left figure shows the decay of the singular values. The right
figure shows the relative difference ‖y(t)−yr(t)‖‖y(t)‖ between the
original output and the outputs of the reduced system over
a given time interval. In fact, for many examples we have
observed both methods to yield very similar results.
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The estimated error norm and the actual approximation
error are given in the following table for both cases:∑n

j=r+1 σj ‖L− Lr‖
old 0.0243 0.0061
new 0.0285 0.0018

B. A heat transfer problem

We consider a stochastic modification of the heat transfer
problem described in [3]. On the unit square Ω = [0, 1]2

the heat equation xt = ∆x is given with Dirichlet condition
x = uj , j = 1, 2, 3 on three of the boundary edges and a
stochastic Robin condition n·∇x = (1/2+ẇ)x on the fourth
edge (where ẇ stands for white noise). A standard 5-point
finite difference discretization on a 10 × 10 grid leads to a
modified Poisson matrix A ∈ R100×100 and corresponding
matrices N ∈ R100×100 and B ∈ R100×3. We use the
input u ≡

[
1
1
1

]
and choose the average temperature as the

output, i.e. C = 1
100 [1, . . . , 1]. As before, we apply balanced

truncation based on the old Gramians P and Q and on
new Gramians P̂ and Q. But now we use an LMI-solver
(MATLAB R© function mincx) to compute P̂ as a solution of
the linear matrix inequality (15) which minimizes trace P̂Q.

The following figures show the analog curves as above.
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Again, we have computed the estimated error norm and
the actual approximation error for both cases:∑n

j=r+1 σj ‖L− Lr‖
old 1.47e− 05 1.95e− 05
new 5.35e− 05 1.34e− 05

As we can see, the upper error bound fails for the old
Gramian. For the new Gramian, it is correct and, in fact,
the new method yields a slightly better approximation than
the old method.

Clearly, higher dimensional examples are required to get
more insight. To this end a more sophisticated method for
the solution of (15) is needed. With general purpose LMI-
software on a standard Laptop, we hardly got higher than
n = 100.

V. CONCLUSIONS

We have introduced a new type of Gramians for stochastic
linear systems and showed that balanced truncation based on
these Gramians leads to an error bound which is analogous to
the one known from deterministic systems. Further analysis
and computational issues are topics of future research.

ACKNOWLEDGMENT

We thank Martin Redmann (MPI Magdeburg) as well as
the anonymous referees for their helpful comments. The data
for Example IV-B have been provided by Tobias Breiten
(University of Graz).

REFERENCES

[1] A. C. Antoulas. Approximation of large-scale dynamical systems,
volume 6 of Advances in Design and Control. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2005.

[2] L. Arnold. Stochastic Differential Equations: Theory and Applications.
Translation. John Wiley and Sons Inc., New York etc., 1974.

[3] P. Benner and T. Damm. Lyapunov equations, energy functionals, and
model order reduction of bilinear and stochastic systems. SIAM J.
Control Optim., 49(2):686–711, 2011.

[4] T. Damm. Rational Matrix Equations in Stochastic Control. Number
297 in Lecture Notes in Control and Information Sciences. Springer-
Verlag, 2004.

[5] T. Damm. Direct methods and ADI-preconditioned Krylov subspace
methods for generalized Lyapunov equations. Numer. Lin. Alg. Appl.,
15(9):853–871, 2008.

[6] D. Hinrichsen and A. J. Pritchard. Stochastic H∞. SIAM J. Control
Optim., 36(5):1504–1538, 1998.

[7] R. Z. Khasminskij. Stochastic Stability of Differential Equations.
Sijthoff & Noordhoff, Alphen aan den Rijn, NL, 1980.

[8] D. L. Kleinman. On the stability of linear stochastic systems. IEEE
Trans. Autom. Control, AC-14:429–430, 1969.

[9] B. C. Moore. Principal component analysis in linear systems: con-
trollability, observability, and model reduction. IEEE Trans. Autom.
Control, AC-26:17–32, 1981.

[10] B. Oeksendal. Stochastic Differential Equations. Springer-Verlag, 5th
edition, 1998.

[11] L. Pernebo and L. M. Silverman. Model reduction via balanced state
space representations. IEEE Trans. Autom. Control, AC-27(2):382–
387, 1982.

[12] M. Redmann and P. Benner. Model reduction for stochastic systems.
Preprint MPIMD/14-03, Max Planck Institute Magdeburg, 2014.

[13] H. Schneider. Positive operators and an inertia theorem. Numer. Math.,
7:11–17, 1965.


