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Abstract We consider a mathematical model of a linear vibrational system de-
scribed by the second-order system of differential equations Mx 4+ Dx + Kx = 0,
where M, K and D are positive definite matrices, called mass, stiffness and damp-
ing, respectively. We are interested in finding an optimal damping matrix which will
damp a certain part of the undamped eigenfrequencies. For this we use a minimiza-
tion criterion which minimizes the average total energy of the system. This is equiv-
alent to the minimization of the trace of the solution of a corresponding Lyapunov
equation. In this paper we consider an algorithm for the efficient optimization of
the damping positions based on dimension reduction techniques. Numerical results
illustrate the efficiency of our approach.

Keywords: vibrating system, Lyapunov equation, energy minimization, dimension
reduction.

1 Introduction

The aim of this paper is the determination of optimal damping for the following
linear vibrational system:
Mi+Dx+Kx =0, (1)
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where M and K (called mass and stiffness, respectively) are real, symmetric positive
definite matrices of order n. The damping matrix is defined as D = C, + C,y, where
C.x s the external damping. The internal damping C, is usually taken to be a small
multiple of the critical damping, more precisely [1]

Cy = 0Cpyis, the critical damping is Cerip = 2M" >/ M-12KM-12M"%. (2)

For the sake of simplicity, we will use parameter @ = 2¢.. Equation (1) can be trans-
formed to phase space which yields a system of first order differential equations. For
this purpose, let @ be a matrix that simultaneously diagonalizes M and K, that is

OTKP = Q% = diag(0},...,®?) and PTMP=1I. 3)

For the internal damping defined in (2) it holds that 7 C,® = aQ. The positive
numbers Wy, M, ..., @, are the eigenvalues of the undamped system, also called un-
damped eigenfrequencies. Then, we can write the differential equation (1) in phase
space as

%y:A% where A—{fb_4§D¢} y_{g}, )
for more details see [1, 2, 3, 4]. The first order differential equation given above has
the solution y = M Yo, Where yo contains the initial data. It has been shown in [3, 5]
that A from (4) is a stable matrix, that is, the eigenvalues of A are in the open left
half of the complex plane.

The main aim is to determine the “best” damping matrix D which will insure
optimal evanescence of each component of y. For this purpose, we will use the
criterion of minimization of the total energy of the system, that is

/WE@m ~  min, )
0

where E (¢) is the total energy of the system at a given time ¢, as a sum of kinetic and
potential energies. In [3] it is shown that by taking the average over all initial states
of the unit total energy and a given frequency range, the minimization criterion (5)
is equivalent to

traceX — min, (6)

where X is the solution of the Lyapunov equation AX +XA”T = —GG”, with A as
in (4). The matrix G depends on the eigenfrequencies which have to be damped. If
we are interested in damping of all undamped eigenfrequencies, then G = I, while
in the case of damping of just the first s eigenfrequencies of the undamped system,
the matrix G has the following form [3]:

T
_[r000
G—[OOLO}. €
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This optimization problem has been intensively considered, see for example [1, 2,
3,4,6,7, 8, 9]. Optimal damping aims at optimization of the damping positions as
well as the corresponding viscosities. In this paper we will be mainly interested in
the optimal dampers’ positions. The optimal viscosities can then be determined by
an additional optimization procedure.

Let the external damping be given by

T T T
Cex[ :Vlel'leil +V2€i2€i2+"'+Vk€[keik, (8)

where i;, j = 1,...,k, corresponds to the damping positions with viscosities v,
j=1,...,k It follows directly from Equation (8) that it is sufficient to find the
optimal positions such that 1 <i; < i, < ... < iy < n. Since we are interested in
determination of the optimal damping positions and viscosities, we will use a new
notation for trace X which is now a function of the damping positions (i1, ..., i) and
the corresponding viscosities (vi,...,vg). Thus, let X (C(vi,. ..,V i1,-..,i)) be the
solution of the Lyapunov equation

AX(C(vyy... ity yin)) FX(C(v1,. . visins .. ix))AT = =GGT, (9)

where (iy,...,i) are the damping positions and (vy,...,v,) the corresponding vis-
cosities. The matrix G is given in Equation (7), while the matrix A equals

0 Q

A= _Q —a¢TCC”'[¢—C(V1,---,Vk;il,...,ik) ’

(10)

where C(vy,..., Vi1, .., i) = @7 Coy ® and P is the matrix given in Equation (3).
For a given mass matrix M, stiffness matrix K, internal damping C, and k

. . .. . I opt opt
dampers, we are interested in determining the optimal positions (i7", ...,i”") and
. . .. t ¢ . . .
corresponding viscosities (v{”",...,v;”") such that trace X (C(v1, ..., v i1,. .., ik)) is
minimal.

In the next section we will discuss the main difficulties in the process of damping
optimization and we suggest a new approach for efficient damping optimization.

2 Damping optimization by ”discrete to continuous”
optimization approach

This section will be mainly devoted to the calculation of the optimal damping po-
sitions. The problem of determining the optimal damping is extremely demanding,
because numerous Lyapunov equations have to be solved. Furthermore, for systems
with large dimensions, even solving a single Lyapunov equations with direct solvers
(such as the Bartels-Stewart algorithm [10]) can become very demanding.

One approach for determination of the optimal damping positions is the “di-
rect” approach, which includes viscosity optimization for all possible damping
configurations. For the external damping given by Equation (8), we need to opti-
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mize the viscosity at all different configurations of dampering positions such that
1 <iy <ip £... <ix < n. Then the optimal positions are those corresponding to the
minimal traceX.

One heuristic optimization approach for the determination of the optimal damp-
ing positions is presented in [8]. In this paper, the authors group the possible damp-
ing positions in order to optimize the viscosities with respect to a smaller number of
damping positions.

Here we will introduce the “discrete to continuous” heuristical approach which
relies on the optimization of functions of real variables. First, we will define an
additional function which will be used in the optimization procedure. We want to
determine optimal damping for k dampers with different viscosities. Thus, for D C
R? we define a function f : D — R by

f(vl,...,vk;il,...,ik) :trace(X(C(vl,...,vk;[il],...,[ik]))), (11)

where [-] stands for the rounding (we use the MATLAB®) function round) and
the matrix X (C(vy,...,vi;li1],---,[ix])) is the solution of the Lyapunov equation
(9). Here iy is considered is as a continuous variable and the damping positions
[i1],[2], - - - , [ix] with corresponding viscosities vy, v, ..., v determine the matrix C.

Now, we reduce our optimization problem to the minimization of the function
(11) with continuous domain.Thus, for minimization of this function we can use
standard methods like Nelder-Mead method [11] (implemented in the MATLAB
function fminsearch). One can also use a Newton-like methods or genetic al-
gorithm, implemented in the MATLAB function fmincon or ga, respectively. In
the optimization process we will use the Nelder-Mead method which is much more
robust than the other mentioned methods for our minimization problem.

When we determine the minimum of the function (11) we will denote the

point where the minimum is achieved by (¥1,7,,... RS T A ,fk). Then the op-
timal positions are [i1],[i2],...,[ix] with corresponding optimal viscosities equal to
V1,02, ..., Dk

A further question in minimization with a Nelder-Mead method is the choice
of good starting points. First, we have to define the parameters d3 and ds which
determine the grid of starting points (if,...,i;). As can be seen from Algorithm 1,
the parameter d3 determines the difference between points inside the region, while
the parameter ds4 defines the distance to the edge of the region where the optimal
position is to be found. Some fixed values v{,v3,...,v{ will be taken as starting
viscosities.

Note that Nelder-Mead [11] is an unconstrained multidimensional optimization
method. In numerical experiments the optimization procedure could require an eval-
uation at the points that are not in the domain (for example, viscosities may become
negative). Thus, at points that are outside the domain where the optimization is per-
formed, in our optimization procedure we set the function value to some constant
large enough. With this, our optimization procedure will always return a minimum
which is inside the domain of our value function.
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Algorithm 1 ("Discrete to continuous” approach for determination of optimal posi-
tions)
Require: d3, ds — parameters which determine the first and the second grid;

Ensure: Optimal dampers” positions [i{”'], ..., [i”'] with optimal viscosities v, ..., v{".
I: fori{ =1+dy:d3 :n—ds do
2: for i =i} +ds:d3 :n—ds do
3.
4: forij =i} ,+ds:d3:n—dsdo
5: Using starting points (v{,...,v};4},...,i}) calculate (for example with Nelder-Mead algorithm)
min f(vlv"'vvk;ila"wik)'
(] g JERE.
1§i1<i2<...<ik§n
6: end for
7
8:  end for
9: end for
10: The parameters which correspond to the minimal value calculated in Step 5, are returned as
. opt opt . .opt .opt
optimal parameters (vi"”,...,v;" 0", 7).

3 Damping optimization based on dimension reduction and
continuous minimization

We have introduced the “discrete to continuous” approach which can be applied to
vibrating systems of moderate dimensions. However, for large systems solving of
the corresponding Lyapunov equation is quite demanding itself. Thus, we propose
a new approach which will combine approximation algorithms that use dimension
reduction techniques with the “discrete to continuous” approach introduced in the
previous section.

In case we intent to damp all undamped eigenfrequencies, we will use the ap-
proximation algorithms introduced in [6]. Contrary to this, in the case when we
damp a selected part of the undamped eigenfrequencies, we will use the dimension
reduction approach derived in [7].

In the minimization process with the “discrete to continuous” approach we can-
not just directly apply the algorithms from [6, 7], since these algorithms optimize
viscosities at given damping positions, while in the “discrete to continuous” ap-
proach we change the damping positions during the optimization process. Thus, we
have to modify our algorithms which use a dimension reduction technique. This
modification includes checking of the corresponding error bound at the each step of
the optimization procedure. More precisely, for the approximation of the function
given in Equation (11), we have to treat two cases which depend on the eigenfre-
quencies which have to be damped.

In the case of damping of selected eigenfrequencies, in Step 5 of Algorithm 1, we
need to calculate an approximation of the function f(vy,..., v iy,. .., i). Algorithm
2 gives an approximation with a given tolerance €. In Algorithm 2, the parameter
u represents the machine precision. For the purpose of simplification, on the input
we give just parameters that are essential for the understanding of the algorithm.
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Similarly, if we damp all eigenfrequencies, in Step 5 of Algorithm 1 we calculate
approximation of the function f(vi,...,v;i1,...,ix) using the approximation algo-
rithms introduced in [6].

Algorithm 2 (Approximation of the function f(vi,..., v i1, ..., i)

Require: x> 1; toly,. — tolerance for the first approximation;
€ — tolerance for bounding the approximation error;
c¢1 — a positive constant for scaling the tolerance (¢; < 1).
Ensure: [« — approximation of the function f(vy,..., v it,. .., i).
1: tol =tolgam
2: while tol > 10*u do
3: Calculate an approximation of function f(vy,...,vk;i1,...,i) with [7, Algorithm 2] using
tolerance tol, and denote the approximation by fipprox-

4:  Calculate the right-hand side of the bound given in [7, Theorem 3.1] and denote it by b
5: if b < € then

6: return f,,pr0x

7 break

8: else

9: tol =cy -tol
10: end if

11: end while

In the following example we will demonstrate the performance of damping opti-
mization using approximation algorithms and the “discrete to continuous” approach.

Example 1. We consider the n-mass oscillator or oscillator ladder with two dampers.For
such a mechanical system the mathematical model is given by Mx 4 Dx+ Kx =0,
where for the stiffness and mass matrices we have

ki+ky —ky
—ky ko+ks —k3
K= , M =diag(m,my,...,my,),
—hn—1 knfl'i‘kn _kn
_kn kn+kn+1

where m; > 0 for i = 1...,n are the masses and k; > 0 fori=1...,n+ 1 are the
stiffnesses. We will consider the following configuration for n = 1600 :

m;=120—(i—1)/5, i=1,...,100;
m;=1i, i=101,...,n; ki=4, i=1,....n+1.

Furthermore, we demand to damp the undamped eigenfrequencies that are smaller
than 0.005 by magnitude, yielding s = 34 (s determines the matrix G given in (7)).
The damping matrix is D = C,, + C,y, where the internal damping C,, is defined as
in (2) with o = 0.001. Since we will consider two dampers of different viscosities,
the external damping is defined by Coy = vieiel +v2e jejT for 1 <i< j<n,wheree;
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is the ith canonical basis vector, and vy, v, are the viscosities of the dampers applied
on the ith and jth mass, respectively.

As we mentioned above, the considered optimization process is extremely de-
manding, because it requires solving the Lyapunov equation (9) numerous times.
In order to compare the performance of our approach, instead of performing opti-
mization in all damping positions (this corresponds to “’direct” approach), we will
optimize the viscosities on the following equidistant mesh of damping positions:

i=51:50:n, j=i+51:50:n, (12)

which will give 465 different damping positions. We obtain that the optimal po-
sition with respect to the mesh (12), is the position (i,j) = (651,1352) with
optimal viscosities (vi,v2) = (107.03009,150.49333), while the optimal trace is
trace(X (vi,v2)) = 993067.32851. More details of the performance of dimension
reduction for this example are shown in [7]. For the optimization of the viscosities
on the above mesh we needed 104 days, which means that for viscosity optimization
at one point of the mesh we need 5.4 hours on average. Recall that a “direct” ap-
proach requires the viscosity optimization for all possible configurations of damping
positions. As there are n(n — 1)/2 different positions, it is impossible to apply di-
rect optimization here. But optimization becomes possible with our approach which
combines an approximation algorithm with the “discrete to continuous” approach.

Now, we will present results obtained with the “discrete to continuous” approach
presented in Algorithm 1, but in Step 5 we will use the function approximation given
by Algorithm 2.

In Algorithm 1 we use the following configuration: d3 = 160; ds = 80; v{ = v = 50.
While in Algorithm 2 we use the configuration: toly,,;s = 0.02; € = 0.05; ¢; =0.5.

The parameters d3 and dy define the grid with 45 different points in Algorithm 1.
The function is minimized with the MATLAB function fminsearch and for a ter-
mination tolerance for the function value we take 0.1, which determines the absolute
error. Thus the relative error has magnitude O(10~7). For the termination tolerance
of the optimization variables we have used 0.01 (this also determines the absolute
error). We have obtained that the optimal damping positions equal to (730,1274)
with optimal viscosities equal to (120.47387,120.38917). For these parameters the
value of our penalty function equals 987258.34332. This value was calculated using
an algorithm without dimension reduction. Note that combining Algorithm 1 with
dimension reduction technique, we obtain a smaller trace. That is we have obtained
the optimal positions which are not included in the mesh (12). This is not a surprise
since the mesh (12) includes just a small number of positions.

For calculating the approximation of the optimal damping with this approach we
only needed 0.532 days. The obtained results with corresponding CPU times were
calculated using an Intel(R) Core(TM) i7 CPU 920 with 12GB of RAM and 8§ MB
cache.

Another possibility for optimization is the application of the heuristic introduced
in [8] with the help of the approximation algorithms which use the mentioned di-
mension reduction techniques.
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4 Conclusions

Damping optimization in a mechanical vibrating system is a very demanding prob-
lem due to the numerous Lyapunov equations which have to be solved. In this pa-
per, we have introduced the “discrete to continuous” approach which considerably
reduces the number of Lyapunov equations which have to be solved. Furthermore,
we have proposed a new approach which is based on dimension reduction and con-
tinuous minimization.

We can conclude that combining the approximation algorithm with the “discrete
to continuous” approach we have significantly accelerated the time needed for the
calculation of the approximation of optimal damping.
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