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We consider optimal control problems for semilinear parabolic PDEs where process and measurement noise can occur. We
discuss the solution of such problems by using a Model Predictive Control (MPC) strategy. For the resulting sub-problems we
will use a Linear Quadratic Gaussian (LQG) design. Thus we will discuss the efficient implementation of the LQG approach
since it is the major computational part in the MPC scheme for this class of optimal control problems. We will present some
numerical results for the Burgers equation.

1 Introduction

We consider the optimal control problem

min
u∈L2(0,Tf ;U)

1
2

Tf∫

0

〈y, Q y〉Y + 〈u, R u〉U dt + G(x(Tf )), (1)

with Tf ∈ (0,∞] and G ≡ 0 if Tf = ∞, subject to the semilinear state equation

ẋ(t) = f(x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0, y(t) = C x(t) + w(t). (2)

Here, x(t) ∈ X (e.g., X = H1(Ω)) are the states, u(t) ∈ U are the inputs and v(t) is the input noise. Furthermore, y(t) ∈ Y
are the outputs, w(t) is the output noise and η0 is the noise in the initial condition. We assume X , U , Y to be Hilbert spaces.
If (2) is an ODE then we have a finite-dimensional problem with X = R

n,U = R
m,Y = R

p. In the case of a PDE this is an
infinite-dimensional problem. So we discretize in space (semi-discretization) to obtain an ODE.

For example, the noises can represent errors of the measurement tool or in the model. We assume that v(t) and w(t) are
white noise stochastic processes which are uncorrelated. The (time-independent) covariance matrices of v(t) and w(t) are
denoted by V and W .

Besides the nonlinearity, in practice we have the problem that the states may not be available because we often have no
complete access to them through measurements and the occurrence of noises. So we need a strategy which is able to estimate
the states. For this we will follow a strategy presented by Ito and Kunisch in [2]. The idea is to decompose the interval [0, Tf ]
into sub-intervals and linearize the nonlinear state equation (Model Predictive Control (MPC) or Receding Horizon Control
(RHC)). Then we estimate the states by using a Kalman filter. With the estimated states, we compute a control law on the
sub-interval based on a Linear Quadratic Gaussian Design (LQG).

2 MPC/LQG Design

The first step is a decomposition of the interval [0, Tf ] into sub-intervals [Ti, Ti + T ]. Then we consider the optimal control
problem (1) – (2) on [Ti, Ti + T ]. For the linearization on the sub-interval we need a reference pair (x∗(t), u∗(t)) which is
known or has to be computed. We linearize (2) around (x∗(t), u∗(t)) and subsequently replace x∗(t) by an operating point x̄
which can be determined for example as

x̄ =
1
T

Ti+T∫

Ti

x∗(t) dt.

So we obtain after resorting

ẋ(t) = A(x(t) − x∗(t)) + f(x∗(t)) + Bu(t) + Fv(t), (3)

where A = f ′(x̄). The optimal control is given by a feedback law (see [2]). Applied to our problem this results in

u(t) = u∗(t) − K(x̂(t) − x∗(t)) (4)
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where K = R−1BT X∗ with X∗ being the solution of the Algebraic Riccati Equation (ARE)

0 = X A + AT X − X BR−1BT X + CT QC, (5)

and x̂(t) is an estimation of the state x(t). The estimated state is provided by the Kalman-Bucy filter (see [3, 5]) which results
in

˙̂x(t) = A(x̂(t) − x∗(t)) + f(x∗(t)) + Bu(t) + L (C(x(t) − x̂(t)) + w(t)) , x̂(0) = x0 + η0, (6)

where L = Σ∗CT W−1 and Σ∗ is the solution of the Filter Algebraic Riccati Equation (FARE)

AΣ + Σ AT − Σ CT W−1C Σ + FV FT = 0. (7)

So the effort on every sub-interval [Ti, Ti + T ] is the following:
(I) Determine a reference pair (x∗, u∗). (II) Linearize the state equation. (III) Solve the AREs (5) and (7) (see [1, 4]) to

obtain the gain matrices K and L. (IV) Solve (6) by using (3) for the measurements. (V) Compute the optimal control (4).
Afterwards we move to the next sub-interval [Ti+1, Ti+1 + T ] and repeat the whole procedure.

3 Numerical Example

Here we demonstrate the performance of the MPC/LQG scheme applied to the Burgers equation

xt(t, ξ) + x(t, ξ)xξ(t, ξ) = νxξξ(t, ξ), (8)

where t is the variable in time, ξ the variable in space, and ν is a viscosity parameter. So we consider an optimal control
problem of the form (1) subject to the Burgers equation

xt(t, ξ) = ν xξξ(t, ξ) − x(t, ξ)xξ(t, ξ) + B(ξ)u(t) + F (ξ)v(t), y(t, ξ) = C x(t, ξ) + w(t, ξ),
x(t, 0) = x(t, 1) = 0, t > 0, x(0, ξ) = x0(ξ) + η0(ξ), ξ ∈ (0, 1). (9)

If we discretize (9) in space by using finite elements we obtain an ODE of the form (2). We use the following parameters

Tf = 3, T = 0.5, dt = dξ =
1
50

, ν = 0.01, C = I, B = F = 1Ωu(ξ), Q = 0.1I, R = 0.001I, V = 4I, W = 0.01I.

For the noises we choose normally distributed random numbers with standard deviations of 2 and 0.1 for v(t) and w(t),
respectively. Because of the choice of Tf and T we have six sub-intervals.
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The initial condition is one on (0, 0.5] and zero on (0.5, 1). The first figure shows the uncontrolled solution of (8). The
reference trajectory in the second figure was computed by solving a two-point boundary value problem without noises. Figure
3 is an open-loop solution with input noise and the last figure is the state of the MPC/LQG solution with noise in input, output
and initial condition which is much smoother than in Figure 3.

The figures demonstrate that the MPC/LQG scheme is able to control the solution of the Burgers equation to zero in the
presence of noise in inputs, outputs and initial condition.
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