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Abstract

We discuss a parallel library of efficient algorithms for model reduction of large-
scale systems with state-space dimension up to O(104). We survey the numerical
algorithms underlying the implementation of the chosen model reduction methods.
The approach considered here is based on state-space truncation of the system
matrices and includes absolute and relative error methods for both stable and un-
stable systems. In contrast to serial implementations of these methods, we employ
Newton-type iterative algorithms for the solution of the major computational tasks.
Experimental results report the numerical accuracy and the parallel performance of
our approach on a cluster of Intel Pentium II processors.

Key words: Model reduction, state-space truncation, linear matrix equations,
algebraic Riccati equations, sign function method, parallel linear algebra.

1 Introduction

Model reduction of large-scale systems arises, among others, in control of large
flexible mechanical structures or large power systems, as well as in circuit
simulation and VLSI design; see, e.g., [1,15]. LTI systems with state-space
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dimension in the thousands are common in these applications. In particular,
consider the continuous linear time-invariant (LTI) system in state-space form:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,
(1)

where A ∈ R
n×n is the state matrix, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m,
and x0 ∈ R

n is the initial state of the system. Here, n is known as the order
(or state-space dimension) of the system and the associated transfer function
matrix (TFM) is G(s) = C(sI −A)−1B + D. In the model reduction problem
we are interested in finding a reduced-order LTI system,

˙̂x(t) = Âx̂(t) + B̂û(t), t > 0 x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂û(t), t ≥ 0,
(2)

of order r, r ¿ n, and associated TFM Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂ which
approximates G(s). Model reduction of discrete-time LTI systems can be for-
mulated in an analogous manner. For brevity we will omit most of the details
concerned with model reduction for discrete-time systems in this paper; see
also [8].

A continuous-time LTI system is (c-)stable if all its poles are in the left half
plane. Sufficient for this is that A is (c-)stable, i.e., the spectrum of A is
contained in the open left half plane, denoted as Λ (A) ⊂ C

−.

There is no general technique for model reduction that can be considered as
optimal in an overall sense since the system characteristics play a vital role.
In this paper we focus on the so-called state-space truncation approach [1,33].
That is, the reduced-order model is obtained from truncating a state-space
transformation (A,B,C,D) → (TAT−1, TB,CT−1, D), where T ∈ R

n×n is

nonsingular, T =:
[

T T
l , LT

l

]T
, and T−1 =: [Tr, Lr], so that with Tl ∈ R

r×n,

Tr ∈ R
n×r, the reduced-order model is

Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D. (3)

This corresponds to projecting the dynamics of the system onto an r-dimensional
linear manifold via x̂ = TrTlx.

State-space truncation methods for model reduction differ in the measure-
ment of the approximation error and the way they attempt to minimize this
error. Balanced truncation (BT) methods [32,39,41,44], singular perturbation
approximation (SPA) methods [31], and optimal Hankel-norm approximation
(HNA) methods [19] all belong to the family of absolute error methods, which
try to minimize ‖∆a‖ = ‖G − Ĝ‖ for some system norm. For BT and SPA
methods, the error measure is ‖∆a‖∞ where ‖ . ‖∞ denotes the L∞- or H∞-
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norm of a stable, rational matrix function defined by

‖G‖∞ = ess sup
ω∈R

σmax(G(ıω)). (4)

Here ı =
√
−1 and σmax(M) is the largest singular value of the matrix M . In

contrast to BT and SPA, which compute sub-optimal approximations, HNA
methods find the optimal solution of the absolute error minimization problem
if the Hankel norm ‖ . ‖H is used, where

‖G‖H = max
j=1,...,n

σj,

and the σj are the Hankel singular values of the system.

Relative error methods attempt to minimize the relative error ‖∆r‖∞ defined
implicitly by G− Ĝ = G∆r. Among these, the balanced stochastic truncation
(BST) method [17,22,48] is particularly popular. In contrast to BT and SPA,
BST reduced-order models approximate the original TFM uniformly over the
whole frequency range and also provide a good approximation of the phase
properties [38]. The latter property is particularly important in the context of
inverse problems [13].

All state-space truncation methods mentioned so far can only be applied if the
system is stable. However, if stabilization of the system is the computational
task to solve, the system is obviously unstable. If a stabilization strategy for a
large-scale unstable system is to be designed, but the model is too large to be
treated by the stabilization procedure, model reduction of the unstable plant
model can be employed. Unstable systems often occur in controller reduction:
controllers are often themselves unstable systems and therefore the task of
controller reduction leads to model reduction of unstable systems [46]. Model
reduction of unstable systems is usually dealt with by first separating the
stable and the unstable parts of the system, and then reducing the stable part
using any of the state-space truncation methods.

In general, model reduction methods for LTI systems with dense state matri-
ces have a computational cost of O(n3) floating-point arithmetic operations
(flops) and require storage for O(n2) numbers. While current desktop comput-
ers provide enough computational power to reduce models of order n in the
hundreds using libraries like SLICOT 3 or the Matlab control-related tool-
boxes, large-scale applications clearly require the use of advanced computing
techniques. One approach would be to exploit any special structure of the
given system, e.g., sparsity of the state matrix A. Several approaches for this
have been discussed recently, see, e.g., [1,18,23,30]. These methods are special-
ized for certain problem classes and often lack properties like error bounds or
preservation of stability, passivity, or phase information. Though a lot of re-
search is ongoing, these methods cannot be used as a black-box. Therefore, we

3 Available from http://www.win.tue.nl/niconet/NIC2/slicot.html.
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will focus here on the parallelization of state-space truncation methods which
will allow to reduce large problems without going through the tedious process
of developing a specialized code for the given problem. Note that we not only
parallelize the underlying computational steps but often replace them by new
methods that are better suited for parallel computations!

The rest of the paper is structured as follows. In Section 2 we review a pro-
cedure for model reduction of unstable systems. Absolute and relative error
methods for model reduction of stable systems are described, respectively, in
Sections 3 and 4. Efficient algorithms for the solution of the major compu-
tational problems arising in state-space truncation methods are discussed in
Section 5. The integration of these algorithms in a parallel library for model
reduction, PLiCMR, is outlined in Section 6. Finally, the performance on a
cluster of Intel Pentium II processors is reported in Section 7, and some con-
cluding remarks follow in Section 8.

2 Model Reduction of Unstable Systems

Usually, unstable poles cannot be neglected when modeling the dynamics of
a system, and therefore should be preserved in the reduced-order system in
some sense. This is trivially satisfied using the following approach [40,47]: first,
compute an additive decomposition of the TFM,

G(s) = G−(s) + G+(s) (5)

such that G− is stable and G+ is unstable. Then any of the absolute or relative
error state-space truncation methods for model reduction can be applied to
G− in order to obtain a reduced-order transfer function Ĝ−, and the reduced-
order system is synthesized by Ĝ(s) = Ĝ−(s) + G+(s). Hence, the unstable
part is preserved in the reduced-order system. This is an important property in
controller reduction where it is needed to guarantee the stabilization property
of the controller. Of course, if the number of unstable poles is dominating,
the potential for reducing the model is limited, but in many applications the
number of unstable poles is very low compared to the number of stable poles.

We now describe how the decomposition (5) can be computed using the matrix
sign function. A definition of this matrix function and an iterative algorithm
for its computation are given in subsection 5.1.

Consider the realization (A,B,C,D) of a continuous-time LTI system, and
let sign (A) denote the sign function of A. We start by computing a (rank-
revealing) QR factorization

In − sign (A) = QRP, R =







R11 R12

0 0
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where Q ∈ R
n×n is orthogonal, R ∈ R

n×n is upper triangular, with R11 ∈ R
k×k,

and P ∈ R
n×n is a permutation matrix. Note that the zeros in the last n− k

rows of R are to be understood as “zero with respect to a given tolerance
threshold”. Then the first k columns of Q span the stable A-invariant subspace.
Thus,

Ã := QT AQ =







A11 A12

0 A22





 , (6)

where Λ (A11) = Λ (A) ∩ C
−, and Λ (A22) = Λ (A) ∩ C

+.

In a second step, we compute a matrix V ∈ R
n×n such that

Â := V −1ÃV =







Ik −Y

0 In−k













A11 0

0 A22













Ik Y

0 In−k





 , (7)

where Y ∈ R
k×n−k satisfies the Sylvester equation

A11Y − Y A22 + A12 = 0. (8)

As Λ (A11) ∩ Λ (A22) = ∅, equation (8) has a unique solution [27]. Sylvester
equations with strictly stable/unstable coefficient matrices can be solved using
the iterative algorithm described in subsection 5.2.

The desired additive decomposition of G(s) = C(sI − A)−1B + D is finally
obtained by performing the state-space transformation

(Â, B̂, Ĉ, D̂) := (V −1QT AQV, V −1QT B,CQV,D)

=













A11 0

0 A22





 ,







B1

B2





 , [ C1 C2], D





 ,

where Â, B̂, and Ĉ are partitioned conformally with the partitioning in (6)–
(7), so that

G(s) = C(sI − A)−1B + D = Ĉ(sI − Â)−1B̂ + D̂

=
{

Ĉ1(sIk − A11)
−1B1 + D

}

+
{

C2(sIn−k − A22)
−1B2

}

=: G−(s) + G+(s),

where G−(s) is a stable TFM and G+(s) is a unstable TFM.

3 Absolute Error Methods for Stable Systems

Absolute error methods are strongly related to the controllability Gramian Wc

and the observability Gramian Wo of the system. In the continuous-time case,
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the Gramians are given by the solutions of two coupled Lyapunov equations

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (9)

(In the discrete-time case, the Gramians are the solutions of two coupled
analogous Stein equations.) As A is assumed to be stable, the Gramians Wc and
Wo are positive semidefinite, and therefore there exist factorizations Wc = ST S
and Wo = RT R. Matrices S and R are often called the Cholesky factors of the
Gramians (even if they are not Cholesky factors in a strict sense).

Note that the efficient algorithms for the solution of the coupled Lyapunov
in (9) briefly reviewed in subsection 5.3 do not compute square Cholesky
factors, but full-rank factors of Wc, Wo.

Consider now the singular value decomposition (SVD)

SRT = UΣV T [U1 U2]







Σ1 0

0 Σ2













V T
1

V T
2





 , (10)

where the matrices are partitioned at a given dimension r such that Σ1 =
diag (σ1, . . . , σr), Σ2 = diag (σr+1, . . . , σn), σj ≥ 0 for all j, and σr > σr+1.
Here, σ1, . . . , σn are known as the Hankel singular values of the system. If
σr > σr+1 = 0, then r is the state-space dimension of a minimal realization of
the system.

It should be emphasized that, though mathematically equivalent, our methods
for solving (9) and (10) significantly differ from standard methods used in
the Matlab toolboxes or SLICOT [47]. As we are using full-rank factors
rather than Cholesky factors, the solution of (9) is usually much more efficient
if the Gramians have low (numerical) rank—which is typically the case in
many large-scale models. The effect is even more drastic when looking at (10):
instead of a cost of O(n3) when using Cholesky factors, this new approach
leads to an O(nc · no · n) cost where nc, no, the column dimensions of the full
rank factors, often satisfy nc, no ¿ n; see [7].

3.1 Balanced truncation

The so-called square-root (SR) BT algorithms [29,41] determine the reduced-
order model in (3) using the projection matrices

Tl = Σ
−1/2
1 V T

1 R and Tr = ST U1Σ
−1/2
1 . (11)

In case Σ1 > 0 and Σ2 = 0, this reduced-order model is a minimal balanced
realization of the TFM G(s).

If the original system is highly unbalanced (and hence, the state-space trans-
formation matrix T is ill-conditioned), the balancing-free square-root (BFSR)
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BT algorithms often provide more accurate reduced-order models in the pres-
ence of rounding errors [44]. These algorithms differ in the procedure to obtain
Tl and Tr from the SVD factorization of SRT and in that the reduced-order
model is not balanced.

The absolute error of a realization of order r computed by the SR or BFSR
BT algorithms satisfies the upper bound [19]

‖∆a‖∞ = ‖G− Ĝ‖∞ ≤ 2
n
∑

j=r+1

σj. (12)

This allows an adaptive choice of the size of the reduced-order model if a given
upper bound for the error is to be satisfied.

3.2 Singular perturbation approximation

Let the tuple (Ã, B̃, C̃,D) denote a minimal realization of the system com-
puted using either the SR or BFSR BT algorithms, and partition

Ã =







A11 A12

A21 A22





 , B̃ =







B1

B2





 , C̃ = [ C1 C2],

according to the desired size r of the reduced-order model, i.e., A11 ∈ R
r×r,

B1 ∈ R
r×m, and C1 ∈ R

p×r. Then the SPA reduced-order model is obtained
by applying the following formulae

Â := A11 − A12(γI − A22)
−1A21, B̂ := B1 − A12(γI − A22)

−1B2,

Ĉ := C1 − C2(γI − A22)
−1A21, D̂ := D − C2(γI − A22)

−1B2,
(13)

where γ = 0 for continuous-time systems (γ = 1 for discrete-time systems)
[31,43,44].

The realizations computed using the SR or BFSR SPA algorithms also satisfy
the absolute error bound in (12).

3.3 Hankel-norm approximation

Using the Hankel norm of a stable rational TFM, ‖G‖H , it is possible to com-
pute an approximation minimizing ‖∆a‖H for a given order r of the reduced-
order system [19]. Here we only describe the basic computational steps of the
HNA method in order to show which computational kernels (matrix products,
QR factorizations, etc.) are needed to implement the HNA method. Further
details are given in [1,19,33,49].

In the first step, a balanced minimal realization of G is computed using, e.g.,
the SR BT algorithm described in subsection 3.1.
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Next, a TFM G̃(s) = C̃(sI − Ã)−1B̃ + D̃ is computed as follows: first, the
order r of the reduced-order model is chosen such that the Hankel singular
values of G satisfy

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σr+k > σr+k+1 ≥ . . . ≥ σn, k ≥ 1.

By applying the appropriate permutations, the balanced transformation of G
is re-ordered such that the Gramians become diag

(

Σ̌, σr+1Ik

)

. The resulting

balanced realization given by (Ǎ, B̌, Č, Ď) is partitioned conformally with the
partitioning of the Gramians, i.e.,

Ǎ =







A11 A12

A21 A22





 , B̌ =







B1

B2





 , Č = [ C1 C2],

where A11 ∈ R
n−k×n−k, B1 ∈ R

n−k×m, and C1 ∈ R
p×n−k. Then the following

formulae define a realization of G̃:

Ã = Γ−1
(

σ2
r+1A

T
11 + Σ̌A11Σ̌ + σr+1C

T
1 UBT

1

)

, B̃ = Γ−1(Σ̌B1 − σr+1C
T
1 U),

C̃ = C1Σ̌− σr+1UBT
1 , D̃ = D + σr+1U.

Here, U := (CT
2 )†B2, where M † denotes the pseudoinverse of M [21], and

Γ := Σ̌2−σ2
r+1In−k. Now, following the procedure described in subsection 2, we

can compute an additive decomposition of G̃ such that G̃(s) = Ĝ(s) + G̃+(s)
where Ĝ is stable and G̃+ is antistable. Then Ĝ is an optimal r-th order
Hankel-norm approximation of G.

The absolute error for a realization of order r computed using the HNA method
satisfies [19]

‖∆a‖H = ‖G− Ĝ‖H = σr+1. (14)

This allows again an adaptive choice of r. Note that the TFM Ĝ computed
using the HNA method also satisfies the H∞-norm bound (12).

4 Relative Error Methods for Stable Systems

We assume here that 0 < p ≤ m, rank (D) = p, which implies that G(s) must
not be strictly proper. For strictly proper systems, the method can be applied
introducing an ε-regularization by adding an artificial matrix D = [εIp 0] [20].

BST is a model reduction method based on truncating a balanced stochastic
realization. Such a realization is obtained as follows; see [22] for details. Define
Φ(s) = G(s)GT (−s), and let W be a square minimum phase right spectral fac-

tor of Φ, satisfying Φ(s) = W T (−s)W (s). As D has full row rank, E := DDT
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is positive definite, and a minimal state-space realization (AW , BW , CW , DW )
of W is given by

AW := A,BW := BDT + WcC
T , CW := E− 1

2 (C −BT
W XW ), DW := E

1

2 ,

where Wc = ST S is the controllability Gramian defined in (9), while XW is
the observability Gramian of W (s) obtained as the stabilizing solution of the
algebraic Riccati equation (ARE)

F T X + XF + XBW E−1BT
W X + CT E−1C = 0, (15)

with F := A−BW E−1C. Here, XW is symmetric positive (semi-)definite and
thus admits a decomposition XW = RT R. In SR BST a transformation T
yielding projection matrices Tl, Tr as in the BT method is obtained from the
dominant left and right singular subspaces of SRT such that the transformed
system (Ã, B̃, C̃, D̃) = (T−1AT, T−1B,CT,D) is stochastically balanced. That
is, the controllability Gramian W̃c satisfies

W̃c := T−1WcT
−T = diag (σ1, . . . , σn) = T T XW T =: X̃W , (16)

where 1 = σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. A BST reduced-order model is then
obtained by truncating the realization (Ã, B̃, C̃, D̃) to order r where σr À
σr+1; This BSR satisfies the following relative error bound

σr+1 ≤ ‖∆r‖∞ ≤
n
∏

j=r+1

1 + σj

1− σj

− 1, (17)

where G∆r = G− Ĝ. From that we obtain

‖G− Ĝ‖∞
‖G‖∞

≤
n
∏

j=r+1

1 + σj

1− σj

− 1. (18)

Our algorithms differ in several ways from the ones considered in [38,48],
though they are mathematically equivalent. Specifically, the Lyapunov equa-
tion for Wc is solved using a sign function iteration described in subsection 5.3,
from which we obtain a full-rank factorization Wc = ST S. The same approach
is used to compute a full-rank factor R of XW from a stabilizing approxima-
tion X̃W to XW using the technique described in [46]: let D =

[

D̂T 0
]

U be an

LQ decomposition of D. Note that D̂ ∈ R
p×p is a square, nonsingular matrix

as D has full row rank. Now set

HW := D̂−T C, B̂W := BW D̂−1, Ĉ := (HW − B̂T
W X).

Then the ARE (15) is equivalent to AT X +XA+ ĈT Ĉ = 0. Using a computed
approximation X̃W of XW to form Ĉ, the Cholesky or full-rank factor R of
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XW can be computed directly from the Lyapunov equation

A(RT R) + (RT R)A + ĈT Ĉ = 0.

The approximation X̃W is obtained by solving (15) using Newton’s method
with exact line search as described in subsection 5.4 (see also [3]). The Lya-
punov equation for R is solved using the sign function iteration from subsec-
tion 5.3.

5 Solving Linear and Quadratic Matrix Equations

The first step in all model reduction techniques discussed so far involves the
numerical solution of linear and quadratic matrix equations, namely Sylvester,
Lyapunov and Stein equations as well as AREs. In this section we will review
how these equations can be solved by iterative methods that are particularly
attractive for parallelization.

5.1 The matrix sign function

Consider a matrix Z ∈ R
n×n with no eigenvalues on the imaginary axis and

let Z = S
[

J−

0
0

J+

]

S−1 be its Jordan decomposition. Here, the Jordan blocks

in J− ∈ R
k×k and J+ ∈ R

(n−k)×(n−k) contain, respectively, the stable and
unstable parts of Λ (Z). The matrix sign function of Z is defined as sign (Z) :=

S
[

−Ik

0
0

In−k

]

S−1. Note that sign (Z) is unique and independent of the order of

the eigenvalues in the Jordan decomposition of Z. Many other definitions of
the sign function can be given; see [25] for an overview.

Applying Newton’s root-finding iteration to Z2 = In, where the starting point
is chosen as Z, we obtain the Newton iteration for the matrix sign function:

Z0 ← Z, Zj+1 ←
1

2
(Zj + Z−1

j ), j = 0, 1, 2, . . . . (19)

Under the given assumptions, the sequence {Zj}∞j=0 converges to sign (Z) =
limj→∞ Zj [37] with an ultimately quadratic convergence rate. As the initial
convergence may be slow, the use of acceleration techniques is recommended;
e.g., determinantal scaling [14] is given by

Zj ← cjZj, cj = | det (Zj)|−
1

n .

Note that the determinant det (Zj) is a by-product of the computations re-
quired to implement (19).

Efficient parallelization of the matrix sign function has been reported, e.g.,
in [2,24].
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5.2 Solution of Sylvester equations

Consider a Sylvester equation of the form

AX + XB + C = 0, (20)

with A ∈ R
m×m and B ∈ R

n×n stable matrices, and C ∈ R
m×n. This equa-

tion can be solved using a sign function-based iterative procedure, derived by
Roberts [37], which can be formulated as follows

A0 ← A, Aj+1 ← 1
2

(

Aj + A−1
j

)

,

B0 ← B, Bj+1 ← 1
2

(

Bj + B−1
j

)

,

C0 ← C, Cj+1 ← 1
2

(

Cj + A−1
j CjB

−1
j

)

,

j = 0, 1, 2, . . . . (21)

It follows that limj→∞ Aj = −Im, limj→∞ Bj = −In, and X = 1
2
limj→∞ Cj.

For an efficient implementation of this iteration on modern computer archi-
tectures and numerical experiments reporting efficiency and accuracy, see [6].

5.3 Solution of Lyapunov and Stein equations

Exploiting that the Lyapunov equation AT X + XA + Q = 0, with A ∈ R
n×n

stable and Q ∈ R
n×n symmetric positive semidefinite, is a special case of the

Sylvester equation (20), the iteration (21) boils down to

A0 ← A, Aj+1 ←
1

2

(

Aj + A−1
j

)

,

Q0 ← Q, Qj+1 ←
1

2

(

Qj + A−T
j QjA

−1
j

)

,

j = 0, 1, 2, . . . , (22)

so that limj→∞ Aj = − In and X = 1
2
limj→∞ Qj.

In [5,28] this iteration was modified to obtain the Cholesky factor rather than
the solution itself of a Lyapunov equation of the form

AT X + XA + LT L = 0,

where A ∈ R
n×n is stable and L ∈ R

m×n. The modified iteration can be
formulated as follows:

A0 ← A, Aj+1 ←
1

2

(

Aj + A−1
j

)

,

L0 ← L, Lj+1 ←
1√
2







Lj

LjA
−1
j





 ,
j = 0, 1, 2, . . . . (23)

As in the applications considered here the Cholesky factors are often of low
(numerical) rank, we can save some workspace and arithmetic work by a col-
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umn compression of the iterates Lj. That is, in each step we compute a rank-
revealing QR decomposition of the matrix Lj+1 using the QR decomposition

with column pivoting [21]. We then obtain limj→∞ Lj = L̂, with L̂L̂T = X;
i.e., the iterates converge to the full-rank factors of the solution. Note that in
all the absolute error methods discussed here, we need to solve both Lyapunov
equations (9). We can couple the two iterations so that only one of the two
sequences {Aj}∞j=0 needs to be computed and the cost is further reduced; see,
e.g., [7] for details.

In particular, in model reduction m, p ¿ n and the numerical rank of the
Cholesky factors S, R of the system Gramians is also usually much smaller
than n. Therefore, working with the full-rank factors quite often saves a large
amount of workspace and computational cost. Details of the method and
the implementation of BT model reduction using these factors instead of the
Cholesky factors can be found in [7].

The same techniques described here can also be employed for the solution of
the Stein equation arising in discrete-time systems if the sign function iteration
is replaced by the squared Smith iteration; see [11] for details.

5.4 The Newton method for the ARE

In [26] Kleinman shows that, under suitable conditions, Newton’s method
applied to the classical ARE, as it appears in optimal control, converges to
the desired stabilizing solution of the ARE.

All the convergence results for Newton’s method applied to the classical ARE
can be derived in a similar way for the case considered here; see [3,45]. In
particular, we use these results to formulate Newton’s method for an ARE of
the form

R (X) := F T X + XF + XPX + Q = 0, (24)

with F ∈ R
n×n stable and P,Q ∈ R

n×n symmetric positive semidefinite. This
can then be applied to (15) with

F := A−BW E−1C, P := BW E−1BT
W , Q := CT E−1C. (25)

The Newton iteration for (24), starting from some initial stabilizing symmetric
guess X0, can be formulated as follows:

Fj ← F + PXj,

Xj+1 ← Xj + Nj,
j = 0, 1, 2, . . . ,

where Nj satisfies the Lyapunov equation F T
j Nj + NjFj +R (Xj) = 0.

In our implementation, we employ the sign function-based method (22) to
solve the Lyapunov equations in each step of the Newton iteration [9].
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Although Newton’s method for the ARE (24) converges ultimately quadrat-
ically from any starting guess X0 such that F + PX0 is stable, the initial
convergence may be slow. Even worse, sometimes the X1 is an enormous leap
away from X0 and the exact solution, and the sequence {Xj}∞j=0 only con-
verges slowly afterwards. Therefore, in practice, we use a variant of Newton’s
method which includes an exact line search technique in order to accelerate
convergence in the early stages of the iteration. This technique was proposed
for (24) in [3].

Here we apply the suggested modified Newton’s method to (15) using (25). As
A − BW E−1C is stable [22,48], we can start Newton’s iteration with X0 = 0
such that the problem of finding a stabilizing starting guess is circumvented
in this case.

For further details on the exact line search and the parallelization of Newton’s
method, see [4].

6 A Parallel Library for Model Reduction

The numerical algorithms that we have described in the previous sections are
all composed of basic matrix computations such as solving linear systems,
matrix products, and QR factorizations (with and without column pivoting).
Efficient implementations of these operations are available in parallel linear al-
gebra libraries for distributed memory computers like PLAPACK and ScaLA-
PACK [12,42]. The use of these libraries enhances the reliability and improves
portability of the model reduction routines. The performance will depend on
the efficiencies of the underlying serial and parallel computational linear alge-
bra libraries and the communication routines.

Using the kernels in ScaLAPACK, we have implemented a library for model
reduction of LTI systems, PLiCMR 4 , in Fortran 77. The library contains a
few driver routines for model reduction and several computational routines
for the solution of related equations in control. The functionality and nam-
ing convention of the parallel routines closely follow analogous routines from
SLICOT. As part of PLiCMR, three parallel driver routines are provided for
absolute error model reduction, one parallel driver routine for relative error
model reduction, and an expert driver routine capable of performing any of
the previous functions on stable and unstable systems:

– pab09ax: SR and BFSR BT algorithms.
– pab09bx: SR and BFSR SPA algorithms.
– pab09cx: HNA algorithm.
– pab09hx: SR and BFSR BST algorithms.
– pab09mr: Model reduction of stable/unstable systems employing any of

the four previous methods.

Table 1 shows a list of the computational routines included in PLiCMR.

4 Available from http://spine.act.uji.es/~plicmr.html.
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Purpose Routine

Spectral division pmb05rd

Continuous-time Discrete-time

ARE solver pdgecrnz –

Sylvester solver psb04md –

Lyapunov solver pdgeclne –

Coupled Lyapunov/Stein solver psb03odc psb03odd

Table 1
Computational routines in PLiCMR.

6.1 Implementation details

The efficiency of our model reduction routines strongly depends on the effi-
ciency of two numerical kernels: the QR factorization with column pivoting,
employed in iteration (23) for the coupled Lyapunov equations in (9), and the
matrix inversion routines necessary, e.g., in the Newton iteration for the ma-
trix sign function and related iterations for Sylvester and Lyapunov equations.
Highly efficient parallel routines are adopted for both computations in our li-
brary. First, we employ a BLAS-3 version of the QR factorization with column
pivoting [36] which outperforms the traditional BLAS-2 implementation both
in serial and parallel architectures. This new version has been included in LA-
PACK (version 3.0) as routine DGEQP3. We have developed a ScaLAPACK-like
parallel implementation of the routine. Secondly, we propose to use an inver-
sion procedure based on Gauss-Jordan elimination. This approach presents
a better balance of the computational load for parallel distributed-memory
architectures, see [35].

The numerical rank of a matrix is estimated in our routines by using the QR
factorization with column pivoting and an incremental estimator. Setting a
tolerance threshold for the numerical rank is a delicate problem, specially if
the matrix has no large gap in its singular value distribution. As a general
solution, in order to determine the numerical rank of a square matrix of order
n, we set the rank tolerance threshold, τrank, to τrank = 10 · √n · ε, where ε
is the machine precision. We found this threshold to serve our purposes in
practice.

Most of the computational routines in the library are based on iterative meth-
ods with quadratic convergence, e.g., the Newton iteration is used to solve
AREs, the iteration (19) for computing the matrix sign function is also an im-
plementation of Newton’s method, etc. In all these cases we use an iteration
tolerance threshold, τiter, defined as τiter = 10 ·n · √ε. Table 2 lists the specific
convergence criteria employed by the computational routines. As all the iter-
ative algorithms in the library present an ultimately quadratic convergence,
once the corresponding threshold is satisfied two more iterations are carried
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out to guarantee the maximum attainable accuracy.

pmb05rd ‖Zj+1 − Zj‖ < τiter · ‖Zj‖
Continuous-time Discrete-time

pdgecrnz ‖R (Xj) ‖F < τiter · ‖Xj‖F – –

psb04md ‖Aj + In‖F < τiter · ‖Aj‖F and – –

– ‖Bj − In‖F < τiter · ‖Bj‖F
pdgeclne ‖Aj + In‖F < τiter · ‖Aj‖F – –

psb03odc ‖Aj + In‖F < τiter · ‖Aj‖F psb03odd ‖Aj‖F < τiter · ‖A‖F
Table 2
Convergence criteria for the iterations in the computational routines. The Frobe-
nious norm was employed in all cases.

In ScaLAPACK [12] the computations are performed by a logical grid of np =
pr×pc processes which are mapped onto the physical processors, depending on
the available number of these. All data matrices are partitioned into mb× nb
blocks, and these blocks are then distributed among the processes in column-
major order. Our current implementations of the routines for model reduction
in PLiCMR require all data matrices passed as arguments to the driver and
computational routines of the libraries to start at entry (1,1) which has to be
stored by process (0,0).

7 Experimental Results

All the experiments presented in this section were performed on a cluster of
32 nodes using ieee double-precision floating-point arithmetic (ε ≈ 2.2204×
10−16). Each node consists of an Intel Pentium-II processor at 300 MHz with
128 MBytes of RAM. We employ a BLAS library, specially tuned for the
Pentium-II processor, that achieves around 180 Mflops (millions of flops per
second) for the matrix product (routine DGEMM). The nodes are connected via
a Myrinet multistage network; the communication library BLACS is based
on an implementation of the MPI communication library specially developed
and tuned for this network. The performance of the interconnection network
was measured by a simple loop-back message transfer resulting in a latency
of 33 µsec. and a bandwidth of 200 Mbit/sec. We made use of the LAPACK,
PBLAS, and ScaLAPACK libraries whenever possible.

We compare the accuracy and performance of the parallel routines in PLiCMR
and the corresponding serial routines in SLICOT:

– ab09ad: SR and BFSR BT algorithms.
– ab09bd: SR and BFSR SPA algorithms.
– ab09cd: HNA algorithm.
– ab09hd: SR and BFSR BST algorithms.

15



As we did not find any significant difference between the SR and BFSR algo-
rithms, in the experiments we only report results for the latter.

7.1 Accuracy of the reduced-order models

We evaluate the numerical performance of our model reduction using eight
moderate-scale examples coming from very different application areas ranging
from meteorology over servomechanism design to structural mechanics. For a
detailed description of the applications, see [15] and the references therein.

Table 3 shows the parameters of the systems used in the evaluation. In order
to fix the order of the reduced-order system automatically, the SLICOT and
PLiCMR routines select r so that σr > max(τ1, n · ε · σ1) > σr+1, where τ1

is a user-specified tolerance threshold. In our case, we set τ1 = η · σ1, where
the value η is adjusted for each particular case as shown in the table. The
SPA and HNA methods also employ a second tolerance threshold equal to
max(τ2, n · ε · σ1) in order to determine a minimal realization of the system.
In our experiments we set τ2 = 0.

Example n m p σ1 η r

Eady 598 1 1 9.93e+2 1.0e−3 9

CDplayer 120 2 2 1.17e+6 1.0e−8 42

FOM 1006 1 1 5.00e+1 1.0e−3 10

PDE 84 1 1 5.34e+0 1.0e−3 2

Heat-c 200 1 1 3.25e−2 1.0e−3 4

ISS 270 3 3 5.79e−2 1.0e−3 36

Build 48 1 1 2.50e−3 1.0e−3 30

Beam 348 1 1 2.38e+3 1.0e−3 12

Table 3
Parameters of the examples employed in the numerical evaluation of the parallel
model reduction routines.

Table 4 shows the absolute error, ‖∆a‖∞ = ‖G − Ĝ‖∞, of the reduced-order
systems computed with the absolute error model reduction routines and the
theoretical bound (12) for the different examples. We used the function linorm

in order to compute the H∞ norms of the errors using Matlab (except in the
FOM example, where we had to use gridding on the frequency response plot).
This function is based on the SLICOT subroutine ab13dd which computes
the L∞-norm of a continuous- or discrete LTI system. Note that the Mat-

lab function normhinf from the Robust Control Toolbox [16] was not able to
compute any of the error norms in the CD player example correctly. The er-
ror bound was obtained from the Hankel singular values provided in the data
files from [15]. The table shows that the models computed by SLICOT and
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the parallel routines are equally good approximations to the original system.
Mostly, both models satisfy the theoretical absolute error bound. Only in one
case (SPA applied to “Heat-c”) the error bound is slightly missed. This can be
due to rounding errors which can effect computation of the bound, the abso-
lute error norm, or the reduced-order models. A detailed investigation of this
discrepancy between theory and practice is needed here. Further experimental
results are reported in [10].

Example Bound ab09ad pab09ax ab09bd pab09bx ab09cd pab09cx

in (12)

Eady 1.1e+0 4.6e−1 4.6e−1 4.1e−1 4.1e−1 2.6e−1 2.6e−1

CDplayer 2.4e−1 2.0e−2 2.0e−2 2.2e−2 2.2e−2 6.5e−2 3.6e−2

FOM 1.0e−1 1.0e−1 1.0e−1 1.0e−1 1.0e−1 3.6e−2 3.6e−2

PDE 1.0e−2 4.6e−3 4.6e−3 7.4e−3 7.4e−3 3.8e−3 3.8e−3

Heat-c 3.4e−5 2.6e−5 2.6e−5 4.9e−5 4.9e−5 2.9e−5 2.9e−5

ISS 1.8e−3 1.1e−4 1.1e−4 1.1e−4 1.1e−4 1.5e−4 1.5e−4

Build 2.7e−5 4.9e−6 4.9e−6 4.8e−6 4.8e−6 6.7e−6 6.7e−6

Beam 1.2e+1 2.4e+0 2.4e+0 1.7e+0 1.7e+0 1.7e+0 1.7e+0

Table 4
Absolute error ‖∆a‖∞ of the reduced-order models computed for the examples
employed in the numerical evaluation of the absolute error model reduction routines.

Table 5 shows the relative error ‖G−Ĝ‖∞/‖G‖∞ of the reduced-order systems
computed with the serial and the parallel BST routines and the theoretical
bound (18) for the different examples. In those cases where a regularization
is necessary we used D = [ Ip 0 ]. (Again the H∞ norm in the FOM example
could not be computed using function linorm and gridding had to be used.)

7.2 Parallel performance of the computational routines

We first report the performance of the major computational routines in PLiC-
MR. Specifically, we report results for a single iteration of the ARE solver,
the spectral division routine based on the sign function, and the linear matrix
equation solvers. The Newton method for the ARE requires the solution of
a Lyapunov equation at each iteration step. We fix the number of iterations
for this LME solver to 10. This value is determined from our experience when
evaluating the collection of benchmark examples in [10].

As in practice m, p ¿ n, in the experiments in this subsection we employ
systems with n/10 = m = p and random entries in U[0, 1]. The systems are
generated with n/1.1 stable and 0.1n/1.1 unstable poles in an attempt to
mimic a real case. The dimensions of the numerical problems to be solved
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Example Bound ab09hd pab09hx

in (18)

Eady 4.0e−3 1.1e−3 1.1e−3

CDplayer 7.2e−2 7.4e−5 3.2e−5

FOM 2.1e−2 — 6.2e−3

PDE 1.6e−3 5.5e−4 5.5e−4

Heat-c 3.4e−5 2.6e−5 2.6e−5

ISS 1.8e−3 9.6e−5 9.6e−5

Build 2.7e−5 4.9e−6 4.9e−6

Beam 9.1e+1 4.8e−1 2.1e−1

Table 5
Relative error ‖G − Ĝ‖∞/‖G‖∞ of the reduced-order models computed for the
examples employed in the numerical evaluation of the relative error model reduction
routines. (The entry with a dash denotes a problem that could not be solved due
to memory restrictions.)

are therefore those that would arise when model reduction is applied to such
systems; e.g., spectral division via the matrix sign function is applied on a
square matrix of order n; the Sylvester equation involves square coefficient
matrices A and B of order n/1.1 and 0.1n/1.1, respectively; once additive
decomposition is performed, all other linear and quadratic matrix solvers work
on problems of dimension given by n/1.1, m/1.1, and p/1.1.

Our first experiment reports the execution time of a single iteration of the
computational routines on a system of order n = 880; see Figure 1. This
is about the largest size we could evaluate on a single node of our cluster
considering the number of data matrices involved, the amount of workspace
necessary for computations, and the reduced size of the RAM per node. The
execution of a parallel algorithm on a single node is likely to require a higher
time than that of a serial implementation of the algorithm (implemented using,
e.g., LAPACK and BLAS); however, at least for such large scale problems, we
expect this overhead to be negligible compared to the overall execution time.

The figure shows reasonable speed-ups when a reduced number of processors
is employed. Thus, e.g., when np = 4, speed-ups of 2.63, 2.04, and 2.61 are
obtained for routines pdgecrnz, pmb05rd, and pdgeclne, respectively. In all
cases, the efficiency decreases as np gets larger (as the system dimension is
fixed, the problem size per node is reduced) so that using more than a few
processors does not achieve a significant reduction in the execution time for
such a small problem. In our test, when np = 10, speed-ups of only 3.88, 2.93,
4.17 are obtained by routines pdgecrnz, pmb05rd and pdgeclne, respectively.

We next evaluate the performance of a single iteration of the computational
routines when the problem size per node is constant. For that purpose, we fix
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Fig. 1. Execution time of a single iteration of the computational routines.

the order of the system to n/
√

np = 880, and we report the Mflops per node
in Figure 2.

The figure demonstrates the scalability of our parallel kernels, as there is only a
minor decrease in the performance of the algorithms when np is increased while
the problem dimension per node remains fixed. As the major computations in
our driver routines are performed in these routines, we can also conclude the
scalability of the model reduction parallel algorithms.

7.3 Parallel performance of the driver routines

In this subsection we evaluate the performance of the driver routines for model
reduction using five large-scale examples. Three of these examples correspond
to continuous-time systems, while the remaining two are discrete-time models.
In the experiments we only report results for the BT and BST methods. The
performances of the SPA and HNA methods were closely similar to those of
the BT method.

Example 1: This continuous LTI system comes from a finite element dis-
cretization of a mathematical model for optimal cooling of steel profiles. The
process is modeled by a boundary control problem for a linearized 2-dimensional
heat equation. The system has 6 inputs and outputs. Different meshes are em-
ployed resulting in realizations of order n = 821, 1357, 3113, and 5177. As
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Fig. 2. Mflop rate of a single iteration of the computational routines.

there is no significant gap in the Hankel singular values of the system, we
compute in this experiment reduced-order systems of fixed order r = 40.

Example 2: (see [34]): This model comes from the simulation of a catalytic
tubular reactor used in a gPROMS training course. A gas phase reaction
(oxidation of o-xylene to phthalic anhydride) takes place inside the reactor
which is packed with catalyst particles. The reactor is cooled externally. The
mathematical model consists of a boundary control problem for a system of
coupled partial differential equations including conservation laws for mass and
energy. A continuous LTI system is obtained from a semi-discretization of the
PDE system. The order of the system is n = 1171, and the numbers of inputs
and outputs are m = 6 and p = 4, respectively. A reduced-order system with
r=9 states is computed in this example.

Example 3: (see [34]): The model in the previous example is here discretized
using zero-order hold with sampling time ∆t = 0.1 sec. such that xk = x(k∆t),
k = 0, 1, 2, . . .. Again, a reduced system of order r=9 is obtained for this
example.

Example 4: (see [15]): The heat equation in this case is an example of a
semidiscretized point control problem for a parabolic PDE. The given equation
models the heat diffusion in a 1-dimensional thin rod with a single heat source.
The equation is parameterized by a scalar α that we set to α = 0.01. The
spatial domain is discretized in segments of length h = 1

N+1
and centered

differences are used to approximate the diffusion operator. A heat source is
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assumed to be located at 1/3 of the length and the temperature is measured
at 2/3 of the length.

This example, of order n = N and with a single input and a single output
(m = p = 1), can be scaled to obtain very large systems. We thus employ
this case to report results for a problem of dimensions that are close to the
maximum that can be solved in a single processor, n = 800, and a much larger
problem, of order n = 3000. A reduced system of order r = 10 was computed
in both cases.

Example 5: (see [15]): The same equation in the last example is used here.
This time, however, a full discretization of the control problem for the heat
equation is obtained using the Crank–Nicholson scheme. This results in a dis-
crete LTI system. In this case, the Hankel singular values decay slightly slower
than in the continuous case, leading to a higher dimension of the reduced-order
system if the same approximation error is to be achieved. We again compute
in this case reduced systems of order r = 10 for models with n = 800 and
n = 3000 states.

Table 6 reports the execution time of the serial and the parallel BT and
BST model reduction routines. The execution times of the BST approach are
up to 20 times of those of the BT method. This is easily explained by its
much higher computational cost (an ARE needs to be solved in BST). Notice
that our driver routines are not a direct parallelization of the serial SLICOT
routines, but employ numerical solvers for the LME and the AREs which are
different from those used in the serial codes. Therefore, concluding the degree
of parallelism of the driver routines from the results in the table is misdirected.

Our driver routines are intended to help a control engineer to reduce large-
scale models and/or obtain the reduced-order models in a shorter period of
time. Both goals are achieved in PLiCMR: The order of the largest model that
could be reduced using SLICOT serial routines ab09ad and ab09hd was in the
hundreds. Using the parallel routines pab09ax and pab09hx in PLiCMR we
could reduce models of order around 5000 and 3000, respectively. The use of
the parallel algorithms reduced the execution times of the serial routines in all
cases. The reduction however is quite different depending on the case. Thus,
execution times are obtained for the parallel algorithms that range from 7.51%
to 60% of those of the corresponding serial algorithms. Notice here that we
are interested here in reducing the execution time as much as possible, not
obtaining the best possible speed-up (which would surely be higher had we
employed a smaller number of processors in this experiment!).

8 Conclusions

Over the last years we have developed the library PLiCMR for model reduction
of large-scale LTI systems on parallel architectures. Using the kernels in this
library, efficient model reduction of systems with thousands of states is possible
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Example r ab09ad pab09ax (np) ab09hd pab09hx (np)

(n, m, p)

Ex. 1 (821, 6, 6) 40 227 79 (16) 1819 1060 (16)

Ex. 1 (1357, 6, 6) 40 – 203 (16) – 1053 (16)

Ex. 1 (3113, 6, 6) 40 – 701 (25) – 14730 (25)

Ex. 1 (5177, 6, 6) 40 – 2314 (32) – –

Ex. 2 (1171, 6, 4) 9 678 144 (16) – 1819 (16)

Ex. 3 (1171, 6, 4) 9 218 98 (16) – 1050 (16)

Ex. 4 (800, 1, 1) 10 218 65 (16) 1713 331 (16)

Ex. 4 (3000, 1, 1) 10 – 679 (25) – 6310 (25)

Ex. 5 (800, 1, 1) 10 400 30 (16) 1959 331 (16)

Ex. 5 (3000, 1, 1) 10 – 370 (25) – 6266 (25)

Table 6
Execution time (in sec.) of the model reduction routines in SLICOT and PLiCMR.
(Entries with a dash denote problems that could not be solved due to memory
restrictions.)

on a cluster of moderate dimensions. Iterative algorithms are employed for the
solution of the major numerical problems that arise in the model reduction
methods resulting in highly parallel algorithms with coarse granularity.

A collection of benchmark examples shows the numerical accuracy and the
parallel performance of our approach on a cluster of Intel Pentium II proces-
sors.

Acknowledgment

We thank Jens Saak for providing the data sets used in Example 1 of Subsec-
tion 7.3.

References

[1] A.C. Antoulas. Lectures on the Approximation of Large-Scale Dynamical

Systems. SIAM Publications, Philadelphia, PA, to appear.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley.
The spectral decomposition of nonsymmetric matrices on distributed memory
parallel computers. SIAM J. Sci. Comput., 18:1446–1461, 1997.

[3] P. Benner. Numerical solution of special algebraic Riccati equations via an exact
line search method. In Proc. European Control Conf. ECC 97 (CD-ROM),
Paper 786. BELWARE Information Technology, Waterloo, Belgium, 1997.

22



[4] P. Benner, R. Byers, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving
algebraic Riccati equations on parallel computers using Newton’s method with
exact line search. Parallel Comput., 26(10):1345–1368, 2000.

[5] P. Benner and E.S. Quintana-Ort́ı. Solving stable generalized Lyapunov
equations with the matrix sign function. Numer. Algorithms, 20(1):75–100,
1999.

[6] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving linear matrix
equations via rational iterative schemes. In preparation.

[7] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Balanced truncation
model reduction of large-scale dense systems on parallel computers. Math.

Comput. Model. Dyn. Syst., 6(4):383–405, 2000.

[8] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Parallel algorithms
for model reduction of discrete-time systems. Berichte aus der
Technomathematik, Report 00–18, FB3 – Mathematik und Informatik,
Universität Bremen, 28334 Bremen (Germany), December 2000. Available from
http://www.math.uni-bremen.de/zetem/berichte.html.

[9] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Efficient numerical
algorithms for balanced stochastic truncation. Int. J. Appl. Math. Comp. Sci.,
11(5):1123–1150, 2001.

[10] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Experimental evaluation
of the parallel model reduction routines
in PSLICOT. SLICOT Working Note 2002–7, August 2002. Available from
http://www.win.tue.nl/niconet/NIC2/reports.html.

[11] P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Numerical solution of
discrete stable linear matrix equations on multicomputers. Parallel Algorithms

and Appl., 17(1):127–146, 2002.

[12] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R.C. Whaley. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA, 1997.
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