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Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System (E = In)

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

||y − ŷ|| < tolerance · ||u|| for all admissible input signals.
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ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
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||y − ŷ|| < tolerance · ||u|| for all admissible input signals.

© benner@mpi-magdeburg.mpg.de Minimal Realization and Model Reduction of Structured Systems 4/29

mailto:benner@mpi-magdeburg.mpg.de


Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System (E = In)

Σ :

{
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Goals:

||y − ŷ|| < tolerance · ||u|| for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Introduction
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)− x(0)) to LTI system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) +Bu(s), y(s) = Cx(s) +Du(s),
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(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:H(s)

)
u(s).

H(s) is the transfer function of Σ.

Model reduction in frequency domain: Fast evaluation of mapping u → y.
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Introduction
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

˙̂x = Âx̂+ B̂u, Â ∈ Rr×r, B̂ ∈ Rr×m,
ŷ = Ĉx̂+ D̂u, Ĉ ∈ Rp×r, D̂ ∈ Rp×m

of order r � n, such that

||y − ŷ|| =
∣∣∣∣∣∣Hu− Ĥu

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣H− Ĥ
∣∣∣∣∣∣ · ||u|| < tolerance · ||u|| .

=⇒ Approximation problem: min
order (Ĥ)≤r

∣∣∣∣∣∣H− Ĥ
∣∣∣∣∣∣,

where, mostly, ‖ . ‖ = ‖. ‖H∞ or ‖ . ‖ = ‖ . ‖H2 .
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Introduction
Structured Linear Systems

Second-order / mechanical / vibrational systems:

Mẍ(t) + Lẋ(t) +Kx(t) = Bu(t), y(t) = Cpx(t) + Cvẋ(t).

Apply Laplace transform  

s2Mx(s) + sLx(s) +Kx(s) = Bu(s), y(s) = Cpx(s) + sCvx(s)

=⇒ y(s) = (Cp + sCv)(s2M + sL+K)−1Bu(s) =: C(s)K(s)−1B(s)u(s)

Time-delay systems:

Eẋ(t) = A1x(t) +A2x(t− τ) +Bu(t), y(t) = Cx(s)

Apply Laplace transform  

sEx(s) = A1x(s) + e−τsA2x(s) +Bu(s), y(s) = Cx(s)

=⇒ y(s) = C(sE −A1 − e−τsA2)−1Bu(s) =: C(s)K(s)−1B(s)u(s)

Other examples: integro-differential / fractional systems, systems with surface loss, 1D
PDE control, . . . Note: all systems are linear w.r.t. the mapping u→ y!
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Introduction
Structured Linear Systems

Consider Structured Linear System (SLS) in frequency domain, using general set-up:

H(s) = C(s)K(s)−1B(s), (1)

where

C(s) =

`γ∑
i=1

γi(s)Ci, K(s) = sE−
`α∑
i=1

αi(s)Ai, B(s) =

`β∑
i=1

βi(s)Bi,

with E,Ai ∈ Rn×n,Bi ∈ Rn×m, and Ci ∈ Rp×n, and αi(s), βi(s) and γi(s) are
meromorphic functions.

For simplicity, in this talk p = m = 1 (SISO case).

We assumed that E is invertible (no descriptor behavior).

1) First-order systems: C(s) = C, B(s) = B, and K(s) = sE −A.

2) Second-order systems: C(s) = Cp + sCv, B(s) = B, and K(s) = s2M + sL+K.

3) Time-delay systems: C(s) = C, B(s) = B, and K(s) = sE −A1 −A2e
−sτ .

4) EM w/ surface loss: C(s) = sB, B(s) = B, and K(s) = s2M + sL+K − 1√
s
N .

5) Integro-differential Volterra systems, input delays, fractional systems . . .
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Introduction
Projection-based Framework

Given a large-scale SLS

H(s) = C(s)K(s)−1B(s),

find projection matrices

V,W ∈ Rn×r, WTV = Ir,

(with r � n), such that

Ĥ(s) = Ĉ(s)K̂(s)−1B̂(s), where

K̂(s) = WTK(s)V, B̂(s) = WTB(s)

and Ĉ(s) = C(s)V

Note Âi = WTAiV, Ê = WTEV, Ĉi = CiV and B̂i = WTBi.

The ROM preserves the αi(s), βi(s) and γi(s) functions.
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Introduction
Existing Approaches

Interpolation-based methods

Interpolatory projection methods for structure-preserving model reduction.
[Beattie/Gugercin ’09]

Interpolation points σk, µj ⇒
K−1(σk)B(σk) ∈ range (V) and

K−T (µk)CT (µj) ∈ range (W) .

Balancing truncation methods

Structure-preserving model reduction for integro-differential equations.
[Breiten ’16]

Data-driven methods

Data-driven structured realization. [Schulze/Unger/Beattie/Gugercin ’18]
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Interpolatory projection methods for structure-preserving model reduction.
[Beattie/Gugercin ’09]

Balancing truncation methods

Structure-preserving model reduction for integro-differential equations.
[Breiten ’16]

P =
1

2π

∫ i∞

−i∞
Ks(s)−1B(s)B(s)TK(s)−T ds,

Q =
1

2π

∫ i∞

−i∞
Ks(s)−T C(s)T C(s)K(s)−1ds.

⇒ Find V,W from T−1PQT = Σ.

Data-driven methods

Data-driven structured realization. [Schulze/Unger/Beattie/Gugercin ’18]
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Minimal Realization
Motivation

Let us consider the first order system

H(s) = C(sI−A)−1B, with A =

−1 −1 1
0 −2 −1
0 0 −3

 , B =

1
2
1

 and CT =

1
0
0

 .

Note that H(s) =
1

s+ 2
= Ĥ(s) = Ĉ(sI− Â)−1B̂, with Â = −2, B̂ = 1 and Ĉ = 1.

Minimal realization problem

Find order r and matrices V and W such
that the reduced-order model obtained by
projection satisfies

H(s) = Ĥ(s), ∀s.

Solutions:

Kalman reachability/observability criteria,

Hankel matrix (Silverman method),

reachability and observability Gramians,

Loewner matrix. [Mayo/Antoulas ’07]
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Minimal Realization
. . . of Structured Linear Systems

For illustration, consider the time-delay systems

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0

 ,
BT =

[
1 0 0

]
and C =

[
1 1 0

]
.

Ĥ(s) = Ĉ(sI− Â2 − Â2e
−s)−1B̂, with

Â1 =

[
−1 0
0 −1

]
, Â2 =

[
1 0
1 0

]
,

B̂ =

[
1
0

]
and ĈT =

[
1
1

]
.

H(s) = Ĥ(s), ∀s.

H has order 3 and Ĥ order 2.

Minimal realization problem

Is there a way to find the order r and matrices
V,W ∈ Rn×r such that the system Ĥ(s)
obtained by projection is ”minimal”, i.e

H(s) = Ĥ(s), ∀s?
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H(s) = Ĥ(s), ∀s.

H has order 3 and Ĥ order 2.
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H(s) = Ĥ(s), ∀s?

© benner@mpi-magdeburg.mpg.de Minimal Realization and Model Reduction of Structured Systems 12/29

mailto:benner@mpi-magdeburg.mpg.de


Minimal Realization
. . . of Structured Linear Systems

For illustration, consider the time-delay systems

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0

 ,
BT =

[
1 0 0

]
and C =

[
1 1 0

]
.
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Minimal Realization
Some Results

Given a first order system

H(s) = C(sE−A)−1B, with E ∈ Rn×n invertible.

Reachability characterization [Anderson/Antoulas ’90]

If (E,A,B) is Rn-reachable, t ≥ n, σi 6= σj for i 6= j, and

R =
[
(σ1E−A)−1B . . . (σtE−A)−1B

]
. Then rank (R) = n.

Observability characterization [Anderson/Antoulas ’90]

If (E,A,C) is Rn-observable, t ≥ n, σi 6= σj for i 6= j, and

O =
[
(σ1E−A)−TCT . . . (σtE−A)−TCT

]
. Then rank (O) = n.

Rank encodes minimality [Anderson/Antoulas ’90]

rank
(
OTER

)
= order of minimal realization = r.
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Reachability and Observability for SLS
Some Results

For SLS, we use the notion of Rn reachability and observability. Let us consider the SLS

H(s) = C(s)K(s)−1B(s) of order n.

Reachability characterization

If (K(s),B(s)) is Rn-reachable, σi 6= σj for i 6= j, t ≥ n, and

R =
[
K(σ1)−1B(σ1) . . . K(σt)

−1B(σt)
]
, then rank (R) = n.

Observability characterization

If (K(s),B(s)) is Rn-observable, σi 6= σj for i 6= j, t ≥ n, and

O =
[
K(σ1)−T CT (σ1) . . . K(σt)

−T CT (σt)
]
, then rank (O) = n.

Rank encodes minimality

rank
(
OTER

)
= order of the SLS ”minimal” realization = r.
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Reachability and Observability for SLS
An Illustrative Example

Let’s go back to the time-delay example

H(s) = C(sI−A1 −A2e
−s)−1B, with

A1 =

−1 0 0
0 −1 0
0 0 −1

 ,A2 =

1 0 0
1 0 0
1 0 0


BT =

[
1 0 0

]
and C =

[
1 1 0

]
.

Let us construct, for σi = [1, 2, 3, 4, 5],

R =
[
K(σ1)−1B . . . K(σ5)−1B

]
,

O =
[
K(σ1)−TCT . . . K(σ5)−TCT

]
.

Hence, we see that

rank (R) = rank (O) = 2.
(

nonreachable
nonobservable

)

rank
(
OTR

)
= 2. (minimal realization order)

Then,
[Y,Σ,X] = svd(OTR).

So, we get the projection matrices

V = RX(:, 1 : 2) and W = OY(:, 1 : 2).

The Ĥ obtained using V and W satisfies

H(s) = Ĥ(s),∀s.
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Model Order Reduction
The Basic Approach
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Figure represents the singular values of OTER for a large-scale time-delay example.

For large-scale systems, often low-rank phenomena can be observed.

Numerical rank of OTER generally small compared to n.

We can cut off states that are related to very small singular value of OTER.
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Model Order Reduction
Numerical Implementation

To compute R (analogously for O),

we set
Ri := K(σi)

−1B(σi), i ∈ {1, . . . , t}.

Hence, if R :=
[
R1, . . . , Rt

]
, it solves

ERS−
`α∑
i=1

AiRMi =

m∑
i=1

Bibi,

where
Mi = diag (αi(σ1), . . . , αi(σt))

bi = [βi(σ1), . . . , βi(σt)] ,

S = diag (σ1, . . . , σt) .

This is a generalized Sylvester equation.

We use the truncated low-rank methods for generalized Sylvester equations from
[Kressner/Sirkovic ’15].
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Model Order Reduction
The Algorithm

Algorithm 1 Structure Preserving Numerical Minimal Realization algorithm (SPNMR)

Input: SLS K(s), B(s), C(s) and reduced order r.

1: Choose interpolation points (σ1, . . . , σt).
2: Solve the generalized Sylvester equations for R (and O) using a low-rank method.
3: Determine the SVD

[Y,Σ,X] = svd(OTER).

4: Construct the projection matrices

V = RX(:, 1 : r) and W = OY(:, 1 : r).

Output: Reduced-order model is given by

K̂(s) = WTK(s)V, B̂(s) = WTB(s) and Ĉ(s) = C(s)V.
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Numerical Results
A Time-delay System

Let us consider the time delay system

ẋ(t) = Ax(t) +Aτx(t− τ) +Bu(t),

y(t) = Cx(t).

Heated rod cooled using delayed
feedback from
[Breda/Maset/Vermiglio ’09].

Full order model n = 120 and τ = 1.

ROM obtained used SPNMR method
(100 log. dist. points in [1e−1, 1e3]i)
and Structured Balanced
Truncation [Breiten ’16].

Reduced order r = 4.

Original system SPNMR algorithm Structured BT

10−1 100 101 102 103

10−2

100

freq

M
ag

n
it

u
d

e

© benner@mpi-magdeburg.mpg.de Minimal Realization and Model Reduction of Structured Systems 22/29

mailto:benner@mpi-magdeburg.mpg.de


Numerical Results
A Time-delay System

Let us consider the time delay system
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[Breda/Maset/Vermiglio ’09].

Full order model n = 120 and τ = 1.

ROM obtained used SPNMR method
(100 log. dist. points in [1e−1, 1e3]i)
and Structured Balanced
Truncation [Breiten ’16].

Reduced order r = 4.

Original system SPNMR algorithm Structured BT
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Numerical Results
Second-order System

Let us consider the second order system

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t)

y(t) = Cx(t).

Damped vibrational system.

Full order model with n = 301.

ROM obtained used SPNMR method
(500 log. dist. points in [1e−3, 1]i)
and Structured Balanced Truncation
[Breiten ’16].

Reduced order r = 50.

Original system SPNMR algorithm Structured BT
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Parametric Systems
Example 1: Minimal Realization of a Small-scale System

The results presented in this talk can also be generalized to parametric SLS, i.e.,

H(s, p) = C(s, p)K(s, p)−1B(s, p).

Consider H(s, p) = C (sI−A1 − pA2)−1 B, where

A1 =

−2 0 0
0 −1 0
0 0 −2

 , A2 =

 0 1 0
−1 0 0
1 0 0

 , B =

10
1

 , and CT =

11
0

 .
For t = 20 points (σi,pi), let

R =
[
K(σ1,p1)−1B . . . K(σt,pt)

−1B
]
,

O =
[
K(σ1,p1)−TCT . . . K(σt,pt)

−TCT
]
.

Build OTR and check rank (=2).

Compute projectors V and W and Ĥ(s, p).

Then, H(s, p) = Ĥ(s, p). 0 5 10 15 20
10−25

10−10

105

Decay of Singular values
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Parametric Systems
Example 2: Parametric FOM

FOM example [MORwiki]1 of order 1006 and p ∈ [10, 100] of the form

ẋ(t) = (A1 + pA2)x(t) +Bu(t)

y(t) = Cx(t)

1500 random points (s, p) ∈ [1e0, 1e4]i× [10, 100]. Reduced order r = 15.
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Singular values of the Loewner matrix
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Parametric Systems
Example 3: Parametric FOM with Artificial Delay

Consider again the FOM model [MORwiki]2 of order 1006 and p ∈ [10, 100] with an
artificial delay (τ = 3s)

ẋ(t) = A1x(t) + pA2x(t− τ) +Bu(t)

y(t) = Cx(t)

1500 randomly chosen points (s, p) ∈ [1e0, 1e4]i× [10, 100]. Reduced order r = 15.
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Numerical Results for Nonlinear Systems
Fitz-Hugh Nagumo Model

Fitz-Hugh Nagumo model: Governing coupled equation

εvt = ε2vxx + v(v − 0.1)(1− v)− w + u,

wt = hv − γw + u
on [0, T ]× [0, L]

with initial and boundary conditions

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L), vx(0, t) = i0(t), vx(L, t) = 0, t ≥ 0.

To employ the interpolation-based algorithm, we choose random 100 interpolation
points in a logarithmic way between

[
10−2, 102

]
and set σi = µi, i ∈ {1, . . . , 100}.
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Fitz-Hugh Nagumo model: Governing coupled equation

εvt = ε2vxx + v(v − 0.1)(1− v)− w + u,

wt = hv − γw + u
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Construction of reduced systems
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Outline

1. Introduction

2. Minimal Realization

3. Reachability and Observability for SLS

4. Model Order Reduction

5. Numerical Results

6. Outlook and Conclusions
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Outlook and Conclusions

Contribution of this talk

Minimal realization by projection of SLS.

Model reduction technique inspired by numerical rank of matrix OTER.

Projector computation solving generalized Sylvester equation (low-rank methods).

Performance illustrated by numerical examples for several system classes.

Extended results to parametric SLS.

Open questions and future work

Stability preservation and error bounds.

Relation to pure Loewner-style approach [Schulze/Unger/Beattie/Gugercin ’18]?

Extension to nonlinear systems, first results for polynomial systems in
[Benner/Goyal ’19, arXiv:1904.11891].
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