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@ The Paper

P. Benner, S. Gugercin, and K. Willcox.
A Survey of Model Reduction Methods for Parametric Systems.
SIAM Review 57(4):483-531, 2015.
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1. Introduction

Parametric Dynamical Systems

Motivating Example

Parametric Modeling

The Parametric Model Order Reduction (PMOR) Problem
Error Measures
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Parametric Dynamical Systems

f(t.x(t;p) u(t),p),  x(to) =x0, ()
g(t,x(t; p), u(t), p) (b)

| E(p)x(t;:p)
=) { y(tip)
with

o (generalized) states x(t; p) € R” (E € R"*"),

@ inputs (controls) u(t) € R™,

o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

o pcQcCRYisa parameter vector, Q is bounded.
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Parametric Dynamical Systems

f(t.x(t;p) u(t),p),  x(to) =x0, ()

[ E(p)x(tip)
>(p) : { g(t, x(t; p), u(t), p) (b)

y(t; p)

with
o (generalized) states x(t; p) € R” (E € R"*"),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
o pcQcCRYisa parameter vector, Q is bounded.

E(p) singular = (a) is system of differential-algebraic equations (DAEs)
otherwise = (a) is system of ordinary differential equations (ODEs)
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Parametric Dynamical Systems

f(t,x(t;p), u(t),p),  x(to) =x0, ()
g(t,x(t; p), u(t), p) (b)

| E(p)x(t;p)
=) { y(tip)
with

o (generalized) states x(t; p) € R” (E € R"*"),

o inputs (controls) u(t) € R™,

o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

o pcQcCRYisa parameter vector, Q is bounded.

Applications:
@ Repeated simulation for varying material or geometry parameters, boundary
conditions,
@ control, optimization and design,
@ of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or
automatic tools (e.g., Modelica).
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Parametric Dynamical Systems

f(t.x(t;p) u(t),p),  x(to) =x0, ()
g(t,x(t; p), u(t), p) (b)

| E(p)x(t;:p)
=) { y(tip)
with

o (generalized) states x(t; p) € R” (E € R"*"),

@ inputs (controls) u(t) € R™,

o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

o pcQcCRYisa parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!
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Parametric Dynamical Systems

f(t,X(t; p),u(t),p), X(to) = X0, (a)
g(t, x(t; p), u(t), p) (b)

| E(p)x(t;p)
=) { y(t:p)
with
o (generalized) states x(t; p) € R” (E € R"*"),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

o pc QcCRYisa parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!

Parametric discretized model often not available,
but matrices for certain parameter values can be extracted
(or output data for given u and p can be generated!)
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(tip) = C(p)x(t;p), B(p) € R™™, C(p) € RT*".
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain
Application of Laplace transformation

x(t;p) = x(s;p),  x(t; p) = sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(si p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
y(s:p) = ( CP)(SE(p) = A(p)) *B(p) ) uls).
=:G(s,p)

G(s, p) is the parameter-dependent transfer function of X(p).
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain
Application of Laplace transformation

x(t;p) = x(s;p),  x(t; p) = sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(si p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
y(s:p) = ( CP)(SE(p) = A(p)) *B(p) ) uls).
=:G(s,p)

G(s, p) is the parameter-dependent transfer function of X(p).

Goal: Fast evaluation of mapping (u, p) — y(s; p).
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Motivating Example:
Microsystems/MEMS Design

@ Applications:

o inertial navigation,
o electronic stability control
(ESP).

@ Voltage applied to electrodes induces vibration
of wings, resulting rotation due to Coriolis force
yields sensor data.

@ FE model of second order:
N =17.361 ~» n=34722, m=1, g = 12.

@ Sensor for position control based on
acceleration and rotation.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope
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http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Gyroscope

Motivating Example:
Microsystems/MEMS Design

Microgyroscope (butterfly gyro)
Parametric FE model: M(d)x(t) + D(9, d, o, B)x(t) + T(d)x(t) = Bu(t).
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Motivating Example:
Microsystems/MEMS Design

g

\'

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)x(t) + D(0,d, o, B)x(t) + T(d)x(t) = Bu(t),

where

M(d) = M+ dMs,
D(G,d,a,ﬂ) 0(D1+dD2)+aM(d)+ﬁT(d),

1
T(d) T1 + E Ty + dTs,

with the parameters
@ width of bearing: d,
@ angular velocity: 6,

@ Rayleigh damping parameters: «, 3.
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Motivating Example:
Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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@ Parametric Modeling

Parametric System

[ E(p)x(t;p)
=(p): { y(t:p)

A(p)x(t; p) + B(p)u(t),
C(p)x(t: p)-
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@ Parametric Modeling

Parametric System

A(p)x(t; p) + B(p)u(t),

() { 2 i)

y(t: p)

Desirable: parameter-affine representation:

(p) Eo+ ei(p)Ex + ... + €q:(P) Eqe
(0) = Ao+ a(p)A1+ ...+ ag(p)Ags,
B(p) = Bo+bi(p)Bi+ ...+ bgs(p)Bas,
( ) = C0+C1(p)C1+"'+ch(p)cqm

allows easy parameter preservation for projection based model reduction.

@© P. Benner
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@ @ Parametric Modeling

Parametric System

[ E(p)x(t;p)
=(p): { y(t:p)

A(p)x(t; p) + B(p)u(t),
C(p)x(t: p)-

Desirable: parameter-affine representation:

A(p) = A+ al(P)Al +... .+ an(p)AQA’

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:

@ Any system can be written in this affine form for some gp < n?, but for
efficiency, need gy < n! (M € {E, A, B, C})
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@ @ Parametric Modeling

Parametric System

5(p) : { E(p)x(t; p)

A(p)x(t; p) + B(p)u(t),

y(tip) = C(p)x(t;p).
Desirable: parameter-affine representation:
Alp) = Ao+ a(p)Ar+ ...+ aq,(P)Aga:

allows easy parameter preservation for projection based model reduction.

W.l.o.g. may assume this affine representation:
@ Any system can be written in this affine form for some gp < n?, but for
efficiency, need gy < n! (M € {E, A, B, C})

o Empirical (operator) interpolation [BARRAULT/MADAY/NGUYEN/PATERA *04]

yields this structure for "smooth enough” parameter dependencies; variants
(Q)DEIM et al.

@© P. Benner PMOR of Dynamical Systems



@ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.
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@ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.
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@ @ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.

Obtaining a linear parametrization
Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = piMi + ... pgMa, peQCR
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@ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.

Obtaining a linear parametrization

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:
M(p) = piMy + ... paMg,  peQ CR’.

Given: M(pY) for j=1,...,d. Then

is a linear system in the unknown matrices M;, j =1,...,d.
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@ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.

Obtaining a linear parametrization

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = prMi + ... paMa, peQCR.
Given: M(pY) for j=1,...,d. Then
Py + p9My + o My = mpW),  j=1,...,d,
is a linear system in the unknown matrices M;, j =1,...,d.
Choice p¥) = ¢ € RY ~ M; = M(pY), j =1,...,d.
But e; may not be feasible, i.e., e & €, so that different physics would be modeled!
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S5 3 @ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.

Obtaining a linear parametrization
Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = piM1 + ... paMa,  p€Q C R
Given: M(pY) for j=1,...,d. Then

Py + p9My + o My = mpW),  j=1,...,d,
is a linear system in the unknown matrices M;, j =1,...,d.
With P = [pff)]‘_j, € RIx?,
ij=1 My M(pW)
pon| :|=|
My M(p(@)

© P. Benner PMOR of Dynamical Systems



@ Parametric Modeling

Parametric model often not easily available when using commercial (FE) software.

Exporting discrete system, i.e., matrices for linear systems, for given parameter
configuration often possible.

Obtaining a linear parametrization

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = piM1 + ... paMy, pEQCRd.

With P = [p,(j)]‘_j. € R,

fif=1 My M(pD)
(P®1) : = ;
My M(p(@)
Now obtain unknown matrices as
M, M(p))
=(P'®I)
My M(p®)

PMOR of Dynamical Systems



@ Parametric Modeling

Obtaining a linear parametrization — Example

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = p1Mi + ... paMa, peQCR.
Parabolic system — linear diffusion-convection-reaction equation:
Bex — KAX 4 [v1, 2] Vx + ux = b(&)u(t), E€DCR? t>0
with initial /boundary conditions

a(&)x + B(€)dnx 0, £e€edD, telo,T],
X(O, 5) = x0(§)7 E S D:

@© P. Benner PMOR of Dynamical Systems



@ Parametric Modeling

Obtaining a linear parametrization — Example

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:

M(p) = piMy + ... paMy,  peQ C R
Parabolic system — linear diffusion-convection-reaction equation:
Bex — KAX 4 [v1, 2] Vx + ux = b(&)u(t), E€DCR? t>0
with initial /boundary conditions

Ol(E)X + /8(5)377" Oa E S aD? te [07 T]’
x(0,§) = xo(§), (€D,

FEM/FVM/FDM ~
Ex(t) = — (kK +1v1C+12C, + pR) x(t) + Bu(t),
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Obtaining a linear parametrization — Example

Assumption: the parametric matrix M(p) (M € {A, B, C, E}) can be parameterized
linearly:
M(p)=p1M1+...ded, pEQCRd.
Parabolic system — linear diffusion-convection-reaction equation:
Bex — KAX 4 [v1, 2] Vx + ux = b(&)u(t), E€DCR? t>0

with initial /boundary conditions

a(g)x + /8(5)87])( Oa 5 S 8D7 te [07 T]’
x(0,§) = xo(§), €£€D,

FEM/FVM/FDM ~
Ex(t) = — (kK +1v1C+12C, + pR) x(t) + Bu(t),
Hence, we obtain a linear parametrization, only the " A" matrix is parameterized here:
A(p) = p1A1 + p2A2 + P3A3 + paAg, with
p=[k,v1,v5,pu] and A =—-K, Ao =—-C, A3 =—-Cy, Ay =—R.

Note: selecting, e.g., p) = e; ~» heat equation w/o convection/reaction ~ different physics!

Benner PMOR of Dynamical Systems 12/76



@ @ Parametric Modeling

Obtaining an affine parametrization using interpolation

If M(pY)) (for j=1,...,£and M € {A, B, C, E}) are available (e.g., can be
exported from FEM software), and parametrization is unknown anyway, using
standard interpolation techniques to build parametric model:

Set M; := M(pY)) and build for M € {A, B, C,E}
M(p) = ¢1(p)My + G2(p)M2 + ... + ¢e(p)My,  pE€QCRY,

where ¢y (pV)) = dy;, via
o polynomial interpolation (e.g., barycentric Lagrangian interpolation),
o rational (Loewner) interpolation,

@ sparse grid interpolation, . ..

© P. Benner PMOR of Dynamical Systems



The Parametric Model Order Reduction
(PMOR) Problem

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  E(p), A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € R¥*",

by reduced-order system

E(p)x = A(p)x+B(p)u,  E(p), A(p) e R,
y = pk, B(p) € R™™, C(p) € R*",

of order r < n, such that

ly =9l = ||Gu — @u|| <|IG - @|| -||ul| < tolerance - ||u|| ¥V p € Q.

© P. Benner PMOR of Dynamical Systems



The Parametric Model Order Reduction
(PMOR) Problem

Approximate the dynamical system

E(p)x = A(p)x + B(p)u,
y = C(p)x,

E(p), A(p) € R™",
B(p) e R™™, C(p) € RI*",

by reduced-order system
E(p)x = A(p)x+ B(p)u,

E(p), A(p) € R,
y = C(p)f(, B(

)
p) € R™m, ((p) € RI*",

of order r < n, such that
ly = 9ll = |Gu — Gul| < ||G — G|| - ||u|| < tolerance - ||u]|

IG — G-

vV peQ.

= Approximation problem:  min
order (G)<r

PMOR of Dynamical Systems
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@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.

P. Benner PMOR of Dynamical Systems



@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™™ Q=lm,B]x...x[ag, B4l
G(sip,---,pa) € CI*™
~» Variables s and p; have different “meaning” for G.

Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!

@© P. Benner PMOR of Dynamical Systems



@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™" Q=Jo,pB]x...x[aq,Bd,
G(sip1,-.-,pa) € CT*7

~» Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!

o G is rational in s, n ~ degree of denominator polynomial.
~> Require approximation to be rational in s.
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@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™" Q=Jo,pB]x...x[aq,Bd,
G(sip1,-.-,pa) € CT*7

~» Variables s and p; have different “meaning” for G.
Dynamical system is in the background!

~~ Matrix-valued function, require matrix- not entry-wise approximation!
o G is rational in s, n ~ degree of denominator polynomial.
~> Require approximation to be rational in s.

@ Require structure-preserving approximation, e.g., for control design.
~> Need realization as linear parametric system!
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@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™" Q=Jo,pB]x...x[aq,Bd,
G(sip1,-.-,pa) € CT*7

~» Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!

o G is rational in s, n ~ degree of denominator polynomial.
~> Require approximation to be rational in s.

@ Require structure-preserving approximation, e.g., for control design.
~> Need realization as linear parametric system!

@ Also would like to be able to reproduce system dynamics (stability, passivity).
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@ PMOR <— Multivariate Function Approximation

o Approximate (for fast evaluation) function G, defined on C x Q.
o But:

G:CxQ — C™"  Q=lag,B1] X ... x [ag,Bd],
G(sip1,...,pa) € CT*M.

~» Variables s and p; have different “meaning” for G.
Dynamical system is in the background!
~~ Matrix-valued function, require matrix- not entry-wise approximation!

o G is rational in s, n ~ degree of denominator polynomial.
~~ Require approximation to be rational in s.

@ Require structure-preserving approximation, e.g., for control design.
~> Need realization as linear parametric system!

o Also would like to be able to reproduce system dynamics (stability, passivity).

Hence, try to preserve the structure of the original model!

@© P. Benner PMOR of Dynamical Systems



arametric Model Order Reduction
R) Problem

Parametric System

| E(p)x(t:p) = Alp)x(t:p) + B(p)u(t),
O v s i
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arametric Model Order Reduction
R) Problem

Parametric System

| E(p)x(t:p) = Alp)x(t:p) + B(p)u(t),
O v s i

Parametric model reduction goal:
preserve parameters as symbolic quantities in reduced-order model:

ﬂm:{éwﬁwm A(p)(t; p) + B(p)u(t),

y(t; p) C(p)x(t: p)

with states X(t; p) € R" and r < n.

@© P. Benner PMOR of Dynamical Systems



arametric Model Order Reduction
R) Problem

Parametric System

| E(p)x(t:p) = Alp)x(t:p) + B(p)u(t),
O v s i

Assuming parameter-affine representation:

E(p) = Eo+e(p)Er+...+ eq(p)Eqg,
Alp) = Aot ai(p)Ar+ ...+ ag(p)Ag,
B(p) = Bo+bi(p)Bi+ ...+ bgy(p)Bas:
Cp) = G+alp)G+...+ cg(p)Coc,

allows easy parameter preservation for projection based model reduction.

@© P. Benner
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arametric Model Order Reduction
R) Problem

Petrov-Galerkin-type projection
For given projection matrices V, W € R™" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

E(p) = WEV+ea(pWTEV+...+e,(p)WTE,V
Alp) = WTAV +ai(p)WTAV + ...+ ag,(p)WT A,V
B(p) = W'By +bi(p)WTB1 +...4 b (p)W' By,
Clp) = GV+  aP)aV+...+  ce(p)CyV

@© P. Benner PMOR of Dynamical Systems



The Parametric Model Order Reduction
(PMOR) Problem

Petrov-Galerkin-type projection
For given projection matrices V, W € R"™*" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

© P. Benner

WTEV +e(p)WTELV + ...+ eq(p)WT E, V
Eo + er(p)Er + - + eqe (p)Eqe
WTAV +ai(p)WT ALV + ...+ ag,(p)WT A,V
A+ 31(P)/2\1 +...+ 3qA(P)’2\qA
WTBy +bi(p)WTBy ...+ by, (p)WT By,
Bo + bi(p)Bi + ... + by, (p) By,

GV + ap)GV+...+ g (p)CV

Go+a(p)C+...+ coe(p)Co

PMOR of Dynamical Systems



= @ The Parametric Model Order Reduction
N

& (PMOR) Problem

Basis Generation — Global vs. Local

Local Bases
Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of

full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by

PMOR of Dynamical Systems
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= @ The Parametric Model Order Reduction
N

& (PMOR) Problem

Basis Generation — Global vs. Local

Local Bases
Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of

full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by
[AmsaLLAM/FARHAT 2008, BRUNSCH 2017]

1. manifold interpolation

PMOR of Dynamical Systems
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The Parametric Model Order Reduction

o
S 4 (PMOR) Problem

Basis Generation — Global vs. Local

Local Bases
Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of

full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by
[AmsaLLAM/FARHAT 2008, BRUNSCH 2017]

1. manifold interpolation

2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./Baur 2008/09]
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The Parametric Model Order Reduction

o
S 4 (PMOR) Problem

Basis Generation — Global vs. Local

Local Bases
Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of

full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by
[AmsaLLAM/FARHAT 2008, BRUNSCH 2017]

1. manifold interpolation

2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./Baur 2008/09]

3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]
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@ The Parametric Model Order Reduction

(PMOR) Problem

Local Bases
Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of
full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by

1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)

[B./Baur 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p(“))7 B(p(k)), .

Disadvantages:
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The Parametric Model Order Reduction
(PMOR) Problem

Local Bases

Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of
full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./Baur 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p("))7 B(p(k)), .
Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BrUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils

(A(p), E(p)).
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The Parametric Model Order Reduction
(PMOR) Problem

Local Bases

Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of
full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./Baur 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p("))7 B(p(k)), .
Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BrUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils
(A(p), E(p))-

2. transfer function interpolation: spurious poles of the parametric transfer function.
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: The Parametric Model Order Reduction
| (PMOR) Problem

Local Bases

Obtain Vi, Wi € R"*"* using any non-parametric linear MOR method for a number of
full-order models ¥(p¥)), k = 1,...,£. Then compute reduced-order model by

1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]
2. transfer function interpolation (= interpolate y(s,.) in frequency domain)

[B./Baur 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p("))7 B(p(k)), .

Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BrUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils
(A(p), E(P))-

2. transfer function interpolation: spurious poles of the parametric transfer function.

3. matrix interpolation: different models obtained in different coordinate systems ~~
Procrustes problem ~~ potential loss of accuracy; efficiency in "online” phase suffers from
evaluating the interpolation operator.
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= @ The Parametric Model Order Reduction

(PMOR) Problem

S5

Basis Generation — Global vs. Local

Global Basis

Obtain V, W € R™" such that V' W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.
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@ The Parametric Model Order Reduction

(PMOR) Problem

Basis Generation — Global vs. Local

Global Basis

Obtain V, W € R™ such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from

1. concatenation of local basis matrices:
V::[Vl,...,V[], W:=[W1,~..,VV£]

and orthogonalization (truncation), using, e.g., SVD;
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@ The Parametric Model Order Reduction

(PMOR) Problem

Basis Generation — Global vs. Local

Global Basis

Obtain V, W € R™ such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from

1. concatenation of local basis matrices:
V::[Vl,...,Vz], W:=[W1,~..,VV£]

and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques;
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@ The Parametric Model Order Reduction

(PMOR) Problem

Basis Generation — Global vs. Local

Global Basis

Obtain V, W € R™ such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from

1. concatenation of local basis matrices:
V:=[V1,...,Vz], WZ:[Wl,...,VVz]
and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques;

3. parametric balanced truncation [SoN/STYKEL 2017] — tutorial by T. Stykel.
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y - ¥ The Parametric Model Order Reduction
Q&

(PMOR) Problem

Basis Generation — Global vs. Local

Global Basis

Obtain V, W € R™ such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from

1. concatenation of local basis matrices:
V:=[V1,...,Ve], WZ:[Wl,...,We]
and orthogonalization (truncation), using, e.g., SVD;

2. bilinearization and using bilinear MOR techniques;

3. parametric balanced truncation [SoN/STYKEL 2017] — tutorial by T. Stykel.

Avoids most of the problems encountered with local bases, but requires parameter-affine
representation of system.
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» @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLC

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
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Empirical Matrix Interpolation Method [B./GUGERCIN/WILLC

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

o Let m(p) := vec(M(p)) € R™.
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» @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

o Let m(p) := vec(M(p)) € R™.

@ Goal: approximate m(p) ~ i(p) = Va(p), where W € R"** and a(p) € R® with
{ <L n.
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” @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
o Let m(p) := vec(M(p)) € R™.
@ Goal: approximate m(p) ~ i(p) = Va(p), where W € R"** and a(p) € R® with
{ <L n.
@ Then im(p) = vec (M(p)) € R™ (or R” if t = n) can be computed cheaply and
independent of n as

m(p) = vec (WTM(p) V)
= (VT e W)m(p)~ (V" @ WT)in(p) = (V" @ WT)Wa(p) = m(p).
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» @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.
o Let m(p) := vec(M(p)) € R™.
@ Goal: approximate m(p) ~ i(p) = Va(p), where W € R"** and a(p) € R® with
{ <L n.
@ Then im(p) = vec (M(p)) € R™ (or R” if t = n) can be computed cheaply and
independent of n as

m(p) = vec (WTM(p) V)
= (VT e W)m(p)~ (V" @ WT)in(p) = (V" @ WT)Wa(p) = m(p).

@ This is achieved by sampling M(p) at p = pY, j =1,...,¢, yielding

vy =vec(M(pY))  and W =[vn,..., %]

Then apply (Q,D)EIM (or alike) to determine «(p) s.t. selected entries of m(p)
interpolate those entries of m(p).
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” @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]
Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

Goal: approximate m(p) ~ m(p) = Wa(p), where U € R™** and a(p) € R* with

£ < n, and where W is the sampling matrix built by vec (M(p")).
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» @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCOX 2015]

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

Goal: approximate m(p) ~ m(p) = Wa(p), where U € R™** and a(p) € R* with

£ < n, and where W is the sampling matrix built by vec (M(p")).

o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, 2o, ...,z be the selected indices to be exactly matched, and
Z :=les,...,ez]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Va(p) = a(p)=(Z"V)'Z m(p).
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SK @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCO

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

Goal: approximate m(p) = m(p) = Wa(p), where U € R™** and a(p) € R? with
£ < n, and where W is the sampling matrix built by vec (M(p")).

o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, 2o, ...,z be the selected indices to be exactly matched, and
Z :=les,...,ez]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Va(p) = a(p)=(Z"V)'Z m(p).

@ Hence, the approximation is given by m(p) = W(Z"W)~1Z" m(p).
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SK @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCO

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

Goal: approximate m(p) = m(p) = Wa(p), where U € R™** and a(p) € R? with
£ < n, and where W is the sampling matrix built by vec (M(p")).

o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, 2o, ...,z be the selected indices to be exactly matched, and
Z :=les,...,ez]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Va(p) = a(p)=(Z"V)'Z m(p).
@ Hence, the approximation is given by m(p) = W(Z"W)~1Z" m(p).

@ Undoing the vectorization yields the reduced model matrix

M(p) := vec™* (r%(p)) = vec ((VT ® WT)\IIa(p)) Zaj p) W M(pY¥)V

precomputable!
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SK @ Using a Global Basis w/o Affine Parametrization

Empirical Matrix Interpolation Method [B./GUGERCIN/WILLCO

Given V, W € R™*" and suppose only that M(p) € R"** can be evaluated at specific
parameter values.

Goal: approximate m(p) = m(p) = Wa(p), where U € R™** and a(p) € R? with
£ < n, and where W is the sampling matrix built by vec (M(p")).

o Apply (Q,D)EIM (or alike) to determine c(p) s.t. selected entries of m(p)
interpolate those entries of m(p).

Let zi, 2o, ...,z be the selected indices to be exactly matched, and
Z :=les,...,ez]. Then, forcing interpolation at the selected rows implies

Z'm(p) = Z"Va(p) = a(p)=(Z"V)'Z m(p).

@ Hence, the approximation is given by m(p) = W(Z"W)~1Z" m(p).
@ Undoing the vectorization yields the reduced model matrix

M(p) = vee ™ (v @ WT)¥a(p)) = Za,(p)vv M)V =i 3 ay(p) .

—1
precomputable! g
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Parametric Systems Norms

Mean-square error norm:

1 [T

R A 2
|G — G||§_£2®L2(Q) = Z/_ /||G(jw, p) — G(yw, p)||de1 ...dpg dw,
2

where || . ||r denotes the Frobenius norm.

Worst-case error norm:

16 = Gllnnorei = sup_||6Gw, p) = 6w, p)||-
wER, peN 2
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2. PMOR Methods based on Interpolation
Interpolatory Model Reduction
PMOR based on Multi-Moment Matching
Optimal PMOR using Rational Interpolation?
A Comparison of PMOR Methods

© P. Benner PMOR of Dynamical Systems



“ @ Recall Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)"'B, a reduced-order model is obtained using truncation matrices
V,W € R™ with W'V =1, (~ (VWT)?> = VW' is projector) by computing

E=W'EV, A=WTAV, B=W'B, C=cV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

@© P. Benner PMOR of Dynamical Systems



“ @ Recall Interpolatory Model Reduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sE — A)"'B, a reduced-order model is obtained using truncation matrices
V,W € R™ with W'V =1, (~ (VWT)?> = VW' is projector) by computing

E=W'EV, A=WTAV, B=W'B, C=cV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching
Choose V, W such that

G(s)=G(s), j=1,....k
and ) ;
d' d . .
@G(SJ)ch(SJ), I=1,...,l‘(j, J=1,,k
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@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987

span {(s:E — A)"'B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} < range(W),

then
d

6(5)=bls), 6ls) =

G(sj), forj=1,..., k.
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@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987

span {(s:E — A)"'B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} < range(W),

then
d

dsé(sj), forj=1,... k.

o d
G(s) = G(s). 4 6(y) =
Remarks:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRiMME 1997],

— lter. Rational Krylov-Alg. (IRKA) [ANTOULAS/BEATTIE/ GUGERCIN 2006/08].
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@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987]

span {(s:E — A)"'B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} < range(W),

then
d

dsé(sj), forj=1,... k.

A d
G(s) = G(s). 4 6(y) =
Remarks:
using Galerkin /one-sided projection (W = V) yields G(s;) = G(s;), but in general
d d .

ds G(s) # EG(SJ)
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@ Recall Interpolatory Model Reduction

Theorem (simplified) [GRIMME 1997, VILLEMAGNE/SKELTON 1987

span {(s:E — A)"'B,...,(skE — A)"'B} C range(V),
span {(stE —A)"TCT,...,(skE—A)"TC"} < range(W),

then
d

dsé(sj), forj=1,... k.

6(5)=bls), <-6ls)=
Remarks:
k =1, standard Krylov subspace(s) of dimension K:
range (V) = Kx((siE — A) "', (s.E — A)'B).
~» moment-matching methods/Padé approximation,
dJ
ds’

d . )
G(s1) = EG(sl), i=0,...,K—1(+K).

@© P. Benner PMOR of Dynamical Systems



@ Comparison of Moment Matching and RBM

@ System in time domain:

Ex(t) = Ax(t)+ Bu(t),
y(t) = Cx(b).

@ System in frequency domain:

sEx(s) = Ax(s)+ Bu(s),
ys) = Cx(s).
@ Reduced basis method considers s

as a parameter, and uses the system
in frequency domain to compute

= 233,060, m= g = 1.
range( V) = span{x(s1),...,x(sm)}- g ' m=d

The ROM is obtained by Galerkin
projection with V. Courtesy of TEMF, TU Darmstadt.
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@ Interpolatory Model Reduction

Ho>-Model Reduction for Linear Systems

Consider stable (i.e. A(A) C C7) linear systems X,

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) =~ y(s) = C(sl — A" B u(s)

System norms
Recall: two common system norms for measuring approximation quality are

o Hy-norm, |3, = (% 02ﬂtr((GT(—jw)G(jw))) dw)i,

0 Hoo-norm, ||X|l3., = su!l)RUmaX(G(]w)),
wEe

where

G(s)= C(sl — A)'B.
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@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

A 0

err __ ~
A _[0 A

err B err A
], B :[é], cr=[c -CJ.
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@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -C].

Assuming a coordinate system in which Als diagonal and taking derivatives of
16(.) = G()l3,

with respect to free parameters in /\(/A4), B, C ~~ first-order necessary
H,-optimality conditions (SISO)
G(—/A\,-) = @(—3\,-),

G'(=A) = G'(—X),

where }\; are the poles of the reduced system ..
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@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A 0 err __ B err __ ~
A _[0 2\]’ B _[é], cr=[c -CJ.

First-order necessary 7{,-optimality conditions (MIMO):

G(—j\,’)é; = é —;\;)é;, for i = 1, N
CTG(—=N\) = CTG(-N\), fori=1,...,r,
5ITH/(—5\i)é; = N,-Té/(—:\;)é; for i = 1, Ry £
v!hereA/Z\ = R/A\R_T is the spectral decomposition of the reduced system and
B=BTR™T, C=CR.
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@ Interpolatory Model Reduction

Error system and H,-Optimality [MEIER /LUENBERGER 1967]

In order to find an H>-optimal reduced system, consider the error system
G(s) — G(s) which can be realized by

err __ A 0 err __ B err __ A
A _[0 2\]’ B _[é], cr=[c -C].

First-order necessary 7{,-optimality conditions (MIMO):
G(—j\;)é/ = é —5\/)3,', for i = 17 ol
G(=N), fori=1,...,r,
G'(=\)B: fori=1,...,r,
o vec(lg)” (eje,-T ® C)

A
= vec ()" (eje,-T ® é) (—/A\® I — /,®A3>71 <§T® é) vec (Im),
fori=1,...,randj=1,...,q.
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@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.

G(s) = CV (sl — WTAV) ' WTB,
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@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as
V= [(—ml—A)'B,....(—u ! — A)'B],
W= [(—pal —AT)ICT, .. (=l = AT)TECTT.
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@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,
where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],
W= [(—pal —AT)ICT, .. (=l = AT)TECTT.

G(—pi) = G(—p) and G'(—p) = G'(—m),
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@ Interpolatory Model Reduction

Interpolation of the Transfer Function [GrivmE 1997]

Construct reduced transfer function by Petrov-Galerkin projection P = VW | i.e.
G(s) = CV (sl — WTAV) ' WTB,

where V and W are given as

V= [(—ml—A)'B,....(—u ! — A)'B],

W= [(—pal —AT)ICT, .. (=l = AT)TECTT.
Then . .

G(—pi) = G(—w) and  G'(—p;) = G'(—p),

fori=1,...,r.

Starting with an initial guess for A and setting p; = Xi ~ iterative algorithms
(IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. 2006/08], [BUNSE-GERSTNER ET AL. 2007],
[VAN DOOREN ET AL. 2008]
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@ Interpolatory Model Reduction

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, A stable, B, C, § > 0.
Output: APt Bort (ort

1. while (maxj=1,__, {”’H—fﬁdl} > ¢) do

2. diag(pa,...,pur) = R"TAR = spectral decomposition.

32 B=B"R T, C=CR

s V= [(—m/ — A)1Bhy,... (—pl — 13]

W= [(—pal — AT)1CTE, . (— el — AT)

V = orth(V), W = orth(W), W = W(VH W)
A=WwWHAV, B=wWHB, C=cCV.

end while

0. AP _ A, BoPt _ B, Comt — €.

@ N o v
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@ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5 and parameter vector p, expand into
multivariate power series about (3, p) and compute reduced-order model, so that

G(s.p) = &(s.p) + O (Is =3 +lp = Bl +Is = 8l*llp— B")

i.e., first K, L, k+ I (mostly: K =L = k+ [) coefficients (multi-moments) of
Taylor/Laurent series coincide.
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@ PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5 and parameter vector p, expand into
multivariate power series about (3, p) and compute reduced-order model, so that

G(s.p) = &(s.p) + O (Is =3 +lp = Bl +Is = 8l*llp— B")

i.e., first K, L, k+ I (mostly: K =L = k+ [) coefficients (multi-moments) of
Taylor/Laurent series coincide.

Algorithms:

[1] [DANIEL ET AL. 2004]: explicit computation of moments, numerically unstable.

[2] [FarLE ET AL. 2006/07]: Krylov subspace approach, only polynomial
param.-dependance, numerical properties not clear, but appears to be robust.

[3] [WEILE ET AL. 1999, FENG/B. 2007/14]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as for [2].

[4] New: employ dual-weighted residual error bound and greedy procedure to define
interpolation points an # of multi-moments matched
[ANTOULAS/B./FENG 2014/17].
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“ @ PMOR based on Multi-Moment Matching

Parametric System
Again, consider linear parametric system
5(p) - { E(p)x(t; p)
y(t: p)
together with its transfer function G(s, p).

A(p)x(t; p) + B(p)u(t),
C(p)x(t; p)
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“ @ PMOR based on Multi-Moment Matching

Parametric System

Again, consider linear parametric system
(p) : E(p)x(tip) = A(p)x(t;p) + B(p)u(t),
y(t:p) = C(p)x(t:p)
together with its transfer function G(s, p).

For simplicity, assume B(y) = B, and re-parameterize — = [s,p",...]" € C* such
that with

G(u) = G(s,p), x(u) =x(s,p), y(u) =y(s.p),- ..
A(p) = sE(p) — Alp),

we obtain linear-affine structure of A(u):

A(p) = Ao+ paAr + ..+ peAs
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@ PMOR based on Multi-Moment Matching

Parametric System

Again, consider linear parametric system

) E(p)x(t;p) = Alp)x(t; p) + B(p)u(t),
2k { y(tp) = Clo)x(ti)
together with its transfer function G(s, p).

For simplicity, assume B(y) = B, and re-parameterize — = [s,p",...]" € C* such
that with

G(n) = G(s,p),  x(n) =x(s,p); y(u) =y(s,p), -
A(p) == sE(p) — A(p),
we obtain linear-affine structure of A(u):
A(p) = Ao+ pnAs + ..o+ peAe.

In frequency domain, we may then re-write the parametric system as

A(p)x(p) = Bu(s),  y(p) = C(u)x(n)-

@© P. Benner PMOR of Dynamical Systems



@ PMOR based on Multi-Moment Matching

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - /LE;O))AZ)

=My
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@ PMOR based on Multi-Moment Matching

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - /LE;O))AZ)
=My

= Mo (I +(p1 — “50))/\40_1.,41 ot (e —/Lg)))MO_IAg)
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@ PMOR based on Multi-Moment Matching

© , and write

Choose an expansion point g
A(p) = Ao+ pn Ay + .o+ e Am
= (Ao+ 1A+ + VA + ((ul — )AL+ (e - uff”)Az)
=My

= Mo (I +(p1 — “50))/\40_1.,41 ot (e —#gj))Mo_lAg)

Using the Neumann lemma ((/ — F)~" = 322 F/ if ||F|| < 1), we obtain

1w ; - VAR
AG) ™ = D01 (o = MG A+ (e = MG A Mg
j=0

= Z(o‘l./\/ll +... Uz/\/lz)i/\/lo_l,

j=0
where o; = pj — u,(.o) and M; = —Mg ' A fori=1,...,L
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“ @ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |1

We have
A(p)x(p) = Bu(s)
and
Ap) ™t =) (oM 4. coeMeY Mg
j=0

where o; = u; — u,(-o), Mo = A(p?) and M; = —My A for i =0,..., 1L
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“ @ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |1

We have
A(p)x(p) = Bu(s).
and
Alp) ™ = 2(01/\41 + . oMY MG,
j=0

where o; = i — %, Mo = A(u®) and M; = —Mz A for i =0,...,L.
Hence,

x(1) = A(p) ' Bu(s) = Z (i M1+ ... + oMY Mg B u(s)
= N——

=B

~ Z(UlMl + . 4 oMY Bu(s) =: %(p).
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“ @ PMOR based on Multi-Moment Matching

Multivariate Power Series Expansion |1

We have
A(p)x(p) = Bu(s).
and
Ap) ™t =) (oM 4. coeMeY Mg
j=0

where o; = u; — u,(-o), Mo = A(p?) and M; = —My A for i =0,..., 1L

Hence,

oo

x(p) = A(u) ' Bu(s) = Z (1M1 + ...+ aeMe) My B u(s)
j=0 Y
k =B
~ Z(O’lMl + .o+ oMY Bu(s) =: %(n).

j=0
Thus, x(u) is (approximately, locally) contained in the Krylov subspace
Krs1((oaMa + ... + 0o My), B).
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ 4+ ... U@M@),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/l]_ + ... U@M@),B) —
@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

o Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/11 + ... U@M(),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

@ Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].

o First terms in the multivarite Taylor expansion match, i.e., we achieve matrix
interpolation for partial derivatives up to order ¢, or more in the
Petrov-Galerkin case.
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“ @ PMOR based on Multi-Moment Matching

x(p) is (approximately, locally) contained in the Krylov subspace
/Ck+1((0'1./\/11 + ... U@M@),B) —

@ Project the state-space onto this subspace.

@ Obtain an orthogonal basis using block-Arnoldi-MGS [B./Fenc 2007/14], or
TOAR [Bar/Su 2008].

@ The ROM is obtained by Galerkin projection.

@ Petrov-Galerkin projection possible using the "dual” Krylov subspace
obtained from using A7 and CT [Aumap/B./Fenc 2017].

o First terms in the multivarite Taylor expansion match, i.e., we achieve matrix
interpolation for partial derivatives up to order ¢, or more in the
Petrov-Galerkin case.

o Approximation is only valid locally (convergence radius of Neumann series!)
~ use several expansion points (9, ..., u(" and concatenate (and
truncate) the local bases to obtain a global basis.
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Electro-Chemical SEM

Compute cyclic voltammogram based on FE model
Ex(t) = (Ao + prA1L + p2A2)x(t) + Bu(t), y(t) = cTx(¢),
where n = 16,912, m = 3, Ay, A, diagonal.

K=L=k+{(=4 = r=26 K=L=k+¢=9 = r=286

—full simulation, n=16912
——~—reduced order 86

current, nA
current, nA
~

5 0 05 1 -1 05 05 1
voltage u(t), alpha=0.5

0
voltage u(t), alpha=0.5

Source: MOR Wiki: http://morwiki .mpi-magdeburg.mpg.de/morwiki/index.php/Scanning_Electrochemical Microscopy

nical Systems


http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Scanning_Electrochemical_Microscopy

@ PMOR based on Multi-Moment Matching

Open question
How to adaptively choose 1(1)?
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@ PMOR based on Multi-Moment Matching

Open question
How to adaptively choose 1(1)?

And how many partial derivatives to be matched at each interpolation point?

@© P. Benner PMOR of Dynamical Systems



@ PMOR based on Multi-Moment Matching

Open question
How to adaptively choose 1(1)?

And how many partial derivatives to be matched at each interpolation point?

Possible approach: adopt ideas from Reduced Basis Methods, i.e., let

1G(1) = G(w)ll < Ap) or ly(k) = F(W)ll < Ao(n)

guide the selection of u(") for computable a posteriori error bounds for the state or
the output.

@© P. Benner PMOR of Dynamical Systems



” @ Error Bound for Automatic ROM Construction

Theorem (SISO case) [FENG/ANTOULAS/B. 2015/17]
Assume that omin(G(s, p)) =: B(s,p) >0 VRe(s) >0,V p € Q, then

H(s, p) = A(s, p)| < A(s, p) + [(8™) " (s, p)| =: A(s, p),
where

Ir*“(s, P2l (s, P)ll2
B(s, p) ’

with the primal and dual residuals r*", r® and the reduced " dual state” £%:
r”(s,p) = [ (B = (sE(p) — A(p))) (V(sE(p) — A(p)) ' B)Il,

r(s,p) = Il (€T — GE(p) — A(P))) 8“1,

8% = _yR(EEY(p) — A%(p))"T &,

A(57 P) =

The dual reduced-order system is computed using Galerkin projection with V% obtained
by applying multi-moment matching algorithm to "dual” system (3E(p)" — A(p)", C").

PMOR of Dynamical Systems



@ Error Bound for Automatic ROM Construction

Remarks

@ For application in "RBM fashion”, r(u), rP" (1) can be efficiently computed,
need to solve sparse linear systems on training set, i.e., one sparse
factorization for each sampling point.

o [(s,p) = omin(G(s, p)) easily computable on the training set — system
solves for evaluation of the transfer function readily available from residual
computation!

o Extension to MIMO case possible taking max over all 1/O channels.

o Can use Petrov-Galerkin framework using W = V9 at no extra cost!

@© P. Benner PMOR of Dynamical Systems



@ PMOR based on Multi-Moment Matching

Algorithm 2 Automatic generation of the ROM: adaptively selecting z()

Input: V =[]; € > €4y; Initial expansion point: fi; i :== —1;
=irain. a set of samples of i covering the parameter domain.

Output: V.

while ¢ > ¢;, do

i=1i+1;
M(i):ﬂ;

o

V = orth([V, V,»]);

fi = arg max A(u);
ne

7 €= A(ﬂ),
8: end while

=train

1:
2
3:
4.V, = orthogonal basis of /Ck+1((0'§i)M1 +...+ a§’)Mz), B);
5
6

@© P. Benner
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@ PMOR based on Multi-Moment Matching

A SiN membrane can be a part of a gas sensor, an infra-red sensor, a
microthruster, etc. Heat tansfer in the membrane is described by

(Eo + pcpEr)x(t)
y(t)

—(Ko + kK1 + th)X(t) + bu(t)
Cx(t),

with parameters
o density p € [3000,3200],
@ specific heat capacity ¢, € [400,750],
@ thermal conductivity k € [2.5,4],

@ membrane heat transfer coefficient
h € [10,12].

and frequency f € [0, 25]Hz.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Silicon_nitride_membrane
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@ Training set: =i, = 5 random samples for p and c,, 3 random samples for x and h,
respectively, 10 samples of Laplace variable s.

@ Error measures: N
DB |G (1) = G(W)I/IG(R)I,

=train

Al () = A(p)/1G (w))|

rel  _
Etrue =

® V, ) = span{B, (U%i)Ml +... 4 Ugi)Mg)B}, ere

tol

=102, n= 60,020, r = 8.

iter. erel A’e'(u(i)) s PCp K h
1 1x10°3 3.44 18.94 | 1.37x10° | 2.74 | 10.97
2 1x107* |4.50x1072| 0.89 |1.31 x 10°|3.96 | 11.60
3 |2.80x107°|4.07 x1072|23.98|2.35 x 10° | 3.94 | 10.28
4 |258x%x107°%|2.62x107°| 0.89 |2.31x10°|2.74 |10.28

@© P. Benner
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

Verification of the accuracy of the ROM for x over set =fn with 16 equidistant samples
of k, 51 equidistant samples of the frequency f, while the other parameters are fixed.

x10

T30
20

10 o G2

ic : preaV

Relative error of the final ROM changing with s and frequency.
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@ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

Verification of the accuracy of the ROM for ¢, over set =fne with 36 equidistant samples
of ¢,, 51 equidistant samples of the frequency f, while the other parameters are fixed.

800

10

< 400 0 Frequency (Hz)

Relative error of the final ROM changing with ¢, and frequency.

@© P. Benner

PMOR of Dynamical Systems



“ @ PMOR based on Multi-Moment Matching

Numerical Examples: Silicon Nitride Membrane

Verification of the accuracy of the ROM for p, ¢, over set =g with 50 random samples
of p, cp, respectively, the other parameters are fixed.

700

p 3000 400 6p

Relative error of the final ROM changing with ¢, and &.

@© P. Benner
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KoRvINK/B. 2015, BONIN/FASSBENDER/SOPPA/ZAH 2016, LEE/CHU/FENG 2006,. . .].
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER /SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. . . ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER /SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. . . ].

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

. 1 +o00 N 2
1G = Gll3,002) = z/ /HG(J% p) — G(3w, p)||-dpz ... dpgdw ?
oo

© P. Benner
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER /SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. . . ].

Question

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

. 1 +oo N 2
1G = Gll3,002) = %/ /HG(Jw, p) — G(3w, p)||-dpz ... dpgdw ?
oo

Following the non-parametric case, one would need:

@ Projection-based framework for tangential rational interpolation. [v']
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@ Optimal PMOR using Rational Interpolation?

Greedy expansion point selection has a heuristic nature and relies on a training set.

How to determine the right number of partial derivatives to be matched at the expansion
points is an open problem (for potential solutions in the non-parametric case, see
[FENG/KORVINK/B. 2015, BONIN/FASSBENDER /SOPPA /ZAH 2016, LEE/CHU/FENG 2006,. . . ].

Question

Can we find (necessary) optimality conditions similar to the LTI case, leading to an
IRKA-like procedure?

Hence, we investigate the problem: for a given order r of the reduced-order model, can
we provide necessary conditions for a rational interpolant to minimize

. 1 +oo N 2
1G = Gll3,002) = %/ /HG(Jw, p) — G(3w, p)||-dpz ... dpgdw ?
oo

Following the non-parametric case, one would need:
@ Projection-based framework for tangential rational interpolation. [v']

@ lterative procedure for selecting interpolation points. [x] ...[v] for special case.

PMOR of Dynamical Systems
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@ Optimal PMOR using Rational Interpolation?

Theory: Interpolation of the Transfer Function

[BAUR/BEATTIE/B./GUGERCIN 2007/11]
Let G(s,p) = @(p)(sf(p)—fz\(p))flé(p)
"E(p

Suppose b= [P1, ..., ps]” and 5 € C are chosen such that both 5 £(p) — A(p) and
5E(p) — A(p) are invertible.  If

(3E(p) — A(p)) ™" B(P) € range (V)

(co)E@) - AE) ) € range (W),
then G(5,p) = G(5,p).

@© P. Benner
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@ Optimal PMOR using Rational Interpolation?

Theory: Interpolation of the Transfer Function

[BAUR/BEATTIE/B./GUGERCIN 2007/11]

Let G(s,p) = C(p)(sE(p)—A(p))"'B(p)

= C(p)V(sWTE(p)V — WTA(p)V) ' WT'B(p).
Suppose b= [P1, ..., ps]” and 5 € C are chosen such that both 5 £(p) — A(p) and
5E(p) — A(p) are invertible.  If

(3E(p) — A(P)) " B(P) € range (V)
or
AN\ B [l =i 7
(c(p) (8 E() — A(p) ") " € range (W),
then G(5,p) = G(5,p).
Extension to MIMO case using tangential interpolation: let 0 # b € R™, 0 # ¢ € R9.
a) If (5E(p) — A(p)) ! B(p)b € range (V), then G(5,p)b = G(5, p)b.

b) |f( TC(p) (5 (ﬁ)—A(,s))*l)T € range (W), then ¢TG(3,p) = ¢ (&, p).
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@ Optimal PMOR using Rational Interpolation?

Theory: Interpolation of the Parameter Gradient

Suppose that E(p), A(p), B(p), C(p) are Clina nelghborhood of p=[p1,...
and that both 5 E(p) — A(p) and 5 E(p) — A(p) are invertible.

If

’ i\)d]T

(3E(p) — A(P)) ™" B(P) € range (V)

and
§
(CB)GE®) — AB) ™) € range(W),
then 5 8
VPG($7 P) = VPG'($7P)7 aG(SJJ) - EG(syp)
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@ Optimal PMOR using Rational Interpolation?

Theory: Interpolation of the Parameter Gradient

Suppose that E(p), A(p), B(p), C(p) are Clina nelghborhood of p=[p1,..
and that both 5 E(p) — A(p) and 5 E(p) — A(p) are invertible.

If

o9 f)d]T

(3E(p) — A(P)) ™" B(P) € range (V)

and
§
(CB)GE®) — AB) ™) € range(W),
then 5 8
VPG($7 P) = VPG'($7P)7 aG(SJJ) - EG(syp)

Note: result extends to MIMO case using tangential interpolation:

Let 0% b € R™, 0 # ¢ € RY be arbitrary. If (8 E(p) — A(p)) ' B(p)b € range (V) and
T .

(cTC(f)) (5E(p) — A(,a))—l) € range (W), then V,cT G(3,p)b = V,ocT G (5, p)b.
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@ Optimal PMOR using Rational Interpolation?

Theory: Interpolation of the Parameter Gradient

R/BEATTIE/B./
Suppose that £(p), A(p), B(p), C(p) are C in a neighborhood of p = [p1,

o Pl
and that both 5 E(p) — A(p) and 5 E(p) — A(p) are invertible.
If

(3E(p) — A(P)) ™" B(P) € range (V)
and .

(P (5 E(B) — AE) ) € range (W),
then 5 8
VPG($7 P) = vF’Gf($7 p)7 aG(S7 p) - EG(sy P)

1. Reduced-order model satisfies necessary conditions for surrogate models in trust
region methods [ALExANDROV/DENNIS/LEWIS/ TORCZON 1998].

2. Approximation of gradient allows use of reduced-order model for sensitivity analysis.

@© P. Benner
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” @ Optimal PMOR using Rational Interpolation?

Generic implementation of interpolatory PMOR
Define A(s, p) := sE(p) — A(p).
1. Select “frequencies” si,...,sx € C and parameter vectors p(l), ,p®P e crl.
2. Compute (orthonormal) basis of
V = span {A(s1, p) 7 B(pW), ..., A(sk, p) T B(p!)) }.
3. Compute (orthonormal) basis of
W = span {A(s1, pM) T C(pM)7,..., A(s, )T C(p'9)T}.
4. Set V= [vi,...,vke], W= [w1,..., wk], and W := W(WT V)~
(Note: r = k).
Alp) := WTA(p)V,  B(p) = W'B(p)V,
E

5. Compute . - -
{ C(p) == W' C(p)V, E(p):=W"E(p)V.

© P. Benner PMOR of Dynamical Systems



@ Optimal PMOR using Rational Interpolation?

Remarks

o If directional derivatives w.r.t. p are included in range (V/), range (W), then also
the Hessian of G(5, p) is interpolated by the Hessian of G(5, p).
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@ Optimal PMOR using Rational Interpolation?

Remarks

o If directional derivatives w.r.t. p are included in range (V/), range (W), then also
the Hessian of G(5, p) is interpolated by the Hessian of G(5, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.
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@ Optimal PMOR using Rational Interpolation?

Remarks

o If directional derivatives w.r.t. p are included in range (V/), range (W), then also
the Hessian of G(5, p) is interpolated by the Hessian of G(5, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.

@ For prescribed parameter vectors p(k), we can use corresponding H-optimal
frequencies si0, £ =1,..., r computed by IRKA, i.e., reduced-order systems G,Ek)
so that

order (&)=
G stable

1 +o0 5 1/
161, = (52 [ l6Glaw)

1G(,p") = GE O, = min  1G(, p™) = X ()]s,
Tk

where
2

@© P. Benner PMOR of Dynamical Systems



@ Optimal PMOR using Rational Interpolation?

Remarks

o If directional derivatives w.r.t. p are included in range (V/), range (W), then also
the Hessian of G(5,p) is interpolated by the Hessian of G(5, p).

@ Choice of optimal interpolation frequencies s, and parameter vectors p(k) in general
is an open problem.

@ For prescribed parameter vectors p(k), we can use corresponding H-optimal
frequencies si0, £ =1,..., r computed by IRKA, i.e., reduced-order systems G,Ek)
so that

order (&)=
G stable

1 +o0 5 1/2
161, = (55 [ ll6tlias)

@ Optimal choice of interpolation frequencies s, and parameter vectors p*) possible
for special cases.

1G(,p") = GE O, = min  1G(, p™) = X ()]s,
Tk

where
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@ Optimal PMOR using Rational Interpolation?

Numerical Example: Thermal Conduction in a Semiconductor Chip

@ Important requirement for a compact model of thermal conduction is boundary
condition independence.

@ The thermal problem is modeled by the heat equation, where heat exchange
through device interfaces is modeled by convection boundary conditions containing
film coefficients {p;}?_; describing the heat exchange at ith interface.

@ Spatial semi-discretization leads to
3
Ex(t) = (Ao + Zp,-A,-)x(t) + bu(t), y(t) = cx(t),
i=1

where n = 4,257, A;, i = 1,2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal modeling phenomena,
IEEE Transactions on Components and Packaging Technologies, 24(4):559-565, 2001.

MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Microthruster_Unit
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@ Optimal PMOR using Rational Interpolation?

Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters (“important” configurations), 8/7 H-optimal
interpolation frequencies selected by IRKA. = k =2,/ = 8,7, hence r = 15.

ps =1, p1,p> € [1,10%].

Relative H, error for p, = 1

Iog(IIH—Hr\I TITH I

log (p,)

@© P. Benner



[BAUR/BEATTIE/B./GUGERCIN 2011]

For special parameterized SISO systems,
A(p) = Ao, E(p) = Eo, B(p) = Bo+ p1B1, C(p) = Go + p2Ci,
optimal choice possible, necessary conditions:

If G minimizes the approximation error w.r.t. |G — é”’)—(_zxLz(Q), peQCR? and
A(A, E) = {X1,..., A} (all simple), then the interpolation frequencies satisfy

S,':—A,', I':].,...,I’7

and the parameter interpolation points {p(l), e p(’)} satisfy the interpolation
conditions
G(-Ap) = (=A%),
0 0 » a PN
—G(-4,p%) = —G(-4,p%), V,6(-%pY) = V,E6(-4,p).

Js Os
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@ Optimal PMOR using Rational Interpolation?

Optimality of Interpolation Points

[BAUR/BEATTIE/B./GUGERCIN 2011]

For special parameterized SISO systems,

A(p) = Ao, E(p) = Eo, B(p) = Bo+ p1B1, C(p) = Go + p2Ci,

optimal choice possible, necessary conditions:
If G minimizes the approximation error w.r.t. |G — G||#,x1,9), P € 2 C R, the

parameter interpolation points {p(l) .. (’)} satisfy the interpolation conditions
S-Sy = (A5
0 N 0 » a PPN
564 pY) = S-6(=A "), V,6(=4 ") = V,G(-A,p%).
Proof:

. ) G -
[6llcntaay = L7 Ellts, where &() = | €8 | (s~ ) [0, B4, L= [

[N TT
N
S»—‘O
w
_

—> Computation via IRKA applied to G.

@© P. Benner
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@ Optimal PMOR using Rational Interpolation?

Optimality of Interpolation Points — Numerical Example

@ Model for evolution of temperature distribution on a plate, described by the heat
equation.

@ FDM SISO model of order n = 197.

@ Parameter p; € [0, 1] encodes movement of heat source from By to By + By,
analogous for relocation of measurement.

Relative H, error

log (I1H ~

os 09 1
0s 06 07
0TS Toq 02 03 04

Relative Ho ® Lo(2) error: 7.5 X 10~%.

) P. Benner
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” @ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

FlowProfile

SenL Heater SenR

Source: [BAUR/B./GREINER/KORVINK/LIENEMANN/MOOSMANN 2011]

o FE model:
Ex(t) = (A+ pA)x(t) + Bu(t), y(t) = Cx(t), x(0) =0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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@ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:
Ex(t) = (A+ pA)x(t) + Bu(t), y(t)= Cx(t), x(0)=0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Hoo error
10°
4 =
10
/N ~
s VY
=z
F
S 107
% ——POD
——— POD-Greedy
-6 Matrint
10 TransFncint
PWH2Tanint
MultiPMomMtch
- emWX
10

e . . . I . .
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Parameter Value

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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@ A Comparison of PMOR Methods: Anemometer

Consider an anemometer, a flow sensing device located on a membrane used in
the context of minimizing heat dissipation.

o FE model:

Ex(t) = (A+ pAr)x(t) + Bu(t), y(t) = Cx(t), x(0)=0,
e n=29,008, m=1, g =3, p1 €[0,1] fluid velocity.

Ho> error
10° -
0 \\\
10 SS— -
™ -2
& 10
g
Q
% 10 {f——poD
——— POD-Greedy
Matrint
6 TransFncint
1w PWH2TanInt
MultiPMomMtch
emwXx
10

e . . . . . .
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter Value

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
@© P. Benner
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\' @ Commercial Break

For more details of this comparisons, and other tests, see

U. Baur, P. Benner, B. Haasdonk, C. Himpe, |. Maier, and M. Ohlberger.
Comparison of Methods for Parametric Model Order Reduction of Unsteady Problems.
In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and

Approximation: Theory and Algorithms.
SIAM, Philadelphia, PA, 2017.

Model Reduction
and Approximation
Theory and Algorithms

X

Chapter 9 in

PETER BENNER

KAREN WILLCOX

Computational Science & Engineering

PMOR of Dynamical Systems
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3. PMOR via Bilinearization
Parametric Systems as Bilinear Systems
Balanced Truncation for Bilinear Systems
Ho-Model Reduction for Bilinear Systems
Some Notes on LTV/LPV Systems

PMOR of Dynamical Systems



@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:
- { X(t) = Ax(t) + ) Ax(t)ui(t) + Bu(t),
y(t) = Cx(t), x(0) = xo,
where A, A; € R"™" B e R™™ C ¢ RI*".
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@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:
- {X(t) = Ax(t)+ ) Aix(t)ui(t) + Bu(t),
y(t) = Cx(t), x(0) = xo,
where AJA; € R"™" B e R™™ C e RI*".

Key Observation [B./Breiten 2011]
Consider parameters as additional inputs, a linear parametric system

x(t) = Ax(t) +Z ai(p)Aix(t) + Bouo(t), y(t) = Cx(t)

with By € R"*™ can be interpreted as bilinear system:

u(t) = [a(p) - am(p) w(t)],
B:=[0 ... 0 By eR™™ m=mp,+ my.

@© P. Benner PMOR of Dynamical Systems



@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

PMOR of Dynamical Systems



@ Parametric Systems as Bilinear Systems

Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence
Model order reduction techniques for bilinear systems can be applied to linear
parametric systems!
Here:
o Balanced truncation,
@ H, optimal model reduction.

@© P. Benner PMOR of Dynamical Systems



” @ Balanced Truncation for Bilinear Systems

Balanced Truncation for Linear Systems

Idea (for simplicity, E = /,)

x(t) = Ax(t Bu(t
°5T: {X() () Bult): i 4 stable, ie, A(A)CC,

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+ QA+ C'C = o,
satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
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» @ Balanced Truncation for Bilinear Systems

Balanced Truncation for Linear Systems

Idea (for simplicity, E = /,)

0T {*(t) = AO+Bul®), o 4 stable, e, A(4) € O,

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+PAT+BBT =0, ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
o {o1,...,0n} are the Hankel singular values (HSVs) of X.
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”s‘ @ Balanced Truncation for Bilinear Systems

Qo 4

Balanced Truncation for Linear Systems

Idea (for simplicity, E = /,)

°o¥: {k(t) = A+ Bu(®), | A stable, e A(A) C O

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+PAT +BBT =0, ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
@ {o1,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization (needs P, Q!) of the system via state-space

transformation

T:(AB,C) — (TAT ', TB,CT™Y)

- (& 2][8]ts )
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”s‘ @ Balanced Truncation for Bilinear Systems

Qo 4

Balanced Truncation for Linear Systems

Idea (for simplicity, E = /,)

0T {*(t) = AO+Bul®), o 4 stable, e, A(4) € O,

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

AP+PAT+BBT =0, ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
@ {o1,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT™Y)
A A By
— G GJ).

@ Truncation ~~ (A, B, &) = (A11, B, Cl)
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“ @ Balanced Truncation for Bilinear Systems

Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o1, ..., 05.
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@ Balanced Truncation for Bilinear Systems

Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o1, ..., 05.

o Adaptive choice of r via computable error bound:

n
by =9le < (23, o) llull
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” @ Balanced Truncation for Bilinear Systems

Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o1, ..., 05.

o Adaptive choice of r via computable error bound:

n
by =9le < (23, o) llull

Practical implementation

o Rather than solving Lyapunov equations for P, Q (n? unknowns!), find
S,R € R™ with s < nsuch that P ~ SST, Q ~ RR".

o Reduced-order model directly obtained via small-scale (s x s) SVD of RTS!

@ No O(n®) or O(n?) computations necessary!

© P. Benner PMOR of Dynamical Systems



@ Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of bilinear
systems, where we need the solutions of the generalized Lyapunov equations:

AP+ PAT + > APAT +BBT =0,
i=1

ATQ+ QAT+ ATQA +CTC=0.
i=1

@ These equations also appear for stochastic control systems, see
[B./Damm 2011] and — tutorial by T. Damm.

@ " Twice-the-trail-of-the-HSVs" error bound does not hold [B./Damm 2014].

o Stability preservation [B./Damy/REDMANN/RODRIGUEZ CRUZ 2016].

© P. Benner PMOR of Dynamical Systems



@ Balanced Truncation for Bilinear Systems

Some basic facts and assumptions

AX + XAT +3 " AXAT + BBT =0. (1)
i=1

@ Need a positive semi-definite symmetric solution X.
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@ Balanced Truncation for Bilinear Systems

Some basic facts and assumptions

AX + XAT +3 " AXAT + BBT =0. (1)
i=1
@ Need a positive semi-definite symmetric solution X.

@ In standard Lyapunov case, existence and uniqueness guaranteed if A stable
(A(A) € C7); this is not sufficient here: (1) is equivalent to

(/n RA+AR I, + i A ® A ) vec(X) = —vec(BBT).
i=1

A sufficient condition for stable A is smallness of A; (related to stability radius of A)
~> bounded-input bounded-output (BIBO) stability of bilinear systems.

This will be assumed from here on, hence: existence and uniqueness of positive
semi-definite solution X = X 7.

© P. Benner PMOR of Dynamical Systems



@ Balanced Truncation for Bilinear Systems

Some basic facts and assumptions

AX + XAT +3 " AXAT + BBT =0. (1)

i=1

@ Need a positive semi-definite symmetric solution X.
@ In standard Lyapunov case, existence and uniqueness guaranteed if A stable
(A(A) € C7); this is not sufficient here: (1) is equivalent to

(/n RA+AR I, + i A ® A ) vec(X) = —vec(BBT).
i=1

A sufficient condition for stable A is smallness of A; (related to stability radius of A)
~> bounded-input bounded-output (BIBO) stability of bilinear systems.
This will be assumed from here on, hence: existence and uniqueness of positive
semi-definite solution X = X 7.

@ Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A, Aj, solves with (shifted) A allowed!
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@ Balanced Truncation for Bilinear Systems

Some basic facts and assumptions

AX + XAT +3 " AXAT + BBT =0. (1)

i=1

@ Need a positive semi-definite symmetric solution X.
@ In standard Lyapunov case, existence and uniqueness guaranteed if A stable
(A(A) € C7); this is not sufficient here: (1) is equivalent to

(/n RA+AR I, + i A ® A ) vec(X) = —vec(BBT).
i=1

A sufficient condition for stable A is smallness of A; (related to stability radius of A)
~> bounded-input bounded-output (BIBO) stability of bilinear systems.
This will be assumed from here on, hence: existence and uniqueness of positive
semi-definite solution X = X 7.

@ Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A, Aj, solves with (shifted) A allowed!

@ Requires to compute data-sparse approximation to generally dense X; here:
X~ ZZT with Z € R™"Z nz < nl

@© P. Benner PMOR of Dynamical Systems



“ @ Balanced Truncation for Bilinear Systems

Existence of low-rank approximations

Q: Can we expect low-rank approximations ZZ7 ~ X to the solution of

AX + XAT +> AXAl +BBT =07
j=1
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“ @ Balanced Truncation for Bilinear Systems

Existence of low-rank approximations

Q: Can we expect low-rank approximations ZZT ~ X to the solution of

AX + XAT +> AXAl +BBT =07

Jj=1

Theorem [B./Breiten 2013]
Assume existence and uniqueness assumption with stable A and A; = U; VJ-T, with
U, V; e R™. Set r=31"

j=1 I

Then the solution X of

AX + XAT + > AXAl +BBT =0

j=1
can be approximated by Xj of rank (2k + 1)(m + r), with an error satisfying

IX =Xz S exp(=Vk).

@© P. Benner
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@ Balanced Truncation for Bilinear Systems

Numerical Methods

o Generalized Alternating Directions Iteration (ADI) method.

1. Computing square solution matrix (~ n* unknowns) [Dany 2008].
2. Computing low-rank factors of solutions (~ n unknowns) [B./BREITEN 2013].

o Generalized Extended (or rational) Krylov Subspace Method (EKSM)
[B./BREITEN 2013].

@ Tensorized versions of standard Krylov subspace methods, e.g., PCG,
PBiCGStab [KrEssNER/TOBLER 2011, B./BREITEN 2013].

o Inexact stationary (fix point) iteration [SHaNK/SiMoNCINI/SzYLD 2016].

@© P. Benner PMOR of Dynamical Systems



@ Application to Parametric MOR

Fast Simulation of Cyclic Voltammogramms [Fexc/Kozior/RUDNYT/KORVINK 2006]

Ex(t) = (A+ pi(t)Ar + pa(t)A2)x(t) + B,
y(8) = Cx(t), x(0) = 0 #0,

Rewrite as system with zero initial condition,
FE model: n=16,912, m=3, g =1,

p; € [0,10°] time-varying voltage functions,

transfer function G(iw, p1, p2),

reduced system dimension r = 67,

G-G -
max learlz <6107,
WE{Wmins-+»Wmax } 2

PjE{Pmin>---,Pmax } Axis of symmetry

@ evaluation times: FOM 4.5h, ROM 38s Figure : [FENG ET AL. 2006]
~~ speed-up factor ~ 426.
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“ @ Application to Parametric MOR

Fast Simulation of Cyclic Voltammogramms [Fexc/Kozior/RUDNYT/KORVINK 2006]

and reduced-order model.

= 73907.2203 ® =73907.2203

IIHGw.p,.p I, (dB)
[[Hr(jwp,.p,)ll, (dB)




” @ Application to Parametric MOR

2D Model of an Anemometer [BAur ET AL. 2011]

Consider again the anemometer example.

FlowProfile

SenL Heater SenR

Ex(t) = (A+ pAx(t) + Bu(t), y(t) = Cx(t), x(0) =0,

o FE model: n=29,008, m=1, g =3,
e p; € [0,1] fluid velocity,
o transfer function G(iw, p1), reduced system dimension r = 146,

l16(w.p)—Glwp)l2 3. 105

° max
1G(w.p)l2

wWE{Wminy--+s Wmax }
PLE{Pmins---»Pmax }

@ evaluation times: FOM 51min, ROM 21sec.

© P. Benner PMOR of Dynamical Systems



@ ‘H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)
¥ { x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).
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@ ‘H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)
¥ { x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO) via Volterra series:

°° t rt te—1
y(t):Z/O/O /0 K(t, ..., t)u(t—ti— ... — te) - u(t — t)dty - - - dta,
k=1

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.
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@ ‘H>-Model Reduction for Bilinear Systems

Some background s
Consider bilinear system (m =1, i.e. SISO)
¥ { x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO) via Volterra series:

°° t rt te—1
y(t):Z/O/O /0 K(t, ..., t)u(t—ti— ... — te) - u(t — t)dty - - - dta,
k=1

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.
Multivariate Laplace-transform:

Gi(st,...,sk) = Csil — A7 AL - (s2] — A) A (s1] — A)71B.
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@ ‘H>-Model Reduction for Bilinear Systems

Some background

Consider bilinear system (m =1, i.e. SISO)
¥ { x(t) = Ax(t) + Aux(t)u(t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO) via Volterra series:

© t ety te—1
:Z// / K(t, ..., t)u(t—ti— ... — te) - u(t — t)dty - - - dta,
7o Jo 0

with kernels K(t1,...,tx) = Ce”A; --- e A1 et B.
Multivariate Laplace-transform:

Gi(st,...,sk) = Csil — A7 AL - (s2] — A) A (s1] — A)71B.
Bilinear {,-norm: [ZuanG/LaM 2002

ISl = (u((Z/ / o )k Gk(,wl,...,iwk)c[(iwl,...,iwk)») .
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4\1 H,-Model Reduction for Bilinear Systems
el .

Measuring the Approximation Error

[B./Breiten 2012]

Let X denote a bilinear system. Then, the H5-norm is given as:

m -1
=113, = (vec(lg)) " (C® C) (—A RI-IRA-) A® A,-) (B ® B) vec(lm).
i=1
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@ ‘H>-Model Reduction for Bilinear Systems

Measuring the Approximation Error

[B./Breiten 2012]

Let X denote a bilinear system. Then, the H5-norm is given as:

m -1
=113, = (vec(lg)) " (C® C) (—A RI-IRA-) A® A,-) (B ® B) vec(lm).
i=1

Error System
In order to find an H,-optimal reduced system, define the error system
Y =% — ) as follows:

AT — |:A 0:| s A?” = |:Al 9:| ) B = |:€:| ) = [C —é] :

0 A 0 A B
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@ ‘H>-Model Reduction for Bilinear Systems

Theorem (error system squared)
Let Y and S be the original and reduced bilinear systems, respectively. Then

€= 23, = 1=~ 23,
=@)"([c -Celc -€))x

(— {A 0} ® Ihtr — lntr ® [? %} —Z

m
0 A
k=1

(+[8)=

=) ([c -Celc -¢)x
(-8 Sem-mols 3-

(7] o [er]) =

where T, = vec(l;), RAR™! = A is the spectral decomposition of A,
and B=BTR"T,C=CR, A =RTA[RT.

—il
Ac 0 A, 0
& &lels 2])

Ac 0 Ay
s &lels

(s
2o
[E—
N~

5.
X

x
Il

1
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@ H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:

A=RAR™', Ac=R 'R, B=R'B, C=CR.
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™', Ac=R 'R, B=R'B, C=CR.

Using A, A;, B, C as optimization parameters, we can derive necessary conditions for

Ho-optimality, e.g., ,;955.. = 0 yields:
if
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™', Ac=R 'R, B=R'B, C=CR.
Using A, A,-, é, C as optimization parameters, we can derive necessary conditions for

Ho-optimality, e.g., % = 0 yields:
ij

m —1
(vec(lg))T (e,-e[ ® c) <—/\ O~ ®A-S A ® Ak> (é ® B) vec(/m)
k=1

m —1
= (vec(lg))" (eje[ ® é) <—/\ Qb— I, @A— Z’Z\k ® Ak> (é ® é) vec(lm).

k=1
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™', Ac=R 'R, B=R'B, C=CR.
Using A, A,-, é, C as optimization parameters, we can derive necessary conditions for

Ho-optimality, e.g., % = 0 yields:
ij

m —1
(vec(lg))T (e,-e[ ® c) <—/\ O~ ®A-S A ® Ak> (é ® B) vec(/m)
k=1

m —1
= (vec(lg))" (eje[ ® é) <—/\ Qb— I, @A— Z’Z\k ® Ak> (é ® é) vec(lm).
k=1

Connection to interpolation of transfer functions?
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™', Ac=R 'R, B=R'B, C=CR.
Using A, A,-, é, C as optimization parameters, we can derive necessary conditions for

Ho-optimality, e.g., % = 0 yields:
ij

m —1
(vec(lg))T (e,-e[ ® c) <—/\ O~ ®A-S A ® Ak> (é ® B) vec(/m)
k=1

m —1
= (vec(lg))" (eje[ ® é) <—/\ Qb— I, @A— Z’Z\k ® Ak> (é ® é) vec(lm).

k=1

For Ax = 0, this is equivalent to
G(—\)B/ = G(-= B/, t=1,...,r.

~~ Tangential interpolation at mirror images of reduced system poles!
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@ #H,-Model Reduction

‘H>-Optimality Conditions

Assume 3 is given in coordinate system induced by eigendecomposition of A:
A=RAR™', Ac=R 'R, B=R'B, C=CR.
Using A, A,-, é, C as optimization parameters, we can derive necessary conditions for

Ho-optimality, e.g., % = 0 yields:
ij

m —1
(vec(lg))T (e,-e[ ® c) <—/\ O~ ®A-S A ® Ak> (é ® B) vec(/m)
k=1

m —1
= (vec(lg))" (eje[ ® é) <—/\ Qb— I, @A— Z’Z\k ® Ak> (é ® é) vec(lm).

k=1

For Ax = 0, this is equivalent to
G(—\)B/ = G(-= B/, t=1,...,r.

~~ Tangential interpolation at mirror images of reduced system poles!
Note: [FLAGG 2011] shows equivalence to interpolating the Volterra series!
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@ A First Iterative Approach — BIRKA

Algorithm 3 Bilinear IRKA

Input: A, A;, B, C, A A, B, C
Output: A%t AP* Bort  Cort
1. while (change in A > ¢) do L )
22 RAR'=A B=R'B, C=CR A =R A

1

R
3 vec(V):(—A@/n—/,®A—ZZ\,-®A,-> ("@B)vec(/m)
i=1

m —1
4 vec(W):(—A@I,,—I,@AT—Z/Z\,T@A;T) (CT®CT)veC(Iq)

i=1
5.V =orth(V), W = orth(W)
6 A= (WTV) " WTAV, A = (WTV) " WTAV,
B=(WTV)'W'B, ¢ =cV
7: end while R R )
8 APt = A AP = A;, B¥' =B, C%P' = (
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4\2: H,-Model Reduction for Bilinear Systems
el .

@ Thermal simulations to detect whether temperature changes lead to fatigue or
deterioration of employed materials.

@ Main heat source: thermal losses resulting from current stator coil /rotor.

@ Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remains in feasible region.

@ Finite element analysis on rather complicated geometries ~~ large-scale linear
models with 7/13 parameters.

magnets

coil

stator

rotor

Schematic view of an electrical motor. Bosch integrated motor generator used in hybrid
variants of Porsche Cayenne, VW Touareg.
Pictures: @ BOSCH
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4\1 H,-Model Reduction for Bilinear Systems
el .

Industrial Case Study: Thermal Analysis of Electrical Motor

Output 1 — on stator — front. Output 2 — on top of the coil

500}

@ FEM analysis of thermal model ~ linear =X

parametric systems with n = 41,199, i

. £
m = 4 inputs, and d = 13 parameters, s
340]
= Time (s) Time (s)
@ measurements taken at q 4 heat Output 3 — insulation between coil and stator  Output 4 — insulation on top of the stator

sensors; : "
=420
@ time for 1 transient simulation in 30
COMSOL® ~ 90min; &

@ ROM order i = 300, time for 1 transient DR
simulation ~ 15sec.

20 _10 w0 50
Time (s)

[==COMSOL solution — reduced model].

@ Legend: Temperature curves for six <
different values (5, 25, 45, 65, 85, HE
100[W /m?K]) of the heat transfer i
coefficient on the coil. ‘L S T

—output 1-—output 2~ output 3 output 4
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@ Some Notes on LTV/LPV Systems

Linear time-varying (LTV) systems

E(t)x(t) = A(t)x(t) + B(t)u(t),  E(t),A(t) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.
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S5 @ Some Notes on LTV /LPV Systems

Linear time-varying (LTV) systems

E(t)x(t) = A(t)x(t) + B(t)u(t),  E(t),A(t) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.

Reduced LTV systems
Goal: efficiently compute reduced-order model (ROM):

E(x(t) = A(®)R(t)+B(tu(t),  E(t),A(r) eR™,
9(t) = C(t)%(2), B(t) e R™*™ C(t) € RI*",

MOR for LTV systems:

@ No frequency domain interpretation / transfer function ~ methods based on interpolation
of the transfer function not applicable!
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@ Snapshot-based methods applicable, but input dependent!
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@ Some Notes on LTV/LPV Systems

Linear time-varying (LTV) systems

E()x(t) = A(t)x(t) + B(t)u(r),  E(r),A(r) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.

Reduced LTV systems
Goal: efficiently compute reduced-order model (ROM):

E(x(t) = A(®)R(t)+B(tu(t),  E(t),A(r) eR™,
9(t) = C(t)%(2), B(t) e R™*™ C(t) € RI*",

MOR for LTV systems:

@ No frequency domain interpretation / transfer function ~ methods based on interpolation
of the transfer function not applicable!

@ Snapshot-based methods applicable, but input dependent!

@ Balanced truncation was generalized to LTV systems [Shokoohi/Silverman/Van Dooren 1983,
Lang/Saak/Stykel 2016], but requires time-dependent projection matrices (computed by
Lyapunov differential eqns) ~~ evaluating ROM needs resorting to O(n) computations;
hence, MOR target missed!
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S5 @ Some Notes on LTV /LPV Systems

Linear time-varying (LTV) systems

E(t)x(t) = A(t)x(t) + B(t)u(t),  E(t),A(t) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.

Linear parameter-varying (LPV) systems

E(p(t))x(t) = A(p(t))x(t) + B(p(t))u(t),  E(p(t)),A(p(t)) € R™*",
y(t) = C(p(t))x(1), B(p(t)) € R™™, C(p(t)) € R,
Consequence:

@ LTV systems are LPV systems with p(t) = t.
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Linear time-varying (LTV) systems

E(t)x(t) = A(t)x(t) + B(t)u(t),  E(t),A(t) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.

Linear parameter-varying (LPV) systems

E(p(t))x(t) = A(p(t))x(t) + B(p(t))u(t),  E(p(t)),A(p(t)) € R™*",
y(t) = C(p(t))x(1), B(p(t)) € R™™, C(p(t)) € R,
Consequence:

@ LTV systems are LPV systems with p(t) = t.

@ LTV and LPV systems with linear-affine structure A = Ag + > " ai(t)A; can be
cast as bilinear systems.
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S5 @ Some Notes on LTV /LPV Systems

Linear time-varying (LTV) systems

E(t)x(t) = A(t)x(t) + B(t)u(t),  E(t),A(t) € R™,
y(t) = C()x(1), B(t) e R™™, C(t) € R%*",
Assume the matrix functions A(t), ... to be sufficiently smooth.

Linear parameter-varying (LPV) systems

E(p(t)x(t) = A(p(t))x(t) + B(p(t))u(t),  E(p(t)),A(p(t)) € R™,
y(t) = C(p(t))x(1), B(p(t)) € R™™, C(p(t)) € R,
Consequence:

@ LTV systems are LPV systems with p(t) = t.

@ LTV and LPV systems with linear-affine structure A = Ag + > " ai(t)A; can be
cast as bilinear systems.

@ Can apply MOR methods for bilinear systems!
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@ Some Notes on LTV/LPV Systems

LTV/LPV systems can be interpreted as bilinear systems.
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@ Some Notes on LTV/LPV Systems

LTV/LPV systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to LTV /LPV
systems!

Possibilities as discussed:
@ balanced truncation,

@ H; optimal model reduction.
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@ Some Notes on LTV/LPV Systems

LTV/LPV systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to LTV /LPV
systems!

Possibilities as discussed:
@ balanced truncation,

@ H; optimal model reduction.

Outlook:
o Not implemented yet.
o Need practical examples.
@ Error bounds???

@© P. Benner
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4. Conclusions and Outlook
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.
Open problem in general: optimal interpolation points.
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@ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.
@ We have established a connection between special linear parametric and bilinear

systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.
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decade, in particular those based on rational interpolation.
Open problem in general: optimal interpolation points.

@ We have established a connection between special linear parametric and bilinear
systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.

@ PMOR via H> optimal model reduction for bilinear systems:

o Yields competitive approach, proven in industrial context.
o Still high offline cost (= time for generating reduced-order model).
@ May need to switch to one-sided projection (W = V) to preserve stability.
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\ @ Conclusions and Outlook

@ We have reviewed some of the most popular PMOR methods developed in the last
decade, in particular those based on rational interpolation.

Open problem in general: optimal interpolation points.

@ We have established a connection between special linear parametric and bilinear
systems that automatically yields structure-preserving model reduction techniques
for linear parametric systems.

@ PMOR via H> optimal model reduction for bilinear systems:

o Yields competitive approach, proven in industrial context.
o Still high offline cost (= time for generating reduced-order model).
@ May need to switch to one-sided projection (W = V) to preserve stability.

@ PMOR via balanced truncation for bilinear systems:

@ Requires solution of certain generalized Lyapunov equations.
o Novel numerical algorithms developed, but efficiency needs improvement.

@ Several extensions to nonlinear systems, but just starting.

@ New direction: data-enhanced approaches, merging ideas from Loewner framework
with model-based methods.

@ Most of the methods can be used to significantly accelerate UQ by Monte Carlo or
Stochastic Collocation methods!

@© P. Benner



N. Banagaaya, P. Benner, L. Feng, P. Meuris, and W. Schoenmaker.
An index-aware parametric model order reduction method for parametrized quadratic differential-algebraic
equations. Applied Mathematics and Computation, http://dx.doi.org/10.1016/j.amc.2017.04.024.

U. Baur, C. Beattie, P. Benner, and S. Gugercin.
Interpolatory projection methods for parameterized model reduction.
SIAM Journal on Scientific Computing 33(5):2489-2518, 2011.

U. Baur and P. Benner.
Model reduction for parametric systems using balanced truncation and interpolation.
at-Automatisierungstechnik 57(8):411-419, 2009.

U. Baur, P. Benner, A. Greiner, J.G. Korvink, J. Lienemann, and C. Moosmann.
Parameter preserving model order reduction for mems applications.
Mathematical and Computer Modelling of Dynamical Systems 17(4):297-317, 2011.

P. Benner and T. Breiten.
On M5, model reduction of linear parameter-varying systems.
Proceedings in Applied Mathematics and Mechanics 11:805-806, 2011.

P. Benner and T. Breiten.
Interpolation-based H,-model reduction of bilinear control systems.
SIAM Journal on Matrix Analysis and Applications 33(3):859-885, 2012.

P. Benner and T. Breiten.
Low rank methods for a class of generalized Lyapunov equations and related issues.
Numerische Mathematik, 124(3):441-470, 2013.

cal Systems


http://dx.doi.org/10.1016/j.amc.2017.04.024

P. Benner and A. Bruns.

Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov
algorithm. Mathematical and Computer Modelling of Dynamical Systems, 21(2):103-129, 2015.

P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.).
Model Reduction and Approximation: Theory and Algorithms.
SIAM, Philadelphia, PA, 2017.

P. Benner and T. Damm.
Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems.
SIAM Journal on Control and Optimization 49(2):686-711, 2011.

P. Benner and L. Feng.

A robust algorithm for parametric model order reduction based on implicit moment matching.

In A. Quarteroni and G. Rozza (eds.), Reduced Order Methods for Modeling and Computational
Reduction, MS&A — Modeling, Simulation and Applications, Vol. 9, pp. 159-185, Springer International
Publishing, 2014.

P. Benner, S. Gugercin, and K. Willcox.
A survey of model reduction methods for parametric systems.
SIAM Review 57(4):483-531, 2015.

L. Feng, A.C. Antoulas, and P. Benner.
Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems.
ESAIM: Mathematical Modelling and Numerical Analysis, https://doi.org/10.1051/m2an/2017014.

L. Feng, Y. Yue, N. Banagaaya, P. Meuris, W. Schoenmaker, and P. Benner.
Parametric modeling and model order reduction for (electro-)thermal analysis of nanoelectronic
structures. Journal of Mathematics in Industry 6.10 (16pp.), 2016.

nical Systems


https://doi.org/10.1051/m2an/2017014

@}!@ At Last ...

Proceedings of MoRePaS Il out soon ...

MS&A ~Modeling, Simulation and Applications 17

Model Reduction
of Parametrized
Systems

/:;l Springer

MoRePaS IV — Nantes, April 10-13, 2018.

https://morepas2018.sciencesconf.org/
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