Householder Symposium XIX Spa, Belgium June 9–13, 2014

The Riccati Eigenproblem

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

joint work with Ludwig Kohaupt (BEUTH Hochschule für Technik Berlin)

Overview

- The LQR Problem
- An example: the double inverted pendulum
- Goal
- The Riccati Eigenproblem
 - Problem statement
 - A numerical algorithm
 - Alternatives
 - Example

Conclusions and Outlook

The linear-quadratic regulator (LQR) problem

$$\min_{u \in L_2[0,\infty]} \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt \quad (=\mathcal{V}(x_0))$$
(1)

subject to

X

$$x(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \in \mathbb{R}^n.$$
 (2)

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $0 \le Q = Q^T \in \mathbb{R}^{n \times n}$, $0 < R = R^T \in \mathbb{R}^{m \times m}$.

The linear-quadratic regulator (LQR) problem

$$\min_{u \in L_2[0,\infty]} \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt \quad (=\mathcal{V}(x_0))$$
(1)

subject to

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0 \in \mathbb{R}^n.$$
 (2)

 $A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \ 0 \le Q = Q^T \in \mathbb{R}^{n \times n}, \ 0 < R = R^T \in \mathbb{R}^{m \times m}.$

Solution: optimal control/Riccati feedback

[Kalman 1960]

$$u_*(t) = -R^{-1}B^T X_* x(t),$$
(3)

where $X_* = X_*^T \in \mathbb{R}^{n \times n}$ is the unique positive semidefinite solution of the algebraic Riccati equation (ARE)

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$
(4)

Properties of the Riccati solution

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$

(1) X_* is unique element in $\mathbb{X} := \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$ which is spsd and spd if (A, Q) controllable.

Properties of the Riccati solution

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$

- (1) X_* is unique element in $\mathbb{X} := \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$ which is spsd and spd if (A, Q) controllable.
- (II) $X_* \ge X$ for all $X \in \mathbb{X}$.

Properties of the Riccati solution

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$

- (1) X_* is unique element in $\mathbb{X} := \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$ which is spsd and spd if (A, Q) controllable.
- (II) $X_* \geq X$ for all $X \in \mathbb{X}$.
- (III) X_* is unique element in $\mathbb X$ with

$$\Lambda \left(A - BR^{-1}B^TX \right) \subset \mathbb{C}^- := \{ z \in \mathbb{C} \, | \, \Re(z) < 0 \}$$

$$\implies \lim_{t\to\infty} x(t; u_*) = 0.$$

Properties of the Riccati solution

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$

- (1) X_* is unique element in $\mathbb{X} := \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$ which is spsd and spd if (A, Q) controllable.
- (II) $X_* \geq X$ for all $X \in \mathbb{X}$.
- (III) X_* is unique element in $\mathbb X$ with

$$\begin{split} & \Lambda \left(A - BR^{-1}B^T X \right) \subset \mathbb{C}^- := \{ z \in \mathbb{C} \mid \Re(z) < 0 \} \\ & \Longrightarrow \quad \lim_{t \to \infty} x(t; u_*) = 0. \\ & \mathsf{V}) \ \mathcal{V}(x_0) = x_0^T X_* x_0. \end{split}$$

(|

Properties of the Riccati solution

$$0 = Q + A^T X + XA - XBB^T X =: \mathcal{R}(X).$$

- (1) X_* is unique element in $\mathbb{X} := \{X \in \mathbb{R}^{n \times n} | \mathcal{R}(X) = 0\}$ which is spsd and spd if (A, Q) controllable.
- (II) $X_* \geq X$ for all $X \in \mathbb{X}$.
- (III) X_* is unique element in $\mathbb X$ with

$$\begin{split} & \wedge (A - BR^{-1}B^TX) \subset \mathbb{C}^- := \{ z \in \mathbb{C} \mid \Re(z) < 0 \} \\ & \implies \lim_{t \to \infty} x(t; u_*) = 0. \\ (\text{IV}) \ & \mathcal{V}(x_0) = x_0^T X_* x_0. \\ (\text{V}) \ & u_*(t) = \operatorname{argmin}_{u(t)} \frac{d}{dt} \| x(t) \|_{X_*} \text{ pointwise in } t. \end{split}$$

LQR Control in Action

An example: the double inverted pendulum

Movie thanks to Patrick Kürschner, Chris Miller; 3 June 2014.

Motivation

Goal: Avoid overshoot!

Avoid/reduce large increase in $||x(t)||_2$ in transient phase ("overshoot").

$$A = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Q = R \quad \rightsquigarrow \quad X = \begin{bmatrix} 0.1628 & 1.1398 \\ 1.1398 & 16.1214 \end{bmatrix}$$

Ideally, guarantee monotonic decrease of ||x(t)|| from $x_0!$

The Riccati Eigenproblem

Problem statement

Motivated by the Lyapunov eigenproblem [KOHAUPT 2008]

 $A^T P + P A = \lambda P,$

and the improved stability results for free dynamical systems $\dot{x}=Ax$ using $\|$. $\|_P$ instead of $\|$. $\|_2$, we investigate the

Riccati eigenproblem (RICEP)

 $A^{T}X + XA - XGX = \lambda X,$

where for the LQR problem, $G = BR^{-1}B^{T}$. We aim at eigenvalues $\lambda \in \mathbb{R}$ with $\lambda < 0$ and "eigenvectors" X > 0.

The Riccati Eigenproblem

Problem statement

Motivated by the Lyapunov eigenproblem [KOHAUPT 2008]

 $A^T P + P A = \lambda P,$

and the improved stability results for free dynamical systems $\dot{x}=Ax$ using $\|$. $\|_P$ instead of $\|$. $\|_2$, we investigate the

Riccati eigenproblem (RICEP)

 $A^{T}X + XA - XGX = \lambda X,$

where for the LQR problem, $G = BR^{-1}B^T$. We aim at eigenvalues $\lambda \in \mathbb{R}$ with $\lambda < 0$ and "eigenvectors" X > 0.

Q: can the transient behavior of closed-loop system be improved by replacing ARE solution by appropriate eigenvector of RICEP?

The Riccati Eigenproblem

Problem statement

Motivated by the Lyapunov eigenproblem [KOHAUPT 2008]

 $A^T P + P A = \lambda P,$

and the improved stability results for free dynamical systems $\dot{x}=Ax$ using $\|$. $\|_P$ instead of $\|$. $\|_2$, we investigate the

Riccati eigenproblem (RICEP)

 $A^{T}X + XA - XGX = \lambda X,$

where for the LQR problem, $G = BR^{-1}B^T$. We aim at eigenvalues $\lambda \in \mathbb{R}$ with $\lambda < 0$ and "eigenvectors" X > 0.

Q: can the transient behavior of closed-loop system be improved by replacing ARE solution by appropriate eigenvector of RICEP? **Note:** formally, we replace constant term Q in ARE by $-\lambda X$ in RECIP. This corresponds to modified cost functional

$$\min_{u\in L_2[0,\infty]}\int_0^\infty -\lambda x(t)^T X x(t) + u(t)^T R u(t) dt.$$

Theorem

For $G = G^T \ge 0$, consider RICEP

$$A^{T}X + XA - XGX = \lambda X,$$

Suppose $\lambda < 0$, X > 0 is an eigenpair of RICEP, then: a) X is stabilizing, i.e., $\Lambda(A - GX) \subset \mathbb{C}^-$.

The Riccati Eigenproblem

Theorem

For $G = G^T \ge 0$, consider RICEP

$$A^{T}X + XA - XGX = \lambda X,$$

Suppose $\lambda < 0$, X > 0 is an eigenpair of RICEP, then:

a) X is stabilizing, i.e., $\Lambda(A - GX) \subset \mathbb{C}^-$.

b) Consider the minimization problem

$$\min_{u(t)} \frac{d}{dt} \|x(t)\|_X \quad \text{pointwise in } t.$$

Its optimal solution is $u_*(t) = -R^{-1}B^T X x(t)$.

Theorem

For $G = G^T \ge 0$, consider RICEP

$$A^{T}X + XA - XGX = \lambda X,$$

Suppose $\lambda < 0$, X > 0 is an eigenpair of RICEP, then:

a) X is stabilizing, i.e., $\Lambda(A - GX) \subset \mathbb{C}^-$.

b) Consider the minimization problem

$$\min_{u(t)} \frac{d}{dt} \|x(t)\|_X \quad \text{pointwise in } t.$$

Its optimal solution is $u_*(t) = -R^{-1}B^T X x(t)$.

c) It holds

$$\frac{d}{dt}\|x(t)\|_X \le \rho \|x(t)\|_X.$$

 \Rightarrow Strict mon. decrease of $||x(t)||_X \searrow 0 \rightsquigarrow$ vibration suppression.

The Riccati Eigenproblem A numerical algorithm

Lyapunov Eigenvalue Iteration

INPUT. $A \in \mathbb{R}^{n \times n}$, $0 \le G = G^T \in \mathbb{R}^{n \times n}$, X_0 with $\Lambda (A - \frac{1}{2}GX_0) \subset \mathbb{C}^-$. **OUTPUT.** Riccati eigenpair (λ, X) with $\lambda < 0$, $X = X^T \ge 0$. FOR j = 1, ...Solve Lyapunov eigenproblem

$$(A - \frac{1}{2}GX_j)^T X_{j+1} + X_{j+1}(A - \frac{1}{2}GX_j) = \lambda_j X_{j+1}$$

for minimal real eigenvalue. ENDFOR

In case of convergence, $X_j \rightarrow X$, $\lambda_j \rightarrow \lambda$.

Properties of Lyapunov eigenvalue iteration

• Partial convergence results.

The Riccati Eigenproblem

Properties of Lyapunov eigenvalue iteration

- Partial convergence results.
- Lyapunov eigenvalue problem is a standard matrix eigenvalue problem:

$$\left(\left(A-\frac{1}{2}GX_{j}\right)\otimes I_{n}+I_{n}\otimes\left(A-\frac{1}{2}GX_{j}\right)\right)x_{j+1}=\lambda_{j}x_{j+1},$$

where $x_j = \text{vec}(X_j)$. Note: there exist at least *n* negative real eigenvalues $\lambda_k(A) + \overline{\lambda_k(A)}$.

Properties of Lyapunov eigenvalue iteration

- Partial convergence results.
- Lyapunov eigenvalue problem is a standard matrix eigenvalue problem:

$$\left(\left(A-\frac{1}{2}GX_{j}\right)\otimes I_{n}+I_{n}\otimes\left(A-\frac{1}{2}GX_{j}\right)\right)x_{j+1}=\lambda_{j}x_{j+1},$$

where $x_j = \operatorname{vec}(X_j)$.

Note: there exist at least *n* negative real eigenvalues $\lambda_k(A) + \lambda_k(A)$.

• Alternative: solve non-homogeneous Lyapunov eigenproblem:

$$(A-GX_j)^T X_{j+1} + X_{j+1}(A-GX_j) = \lambda_j X_{j+1} - X_j GX_j.$$

Alternative Riccati-like eigenproblems

• Replacing Q in LQR cost functional by $\lambda X + XGX \Longrightarrow$

$$(A-GX)^TX+X(A-GX)=\lambda X.$$

Advantages:

- $\frac{d}{dt} \| x(t) \|_X = \rho \| x(t) \|_X.$
- More natural Lyapunov eigenvalue iteration.

Alternative Riccati-like eigenproblems

• Replacing Q in LQR cost functional by $\lambda X + XGX \Longrightarrow$

$$(A-GX)^TX+X(A-GX)=\lambda X.$$

Advantages:

- $\frac{d}{dt} \| x(t) \|_X = \rho \| x(t) \|_X.$
- More natural Lyapunov eigenvalue iteration.
- Q Lyapunov eigenvalue problem naturally has rank-1 eigenvectors P_k = y_ky^H_k, where y_k are eigenvectors of A. → Consider the coupled nonlinear EVP:

$$(A - GX)^T X_k + X_k (A - GX) = \lambda_k X_k, \quad k = 1, \dots, n,$$
$$X = \sum_{k=1}^n X_k.$$

We have a Lyapunov eigenvalue style iteration for this.

The Riccati Eigenproblem

Example

RICEP

Ø

The Riccati Eigenproblem

Example: coupled conveyor belts

Open-loop dynamics

The Riccati Eigenproblem

Example: coupled conveyor belts

The Riccati Eigenproblem

Example: coupled conveyor belts

Conclusions and Outlook

- The Riccati EVP is a nonlinear EVP with linear dependence on the eigenvalue, but nonlinear in the eigenvector.
- Structure of spectrum and geometry of eigenspaces widely unknown.
- Solutions corresponding to real negative eigenvalues can be used in feedback control instead of the classical LQR solution.
- Effects of overshoot in the transient phase can be avoided or reduced, vibration suppression in some cases.
- Which eigenpair provides best feedback controller?
- Better numerical methods for the Riccati EVP are required.

Further reading:

P. Benner and L. Kohaupt.

On a nonlinear Riccati matrix eigenproblem. MPI Magdeburg Preprint MPIMD/14-?, 2014 (upcoming).

L. Kohaupt.

Solution of the matrix eigenvalue problem $VA + A^*V = \mu V$ with applications to the study of free linear systems.

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 213(1):142-165, 2008.