

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Low-rank Tensor Methods for Optimal Control of Uncertain Flow Problems

Peter Benner

Joint work with Sergey Dolgov (U Bath) Martin Stoll (TU Chemnitz) Akwum Onwunta (U Maryland)

ICIAM 2019 MS PDE constrained optimization under uncertainty July 18, 2019

1. Introduction

Big data in flow control Low-rank solvers for high-dimensional problems PDE-constrained optimization under uncertainty

- 2. Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty
- 3. Conclusions

• Assume you want to design an airfoil, wing, car, etc.

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...
- Gedankenexperiment:

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

• Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in *x*-, *y*-, and *z*-direction, plus the pressure;

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

• Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in x-, y-, and z-direction, plus the pressure;
- we need 1,000 time steps to reach steady-state;

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

• Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in *x*-, *y*-, and *z*-direction, plus the pressure;
- we need 1,000 time steps to reach steady-state;
- we have 10 different design parameters, and want to test 10 values for each of them \rightsquigarrow 10^{10} configurations, i.e., 10^{10} transient simulations.

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in *x*-, *y*-, and *z*-direction, plus the pressure;
- we need 1,000 time steps to reach steady-state;
- we have 10 different design parameters, and want to test 10 values for each of them \rightsquigarrow 10^{10} configurations, i.e., 10^{10} transient simulations.
- Assuming you have a HPC cluster allowing you to do so in reasonable time, just storing all trajectories (using floats) requires

 $10^{10} \cdot 10^3 \cdot 10^6 \cdot 4 \cdot 4 = 1.6 \cdot 10^{20}$ by tes ≈ 160 exabytes of memory!

Data can be compressed, but first it needs to be generated and stored...

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

• Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in *x*-, *y*-, and *z*-direction, plus the pressure;
- we need 1,000 time steps to reach steady-state;
- we have 10 different design parameters, and want to test 10 values for each of them \rightsquigarrow 10^{10} configurations, i.e., 10^{10} transient simulations.
- Assuming you have a HPC cluster allowing you to do so in reasonable time, just storing all trajectories (using floats) requires

 $10^{10} \cdot 10^3 \cdot 10^6 \cdot 4 \cdot 4 = 1.6 \cdot 10^{20}$ by tes ≈ 160 exabytes of memory!

Data can be compressed, but first it needs to be generated and stored...

• Why not starting with a compressed data format from the very beginning, and computing all trajectories all-at-once?

- Assume you want to design an airfoil, wing, car, etc.
- This requires 3D flow simulations for varying configurations, and you want to save the data for visualization, control design, optimization, comparisons, ...

• Gedankenexperiment:

- we use a grid with 10^6 nodes, for each node we store 4 real numbers: the velocity in *x*-, *y*-, and *z*-direction, plus the pressure;
- we need 1,000 time steps to reach steady-state;
- we have 10 different design parameters, and want to test 10 values for each of them \rightsquigarrow 10^{10} configurations, i.e., 10^{10} transient simulations.
- Assuming you have a HPC cluster allowing you to do so in reasonable time, just storing all trajectories (using floats) requires

 $10^{10} \cdot 10^3 \cdot 10^6 \cdot 4 \cdot 4 = 1.6 \cdot 10^{20}$ bytes ≈ 160 exabytes of memory!

Data can be compressed, but first it needs to be generated and stored...

- Why not starting with a compressed data format from the very beginning, and computing all trajectories all-at-once?
- This is the idea we pursue in this talk, where we store the data in a compressed (low-rank) 1 + 10 + 1(4)-way tensor! (Above example → terabyte-range.)

• Physical, biological, chemical, etc. processes involve uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

• available data are incomplete;

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs ("aleatoric uncertainty");

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs ("aleatoric uncertainty");
- data are unpredictable, e.g, wind shear ("epistemic uncertainty").

CSC CSC

Low-rank Solvers for High-dimensional Problems

Curse of Dimensionality

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d .

 \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Curse of Dimensionality

CSC

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

Curse of Dimensionality

CSC

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

Low-rankness of X̃ := VW^T ≈ X follows from properties of A and B, and in particular (approximate) separability u(x, y) ≈ v(x)w(y), f(x, y) ≈ g(x)h(y); e.g., [PENZL '00, GRASEDYCK '04].

Curse of Dimensionality

CSC

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of X̃ := VW^T ≈ X follows from properties of A and B, and in particular (approximate) separability u(x, y) ≈ v(x)w(y), f(x, y) ≈ g(x)h(y); e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.

Curse of Dimensionality

CSC

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of X̃ := VW^T ≈ X follows from properties of A and B, and in particular (approximate) separability u(x, y) ≈ v(x)w(y), f(x, y) ≈ g(x)h(y); e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.
- Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$

Curse of Dimensionality

CSC

[Bellman '57]

Increase in matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of X̃ := VW^T ≈ X follows from properties of A and B, and in particular (approximate) separability u(x, y) ≈ v(x)w(y), f(x, y) ≈ g(x)h(y); e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.
- Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$

 The rank of [AV_k V_k] ∈ ℝ^{n,2r}, [W_k AW_k] ∈ ℝ^{nt,2r} increases but can be controlled using truncation. → Low-rank Krylov subspace solvers. [KRESSNER/TOBLER, B/BREITEN, SAVOSTYANOV/DOLGOV, ...].

We consider the problem:

$$\min_{y \in \mathcal{Y}, u \in \mathcal{U}} \mathcal{J}(y, u) \quad \text{subject to} \quad c(y, u) = 0,$$

where we assume that

- c(y, u) = 0 represents a (linear or nonlinear) PDE (system) with uncertain coefficient(s);
- the state y and control u are random fields, related by a sufficiently smooth map y = S(u);
- the cost functional $\mathcal J$ is a real-valued Fréchet-differentiable functional on $\mathcal Y \times \mathcal U$.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain inflow).

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain inflow). Would require ≈ 10 petabytes (PB) = 10,000 TB to store the solution vector!

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain inflow). Would require ≈ 10 **petabytes (PB)** = 10,000 **TB** to store the solution vector! Using low-rank tensor techniques, we need $\approx 7 \cdot 10^7$ **bytes** = 70 **GB** to solve the KKT system in MATLAB in less than one hour!

1. Introduction

2. Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

Model problems Numerical discretization techniques The tensor train format Alternating linear solvers Numerical Experiments

3. Conclusions

Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

• We model this as a boundary control problem.

CSC

• Our constraint c(y, u) = 0 is given by the unsteady incompressible Navier-Stokes equations with uncertain viscosity $\nu := \nu(\omega)/$ inflow condition $\theta_2(t, x, \omega) = 0$ and

$$\theta_1(t, x, \omega) = \left((1 + x_2)(1 - x_2) + \sum_{k=1}^m k^{-\gamma - 1/2} \cdot \sin(\pi k x_2) \cdot \xi_k(\omega) \right) (1 - e^{-t}).$$

Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

Model Problem 2: uncertain flow in a backward facing step domain

CSC

- We model this as a boundary control problem.
- Our constraint c(y, u) = 0 is given by the unsteady incompressible Navier-Stokes equations with uncertain inflow condition $\theta_2(t, x, \omega) = 0$ and

$$\theta_1(t, x, \omega) = \left(4x_2(1-x_2) + \frac{1}{2}\sum_{k=1}^m k^{-\gamma-1/2}\sin(2\pi k x_2)\xi_k(\omega)\right)(1-e^{-t}).$$

Minimize:

$$\mathcal{J}(\mathbf{v}, u) = \frac{1}{2} \| \operatorname{curl} \mathbf{v} \|_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}^2 + \frac{\beta}{2} \| u \|_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}^2$$
(1)

(2)

subject to

$$\begin{split} \frac{\partial v}{\partial t} &- \nu \Delta v + (v \cdot \nabla) v + \nabla p = 0, & \text{in } \mathcal{D}, \\ &- \nabla \cdot v = 0, & \text{in } \mathcal{D}, \\ &v = \theta, & \text{on } \Upsilon_{in}, \\ &v = 0, & \text{on } \Upsilon_{wall}, \\ &\frac{\partial v}{\partial n} = u, & \text{on } \Upsilon_c, \\ &\frac{\partial v}{\partial n} = 0, & \text{on } \Upsilon_{out}, \\ &v(\cdot, 0, \cdot) = v_0, & \text{in } \mathcal{D}. \end{split}$$

Sc CSC Model Problem Set-up (cf. [Powell/Silvester '12])

We assume

- $\nu(\omega) = \nu_0 + \nu_1 \xi(\omega), \ \nu_0, \nu_1 \in \mathbb{R}^+, \ \xi \sim \mathcal{U}(-1, 1).$
- $\mathbb{P}\left(\omega \in \Omega : \nu(\omega) \in [\nu_{\min}, \nu_{\max}]\right) = 1$, for some $0 < \nu_{\min} < \nu_{\max} < +\infty$.
- \Rightarrow velocity v, control u and pressure p are random fields on $L^2(\Omega)$.
- $L^2(\Omega) := L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space.
- $L^2(0, T; \mathcal{D}) := L^2(\mathcal{D}) \times L^2(\mathcal{T}).$

CSC Model Problem Set-up (cf. [Powell/Silvester '12])

We assume

- $\nu(\omega) = \nu_0 + \nu_1 \xi(\omega), \ \nu_0, \nu_1 \in \mathbb{R}^+, \ \xi \sim \mathcal{U}(-1, 1).$
- $\mathbb{P}\left(\omega \in \Omega : \nu(\omega) \in [\nu_{\min}, \nu_{\max}]\right) = 1$, for some $0 < \nu_{\min} < \nu_{\max} < +\infty$.
- \Rightarrow velocity v, control u and pressure p are random fields on $L^2(\Omega)$.
- $L^2(\Omega) := L^2(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space.

•
$$L^2(0, T; \mathcal{D}) := L^2(\mathcal{D}) \times L^2(\mathcal{T}).$$

Computational challenges

- Nonlinearity (due to the nonlinear convection term $(v \cdot \nabla)v$).
- Uncertainty (due to random $\nu(\omega)$ and $\sigma(t, x, \omega)$).
- High dimensionality (of the resulting linear/optimality systems).

OTD Strategy and Picard (Oseen) Iteration ~~

state equation

$$egin{aligned} & v_t -
u \Delta v + (ar{v} \cdot
abla) \, v +
abla p = 0 \ &
abla \cdot v = 0 + \ \text{boundary conditions} \end{aligned}$$

adjoint equation

$$-\chi_t - \Delta \chi - (\bar{v} \cdot \nabla) \chi + (\nabla \bar{v})^T \chi + \nabla \mu = -\operatorname{curl}^2 v$$
$$\nabla \cdot \chi = 0$$
on $\Upsilon_{wall} \cup \Upsilon_{in} : \quad \chi = 0$ on $\Upsilon_{out} \cup \Upsilon_c : \quad \frac{\partial \chi}{\partial n} = 0$
$$\chi(\cdot, T, \cdot) = 0$$

gradient equation

$$\beta u + \chi|_{\Upsilon_c} = 0.$$

OTD Strategy and Picard (Oseen) Iteration ~>>

state equation

$$egin{aligned} & \mu_t -
u \Delta v + (ar v \cdot
abla) \, v +
abla p = 0 \ &
abla \cdot v = 0 + \ \text{boundary conditions} \end{aligned}$$

adjoint equation

$$-\chi_t - \Delta \chi - (\bar{v} \cdot \nabla) \chi + (\nabla \bar{v})^T \chi + \nabla \mu = -\operatorname{curl}^2 v$$
$$\nabla \cdot \chi = 0$$
on $\Upsilon_{wall} \cup \Upsilon_{in} : \quad \chi = 0$ on $\Upsilon_{out} \cup \Upsilon_c : \quad \frac{\partial \chi}{\partial n} = 0$
$$\chi(\cdot, T, \cdot) = 0$$

gradient equation

$$\beta u + \chi|_{\Upsilon_c} = 0.$$

- \bar{v} denotes the velocity from the previous Oseen iteration.
- Having solved this system, we update $\bar{v} = v$ until convergence.

• Velocity v and control u are of the form

$$z(t, x, \omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J_{\nu}} z_{jk}(t) \phi_j(x) \psi_k(\xi) = \sum_{k=0}^{P-1} z_k(t, x) \psi_k(\xi).$$

• Pressure *p* is of the form

$$p(t,x,\omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J_P} p_{jk}(t) \tilde{\phi}_j(x) \psi_k(\xi) = \sum_{k=0}^{P-1} p_k(t,x) \psi_k(\xi).$$

• Here,

- $\{\phi_j\}_{j=1}^{J_v}$ and $\{\tilde{\phi}_j\}_{j=1}^{J_p}$ are Q2–Q1 finite elements (inf-sup stable); • $\{\psi_k\}_{k=0}^{P-1}$ are Legendre polynomials.
- Implicit Euler/dG(0) used for temporal discretization.

Linearization and SGFEM discretization yields the following saddle point system

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y \\ u \\ \lambda \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} f \\ 0 \\ g \end{bmatrix}}_{b}.$$

Each of the block matrices in A is of the form

$$\sum_{\alpha=1}^R X_\alpha \otimes Y_\alpha \otimes Z_\alpha,$$

corresponding to temporal, stochastic, and spatial discretizations.

Linearization and SGFEM discretization yields the following saddle point system

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} y \\ u \\ \lambda \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} f \\ 0 \\ g \end{bmatrix}}_{b}.$$

Each of the block matrices in A is of the form

$$\sum_{\alpha=1}^R X_\alpha \otimes Y_\alpha \otimes Z_\alpha,$$

corresponding to temporal, stochastic, and spatial discretizations.

Size: $\sim 3n_t P(J_v + J_p)$, e.g., for P = 10, $n_t = 2^{10}$, $J \approx 10^5 \rightsquigarrow \approx 10^9$ unknowns!

🐼 🚥 Tensor Techniques

Separation of variables and low-rank approximation

• Approximate:
$$\underbrace{\mathbf{x}(i_1, \dots, i_d)}_{\text{tensor}} \approx \underbrace{\sum_{\alpha} \mathbf{x}_{\alpha}^{(1)}(i_1) \mathbf{x}_{\alpha}^{(2)}(i_2) \cdots \mathbf{x}_{\alpha}^{(d)}(i_d)}_{\text{tensor product decomposition}}$$

Goals:

- Store and manipulate x
- Solve equations Ax = b

 $\mathcal{O}(dn)$ cost instead of $\mathcal{O}(n^d)$. $\mathcal{O}(dn^2)$ cost instead of $\mathcal{O}(n^{2d})$.

• Discrete separation of variables:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\alpha=1}^{r} \begin{bmatrix} v_{1,\alpha} \\ \vdots \\ v_{n,\alpha} \end{bmatrix} \begin{bmatrix} w_{\alpha,1} & \cdots & w_{\alpha,n} \end{bmatrix} + \mathcal{O}(\varepsilon).$$

Diagrams:

- Rank r ≪ n.
- $mem(v) + mem(w) = 2nr \ll n^2 = mem(x).$
- Singular Value Decomposition (SVD) $\implies \epsilon(r)$ optimal w.r.t. spectral/Frobenius norm.

🐼 🕼 Data Compression in Higher Dimensions

Tensor Trains/Matrix Product States

[WILSON '75, WHITE '93, VERSTRAETE '04, OSELEDETS '09/'11]

For indices

$$\overline{i_{p} \dots i_{q}} = (i_{p} - 1)n_{p+1} \dots n_{q} + (i_{p+1} - 1)n_{p+2} \dots n_{q} + \dots + (i_{q-1} - 1)n_{q} + i_{q},$$

the TT format can be expressed as

$$\mathbf{x}(\overline{i_1\dots i_d}) = \sum_{\alpha=1}^{\mathsf{r}} \mathbf{x}_{\alpha_1}^{(1)}(i_1) \cdot \mathbf{x}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdot \mathbf{x}_{\alpha_2,\alpha_3}^{(3)}(i_3) \cdots \mathbf{x}_{\alpha_{d-1},\alpha_d}^{(d)}(i_d)$$

or

$$\mathbf{x}(\overline{i_1\ldots i_d}) = \mathbf{x}^{(1)}(i_1)\cdots \mathbf{x}^{(d)}(i_d), \quad \mathbf{x}^{(k)}(i_k) \in \mathbb{R}^{r_{k-1}\times r_k} \text{ w/ } r_0, r_d = 1,$$

or

Storage: $\mathcal{O}(dnr^2)$ instead of $\mathcal{O}(n^d)$.

Solution Contractions Overloading Tensor Operations

Always work with factors $\mathbf{x}^{(k)} \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$ instead of full tensors.

Sum z = x + y → increase of tensor rank r_z = r_x + r_y.
TT format for a high-dimensional operator

$$A(\overline{i_1 \dots i_d}, \overline{j_1 \dots j_d}) = \mathbf{A}^{(1)}(i_1, j_1) \cdots \mathbf{A}^{(d)}(i_d, j_d)$$

- *Matrix-vector* multiplication y = Ax; \rightsquigarrow tensor rank $r_y = r_A \cdot r_x$.
- Additions and multiplications *increase* TT ranks.
- Decrease ranks quasi-optimally via QR and SVD.

Solving KKT System using TT Format

The dimensionality of the saddle point system is vast \Rightarrow use tensor structure and low tensor ranks.

🐼 宽 Solving KKT System using TT Format

The dimensionality of the saddle point system is vast \Rightarrow use tensor structure and low tensor ranks.

Use tensor train format to approximate the solution as

$$\mathbf{y}(i_1,\ldots,i_d) \approx \sum_{\alpha_1\ldots\alpha_{d-1}=1}^{r_1\ldots r_{d-1}} \mathbf{y}_{\alpha_1}^{(1)}(i_1) \mathbf{y}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdots \mathbf{y}_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(i_{d-1}) \mathbf{y}_{\alpha_{d-1}}^{(d)}(i_d),$$

and represent the coefficient matrix as

$$\mathcal{A}(i_{1}\cdots i_{d}, j_{1}\cdots j_{d}) \approx \sum_{\beta_{1}\dots\beta_{d-1}=1}^{R_{1}\dots R_{d-1}} \mathbf{A}_{\beta_{1}}^{(1)}(i_{1}, j_{1}) \mathbf{A}_{\beta_{1},\beta_{2}}^{(2)}(i_{2}, j_{2})\cdots \mathbf{A}_{\beta_{d-1}}^{(d)}(i_{d}, j_{d}),$$

where the multi-index $\mathbf{i} = (i_1, \dots, i_d)$ is implied by the parametrization of the approximate solutions of the form

$$\mathbf{z}(t,\xi_1,\ldots,\xi_N,\mathbf{x}), \quad \mathbf{z}=\mathbf{y},\mathbf{u},\mathbf{p},$$

i.e., solution vectors are represented by *d*-way tensor with d = N + 2.

Central Question

How to solve Ax = b if Krylov solvers become too expensive?

Central Question

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:

•
$$A(i,j) = \mathbf{A}^{(1)}(i_1,j_1) \cdots \mathbf{A}^{(d)}(i_d,j_d).$$

•
$$b(i) = \mathbf{b}^{(1)}(i_1) \cdots \mathbf{b}^{(d)}(i_d).$$

Seek the solution in the same format:

•
$$\mathbf{x}(i) = \mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(d)}(i_d).$$

Central Question

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:

•
$$A(i,j) = \mathbf{A}^{(1)}(i_1,j_1) \cdots \mathbf{A}^{(d)}(i_d,j_d).$$

•
$$b(i) = \mathbf{b}^{(1)}(i_1) \cdots \mathbf{b}^{(d)}(i_d)$$
.

Seek the solution in the same format:

•
$$\mathbf{x}(i) = \mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(d)}(i_d).$$

Use a new block-variant of *Alternating Least Squares* in a new block TT format to overcome difficulties with indefiniteness of KKT system matrix.

• If
$$A = A^{\top} > 0$$
: minimize $J(x) = x^{\top}Ax - 2x^{\top}b$.

Alternating Least Squares (ALS):

• replace $\min_{\mathbf{x}} J(\mathbf{x})$ by iteration

size n^d size $r^2 n$

• for k = 1, ..., d, solve $\min_{\mathbf{x}^{(k)}} J(\mathbf{x}^{(1)}(i_1) \cdots \mathbf{x}^{(k)}(i_k) \cdots \mathbf{x}^{(d)}(i_d))$. (all other blocks are fixed)

1. $\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
3. $\hat{\mathbf{x}}^{(3)} = \arg\min_{\mathbf{x}^{(3)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg \min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg \min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
3. $\hat{\mathbf{x}}^{(3)} = \arg \min_{\mathbf{x}^{(3)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$
4. $\mathbf{x}^{(2)} = \arg \min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\hat{\mathbf{x}}^{(3)}(i_3))$

1.
$$\hat{\mathbf{x}}^{(1)} = \arg\min_{\mathbf{x}^{(1)}} J(\mathbf{x}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$$

2. $\hat{\mathbf{x}}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3))$

3.
$$\hat{\mathbf{x}}^{(3)} = \arg\min_{\mathbf{x}^{(3)}} J\left(\hat{\mathbf{x}}^{(1)}(i_1)\hat{\mathbf{x}}^{(2)}(i_2)\mathbf{x}^{(3)}(i_3)\right)$$

4.
$$\mathbf{x}^{(2)} = \arg\min_{\mathbf{x}^{(2)}} J\left(\hat{\mathbf{x}}^{(1)}(i_1)\mathbf{x}^{(2)}(i_2)\hat{\mathbf{x}}^{(3)}(i_3)\right)$$

5. repeat 1.-4. until convergence

If we differentiate J w.r.t. TT blocks, we see that...

• ... each step means solving a Galerkin linear system

$$\left(X_{\neq k}^{\top}AX_{\neq k}\right)\hat{\mathbf{x}}^{(k)} = \left(X_{\neq k}^{\top}b\right) \in \mathbb{R}^{nr^2}.$$
• $X_{\neq k} = \underbrace{\operatorname{TT}\left(\hat{\mathbf{x}}^{(1)}\cdots\hat{\mathbf{x}}^{(k-1)}\right)}_{n^{k-1}\times r_{k-1}} \otimes \underbrace{I}_{n\times n} \otimes \underbrace{\operatorname{TT}\left(\mathbf{x}^{(k+1)}\cdots\mathbf{x}^{(d)}\right)}_{n^{d-k}\times r_{k}}$

If we differentiate J w.r.t. TT blocks, we see that...

• ... each step means solving a Galerkin linear system

$$\left(X_{\neq k}^{\top}AX_{\neq k}\right)\hat{\mathbf{x}}^{(k)} = \left(X_{\neq k}^{\top}b\right) \in \mathbb{R}^{nr^{2}}.$$
• $X_{\neq k} = \underbrace{\operatorname{TT}\left(\hat{\mathbf{x}}^{(1)}\cdots\hat{\mathbf{x}}^{(k-1)}\right)}_{n^{k-1}\times r_{k-1}} \otimes \underbrace{I}_{n\times n} \otimes \underbrace{\operatorname{TT}\left(\mathbf{x}^{(k+1)}\cdots\mathbf{x}^{(d)}\right)}_{n^{d-k}\times r_{k}}.$

Properties of ALS include:

- + Effectively 1D complexity in a prescribed format.
- Tensor format (ranks) is fixed and cannot be adapted.
- Convergence may be very slow, stagnation is likely.

- Density Matrix Renormalization Group (DMRG) [WHITE '92] - updates *two* blocks $\mathbf{x}^{(k)}\mathbf{x}^{(k+1)}$ simultaneously.
- Alternating Minimal Energy (AMEn) [DOLGOV/SAVOSTYANOV '13] – augments $X_{\neq k}$ by a TT block of the residual $\mathbf{z}^{(k)}$.

- Density Matrix Renormalization Group (DMRG) [WHITE '92] - updates *two* blocks $\mathbf{x}^{(k)}\mathbf{x}^{(k+1)}$ simultaneously.
- Alternating Minimal Energy (AMEn) [DOLGOV/SAVOSTYANOV '13]

 augments X_{≠k} by a TT block of the *residual* z^(k).

But..., what about saddle point systems A?

Recall our KKT system:

$$\underbrace{\begin{bmatrix} M_y & 0 & L^* \\ 0 & M_u & N^\top \\ L & N & 0 \end{bmatrix}}_{A} \begin{bmatrix} y \\ u \\ \lambda \end{bmatrix} = \begin{bmatrix} f \\ 0 \\ g \end{bmatrix}$$

• The whole matrix is indefinite $\Rightarrow X_{\neq k}^{\top} A X_{\neq k}$ can be degenerate.

Block ALS [B./Dolgov/ONWUNTA/STOLL 2016, 2017]

• Work-around: Block TT representation

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \lambda \end{bmatrix} = \mathbf{x}_{\alpha_1}^{(1)} \otimes \cdots \otimes \begin{bmatrix} \mathbf{y}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{u}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{\lambda}_{\alpha_{k-1},\alpha_k}^{(k)} \end{bmatrix} \otimes \cdots \otimes \mathbf{x}_{\alpha_{d-1}}^{(d)}$$

• $X_{\neq k}$ is the same for y, u, λ .

CSC

Block ALS [B./Dolgov/ONWUNTA/STOLL 2016, 2017]

• Work-around: Block TT representation

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \lambda \end{bmatrix} = \mathbf{x}_{\alpha_1}^{(1)} \otimes \cdots \otimes \begin{bmatrix} \mathbf{y}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{u}_{\alpha_{k-1},\alpha_k}^{(k)} \\ \mathbf{\lambda}_{\alpha_{k-1},\alpha_k}^{(k)} \end{bmatrix} \otimes \cdots \otimes \mathbf{x}_{\alpha_{d-1}}^{(d)}$$

- $X_{\neq k}$ is the same for y, u, λ .
- Project each submatrix:

CSC

$$\begin{bmatrix} \hat{M}_{y} & 0 & \hat{L}^{*} \\ 0 & \hat{M}_{u} & \hat{N}^{\top} \\ \hat{L} & \hat{N} & 0 \end{bmatrix} \begin{bmatrix} y^{(k)} \\ u^{(k)} \\ \lambda^{(k)} \end{bmatrix} = \begin{bmatrix} \hat{f} \\ 0 \\ \hat{g} \end{bmatrix}, \qquad \widehat{(\cdot)} = X_{\neq k}^{\top}(\cdot) X_{\neq k}.$$

🞯 🚥 Numerical Experiments

Kármán vortex street

Vary one of the default parameters:

- TT truncation tolerance $\varepsilon = 10^{-4}$,
- mean viscosity $u_0 = 1/20$,
- uncertainty $\nu_1 = 1/80$,
- regularization/penalty parameter $\beta = 10^{-1}$,
- number of time steps: $n_t = 2^{10}$,
- time horizon T = 30,
- spatial grid size $h = 1/4 \iff J = 2488$,
- max. degree of Legendre polynomials: P = 8.

Solve projected linear systems using block-preconditioned GMRES using efficient approximation of Schur complement [B/ONWUNTA/STOLL 2016].

Varying regularization β (left) and time T (right)

CSC

CSC

🐼 🚥 Varying the Viscosity

Figure: Left: $\nu_0 = 1/10$, ν_1 is varied. Right: ν_1 and ν_0 are varied together as $\nu_1 = 0.25\nu_0$

CSC Controlled von Kármán Vortex Street

Scontrolled von Kármán Vortex Street

©Peter Benner, benner@mpi-magdeburg.mpg.de Low-rank Tensor Methods for Optimal Control of Uncertain Flow

31/36

Sec Emprical Complexity Study

Balance all errors w.r.t.

- time, spatial, and stochastic discretization;
- TT truncation.
- Call the balanced error ε .

Sec Emprical Complexity Study

This indicates asymptotic complexity ε^{-2} , asymptotically equal complexity as for deterministic problem.

Sec Emprical Complexity Study

Balance all errors w.r.t. • time, spatial, and stochastic discretization; • TT truncation. Call the balanced error ε .

This indicates asymptotic complexity ε^{-2} , asymptotically equal complexity as for deterministic problem.

This compares favorably to

- Monte-Carlo $\mathcal{O}(\varepsilon^{-4})$,
- quasi Monte-Carlo / stochastic collocation $\mathcal{O}(\varepsilon^{-3})$.

Science Results for Backward Facing Step

Relative errors for different TT approximation thresholds (left) and varying *m* (right)

Parameters:

viscosity $\nu \equiv \nu_0 = 10^{-3}$, final time T = 20, regularization parameter $\beta = 10^{-2}$, KL decay rate $\gamma = 2.5$ for inflow condition.

🐼 🗯 Results for Backward Facing Step

Total CPU time (left) and TT rank (right) versus total approximation error.

Parameters:

viscosity $\nu \equiv \nu_0 = 10^{-3}$, final time T = 20, regularization parameter $\beta = 10^{-2}$, KL decay rate $\gamma = 2.5$ for inflow condition.

- 1. Introduction
- 2. Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty
- 3. Conclusions

Sconclusions & Outlook

- Low-rank tensor solver for unsteady heat and Navier-Stokes equations with uncertain viscosity.
- Similar techniques already used for Stokes(-Brinkman) optimal control problems.
- Adapted AMEn (TT) solver to saddle point systems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:

Sconclusions & Outlook

- Low-rank tensor solver for unsteady heat and Navier-Stokes equations with uncertain viscosity.
- Similar techniques already used for Stokes(-Brinkman) optimal control problems.
- Adapted AMEn (TT) solver to saddle point systems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:
 - many parameters coming from uncertain geometry or Karhunen-Loève expansion of random fields;

Basic observation: the more parameters, the more significant is the complexity reduction w.r.t. memory — up to a factor of 10^9 for the control problem for a backward facing step set-up.

HPC implementation of AMEn-like solver to deal with even larger problems.

 P. Benner, S. Dolgov, A. Onwunta, and M. Stoll. Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 304:26–54, 2016.
P. Benner, A. Onwunta, and M. Stoll.

Low rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 3(1):622–649, 2015.

P. Benner, A. Onwunta, and M. Stoll.
Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs.
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 37(2):491–518, 2016.

P. Benner, S. Dolgov, A. Onwunta, and M. Stoll. Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods. arXiv:1703.06097, March 2017.