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@ Assume you want to design an airfoil, wing, car, etc.

@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
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@ Assume you want to design an airfoil, wing, car, etc.

@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
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@@ Introduction

@ Assume you want to design an airfoil, wing, car, etc.
@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
— we use a grid with 10° nodes, for each node we store 4 real numbers: the
velocity in x-, y-, and z-direction, plus the pressure;
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@@ Introduction

@ Assume you want to design an airfoil, wing, car, etc.
@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
— we use a grid with 10° nodes, for each node we store 4 real numbers: the
velocity in x-, y-, and z-direction, plus the pressure;
— we need 1,000 time steps to reach steady-state;
— we have 10 different design parameters, and want to test 10 values for each
of them ~» 10'° configurations, i.e., 10*° transient simulations.
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@@ Introduction

@ Assume you want to design an airfoil, wing, car, etc.
@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
— we use a grid with 10° nodes, for each node we store 4 real numbers: the
velocity in x-, y-, and z-direction, plus the pressure;
— we need 1,000 time steps to reach steady-state;
— we have 10 different design parameters, and want to test 10 values for each
of them ~» 10'° configurations, i.e., 10*° transient simulations.
@ Assuming you have a HPC cluster allowing you to do so in reasonable time, just
storing all trajectories (using floats) requires
101 .10%-10°-4 -4 = 1.6 - 10%®bytes ~ 160 exabytes of memory!
Data can be compressed, but first it needs to be generated and stored. ..
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@ Assume you want to design an airfoil, wing, car, etc.
@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
— we use a grid with 10° nodes, for each node we store 4 real numbers: the
velocity in x-, y-, and z-direction, plus the pressure;
— we need 1,000 time steps to reach steady-state;
— we have 10 different design parameters, and want to test 10 values for each
of them ~» 10'° configurations, i.e., 10*° transient simulations.
@ Assuming you have a HPC cluster allowing you to do so in reasonable time, just
storing all trajectories (using floats) requires
101 .10%-10°-4 -4 = 1.6 - 10%®bytes ~ 160 exabytes of memory!
Data can be compressed, but first it needs to be generated and stored. ..
@ Why not starting with a compressed data format from the very beginning, and
computing all trajectories all-at-once?
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@@ Introduction

@ Assume you want to design an airfoil, wing, car, etc.
@ This requires 3D flow simulations for varying configurations, and you want to save
the data for visualization, control design, optimization, comparisons, ...
@ Gedankenexperiment:
— we use a grid with 10° nodes, for each node we store 4 real numbers: the
velocity in x-, y-, and z-direction, plus the pressure;
— we need 1,000 time steps to reach steady-state;
— we have 10 different design parameters, and want to test 10 values for each
of them ~» 10'° configurations, i.e., 10*° transient simulations.
@ Assuming you have a HPC cluster allowing you to do so in reasonable time, just
storing all trajectories (using floats) requires
101 .10%-10°-4 -4 = 1.6 - 10%®bytes ~ 160 exabytes of memory!
Data can be compressed, but first it needs to be generated and stored. ..
@ Why not starting with a compressed data format from the very beginning, and
computing all trajectories all-at-once?
@ This is the idea we pursue in this talk, where we store the data in a compressed
(low-rank) 1 + 10 + 1(4)-way tensor! (Above example ~~ terabyte-range.)
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@ Physical, biological, chemical, etc. processes involve uncertainties.
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@ Models of these processes should account for these uncertainties.
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@ Physical, biological, chemical, etc. processes involve uncertainties.

@ Models of these processes should account for these uncertainties.

@ PDEs governing the processes can involve uncertain coefficients, or uncertain
sources, or uncertain geometry.
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@ Models of these processes should account for these uncertainties.

@ PDEs governing the processes can involve uncertain coefficients, or uncertain
sources, or uncertain geometry.

@ Uncertain parameters modeled as random variables ~~ random PDEs,
potentially also containing uncertain inputs (controls) ~ (generalized)
polynomial chaos approach ~~ high-dimensional PDE!
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@ Models of these processes should account for these uncertainties.

@ PDEs governing the processes can involve uncertain coefficients, or uncertain
sources, or uncertain geometry.

@ Uncertain parameters modeled as random variables ~~ random PDEs,
potentially also containing uncertain inputs (controls) ~ (generalized)
polynomial chaos approach ~~ high-dimensional PDE!

@ Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy
or ... processes!
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sources, or uncertain geometry.

@ Uncertain parameters modeled as random variables ~~ random PDEs,
potentially also containing uncertain inputs (controls) ~ (generalized)
polynomial chaos approach ~~ high-dimensional PDE!
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or ... processes!

Uncertainty arises because

@ available data are incomplete;
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potentially also containing uncertain inputs (controls) ~ (generalized)
polynomial chaos approach ~~ high-dimensional PDE!

@ Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy
or ... processes!

Uncertainty arises because

@ available data are incomplete;
@ data are predictable, but difficult to measure, e.g., porosity above oil
reservoirs (" aleatoric uncertainty”);
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@'@ Introduction

Here: parameters result from stochastic modeling of coefficients

@ Physical, biological, chemical, etc. processes involve uncertainties.

@ Models of these processes should account for these uncertainties.

@ PDEs governing the processes can involve uncertain coefficients, or uncertain
sources, or uncertain geometry.

@ Uncertain parameters modeled as random variables ~~ random PDEs,
potentially also containing uncertain inputs (controls) ~ (generalized)
polynomial chaos approach ~~ high-dimensional PDE!

@ Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy
or ... processes!

Uncertainty arises because

@ available data are incomplete;

@ data are predictable, but difficult to measure, e.g., porosity above oil
reservoirs (" aleatoric uncertainty”);

o data are unpredictable, e.g, wind shear ("epistemic uncertainty”).
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@ Low-rank Solvers for High-dimensional Problems

Curse of Dimensionality [BELLMAN ’57]

Increase in matrix size of discretized differential operator for h — g by factor 29.
~~ Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).
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@ Low-rank Solvers for High-dimensional Problems

Curse of Dimensionality [BELLMAN ’57

Increase in matrix size of discretized differential operator for h — g by factor 29.

~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(I@A+AR)x=Ax=b = AX + XAT =B

with x = vec (X) and b = vec (B) with low-rank right hand side B ~ b1 b] .
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Curse of Dimensionality [BELLMAN ’57]
Increase in matrix size of discretized differential operator for h — g by factor 29.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).
Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(I@A+AR)x=Ax=b — AX + XAT =B

with x = vec (X) and b = vec (B) with low-rank right hand side B ~ b1 b] .
@ Low-rankness of X := VWT ~ X follows from properties of A and B, and in

particular (approximate) separability u(x,y) ~ v(x)w(y), f(x,y) = g(x)h(y); e.g.,
[PENZL 00, GRASEDYCK '04].
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~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).
Consider —Au = f in [0, 1] x [0, 1] C R?, uniformly discretized as
(I@A+AR)x=Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ b1 b] .
@ Low-rankness of X := VWT ~ X follows from properties of A and B, and in

particular (approximate) separability u(x,y) ~ v(x)w(y), f(x,y) = g(x)h(y); e.g.,
[PENZL 00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.
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~~ Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = fin [0, 1] x [0, 1] C R?, uniformly discretized as
(I@A+AR)x=Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ b1 b] .

@ Low-rankness of X := VWT ~ X follows from properties of A and B, and in
particular (approximate) separability u(x,y) ~ v(x)w(y), f(x,y) = g(x)h(y); e.g.,
[PENZL 00, GRASEDYCK '04].
@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.

® Hence,  Avec(Xc) = Avec (ViW/]) = vec ([AVk, Vel [ Wa, AWk]T>
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@ Low-rank Solvers for High-dimensional Problems

Curse of Dimensionality [BELLMAN ’57]

Increase in matrix size of discretized differential operator for h — g by factor 29.
~~ Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider —Au = fin [0, 1] x [0, 1] C R?, uniformly discretized as
(I@A+AR)x=Ax=b — AX + XAT =B
with x = vec (X) and b = vec (B) with low-rank right hand side B ~ b1 b] .
@ Low-rankness of X := VWT ~ X follows from properties of A and B, and in

particular (approximate) separability u(x,y) ~ v(x)w(y), f(x,y) = g(x)h(y); e.g.,
[PENZL 00, GRASEDYCK '04].

@ We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.
® Hence,  Avec(Xc) = Avec (ViW/]) = vec ([AVk, Vel [ Wa, AWk]T>

@ The rank of [AVk V4] € R™, [Wi AW,] € R™?* increases but can be
controlled using truncation. ~» Low-rank Krylov subspace solvers.
[KRESSNER/TOBLER, B/BREITEN, SAVOSTYANOV/DOLGOV, ...].
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%’{@ PDE-constrained Optimization under Uncertainty

We consider the problem:

yer)r)’lgeuj(y, u) subject to c(y,u) =0,
where we assume that

@ ¢(y,u) =0 represents a (linear or nonlinear) PDE (system) with
uncertain coefficient(s);

o the state y and control u are random fields, related by a sufficiently
smooth map y = S(u);

@ the cost functional J is a real-valued Fréchet-differentiable functional
on)Y xU.
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& ® This Talk

Curse of Dimensionality [BELLMAN ’57]

Increase matrix size of discretized differential operator for h — g by factor 2.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from
PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.
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Increase matrix size of discretized differential operator for h — g by factor 2.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk
Apply low-rank iterative solvers to discrete optimality systems resulting from
PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has n = 1.29 - 10'® unknowns (KKT system for
unsteady incompressible Navier-Stokes control problem with uncertain inflow).
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Increase matrix size of discretized differential operator for h — g by factor 2.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Apply low-rank iterative solvers to discrete optimality systems resulting from

Goal of this talk

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has n = 1.29 - 10'® unknowns (KKT system for
unsteady incompressible Navier-Stokes control problem with uncertain inflow).

Would require ~ 10 petabytes (PB) = 10,000 TB to store the solution vector!
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& ® This Talk

Curse of Dimensionality [BELLMAN ’57]

Increase matrix size of discretized differential operator for h — g by factor 2.
~> Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk
Apply low-rank iterative solvers to discrete optimality systems resulting from
PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has n = 1.29 - 10'® unknowns (KKT system for
unsteady incompressible Navier-Stokes control problem with uncertain inflow).

Would require ~ 10 petabytes (PB) = 10,000 TB to store the solution vector!

Using low-rank tensor techniques, we need ~ 7 - 107 bytes = 70 GB to solve the
KKT system in MATLAB in less than one hour!
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1. Introduction

2. Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

Model problems
Numerical discretization techniques

The tensor train format
Alternating linear solvers
Numerical Experiments

3. Conclusions
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(0,-1) T wan

@ We model this as a boundary control problem.

@ Our constraint ¢(y, u) = 0 is given by the unsteady incompressible
Navier-Stokes equations with uncertain viscosity v := v(w)/ inflow condition
02(t, x,w) =0 and

01(t, x,w) = ((1 +x)(1—x2) + Z k=772 . sin(mkxy) ~§k(w)> (1—e™").

k=1
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@ Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

(_171) Twall (571)

— (0’ 0) : Tout
T wai E

(0,-1) T wai
@ We model this as a boundary control problem.

@ Our constraint ¢(y, u) = 0 is given by the unsteady incompressible
Navier-Stokes equations with uncertain inflow condition 0>(t,x,w) = 0 and

01(t, x,w) = <4X2 (1-—x)+ %i Y2 in(2m ko )€ (w )) (L—eh).
k=1
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@ Model Problem

Minimize:
(v,u) = EHCUT VlIZ20, rp)er2@) T EHUHLz(O,T;D)®L2(Q) (1)
subject to
ov .
T —vAv+(v-V)v+Vp=0, in D,

~V-v=0, in D,

v=~0, on Tj,

a“// - 07 on Twalla (2)
— =u, on T,

on

ov

% - 07 on Touty

v(-,0,:) =w, in D.
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@ MOdG' PrOblem Set‘up (cf. [POWELL/SILVESTER '12])

We assume
o v(w) =vy+ 1é(w), o, 11 €RT, E~U(-1,1).
0 P(weQ:v(w) € [Vmin, Vmax]) = 1, for some 0 < Vpmin < Vmax < +00.
@ = velocity v, control u and pressure p are random fields on L%(Q).
o [%(Q):= L%(Q,F,P) is a complete probability space.
e [%(0, T;D) := L%(D) x L*(T).
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@ MOdE' PrObIem Set-up (cf. [POWELL/SILVESTER ’12])

We assume
o v(w) =vy+ 1é(w), o, 11 €RT, E~U(-1,1).
0 P(weQ:v(w) € [Vmin, Vmax]) = 1, for some 0 < Vpmin < Vmax < +00.
@ = velocity v, control u and pressure p are random fields on L%(Q).
o [2(Q) := L%(Q,F,P) is a complete probability space.
e [%(0, T;D) := L%(D) x L*(T).

Computational challenges

@ Nonlinearity (due to the nonlinear convection term (v - V)v) .

@ Uncertainty (due to random v(w) and o(t, x,w)).

@ High dimensionality (of the resulting linear/optimality systems).
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@ Optimality System in Function Space: Optimize-then-Discretize (OTD)

state equation
vi —vAv+ (V- V)v+yp=0
V - v =0+ boundary conditions
adjoint equation
—xt = Ax — (V- V) x + (V7)) x + v = —curl’v

V-x=0
on T UTi: X = 0
ox
Tour UTe: = =
on : U on
X('7 T?) _0

gradient equation
/Bu + X|Tc = O'
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@ Optimality System in Function Space: Optimize-then-Discretize (OTD)

state equation
vi —vAv+ (V- V)v+yp=0
V - v =0+ boundary conditions
adjoint equation
—xt = Ax — (V- V) x + (V7)) x + v = —curl’v

V-x=0
on TuanUTi: x=0
ox
Tour UTe: = =
on : U on
X('7 T?) =0

gradient equation
/Bu + X|Tc = O'

@ v denotes the velocity from the previous Oseen iteration.
@ Having solved this system, we update v = v until convergence.
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@ Stochastic Galerkin Finite Element Method

@ Velocity v and control u are of the form

P-1 J,

z(t, X, w) Z szk )0 (X)k(€) = ) zi(t, x) i (&)

k=0 j=1 0

F
)

==
Il

@ Pressure p is of the form

P-1 Jp

p(t, x,w) Z ijk ¢J Zpk (t, x)Vi(§)-

k=0 j=1

@ Here,

o {o; JJ and {qﬁj 1 are Q2-Q1 finite elements (inf-sup stable);
° {wk},’; are Legendre polynomials.

o Implicit Euler/dG(0) used for temporal discretization.
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@ Discrete Stochastic Control Problem

Linearization and SGFEM discretization yields the following saddle point system
M,
0
L

0 L y f

M 0

N 0 A g
-~ =~

<
=2
—
c
I

A X b

Each of the block matrices in A is of the form

R
D Xa® Yo ® Za,

a=1

corresponding to temporal, stochastic, and spatial discretizations.
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@ Discrete Stochastic Control Problem

Linearization and SGFEM discretization yields the following saddle point system
M,
0
L

0 L y f

M ul =10

N 0 A g
-~ =~

<
=
_|

A X b

Each of the block matrices in A is of the form

R
D Xa® Yo ® Za,

a=1

corresponding to temporal, stochastic, and spatial discretizations.

Size: ~ 3n:P(J, + Jp), e.g., for P =10, n; = 210 J 2 10° ~~ =~ 10% unknowns!
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@ Tensor Techniques

Separation of variables and low-rank approximation

@ Approximate: x(i,. .., i) & Zx(l) i) x(2) (in) - x(d)( ).
——

tensor
tensor product decomposition
Goals:
@ Store and manipulate x O(dn) cost instead of O(n9).
@ Solve equations Ax = b O(dn?) cost instead of O(n?).
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X1,1 0 Xin r | Via

=57 e o Wa] +OE).

o Diagrams:
o
X ~ v w
—— - 2
I ‘ I ‘ ik ‘
@ Rank r < n.

o mem(v) + mem(w) = 2nr < n? = mem(x).
e Singular Value Decomposition (SVD)
=  ¢(r) optimal w.r.t. spectral/Frobenius norm.
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@@ Data Compression in Higher Dimensions

[WiILsoN '75, WHITE 93, VERSTRAETE ‘04, OSELEDETS '09/°11]

For indices
ip-dqg = (ip = 1)Mps1 -+ ng + (fp+1 — L)npi2 -+~ ng + -+ - + (ig—1 — 1)ng + g,

the TT format can be expressed as

r
x(iv - ia) = > x0(i)  xE oy (i2) - xSy (i) -+ %K) o, (ia)
a=1

or
x(i - dg) = xXP (i) - xDi),  xF (i) e R w/ ro,rg = 1,
or
W e Sl ey [ e ] e R S @

Storage: O(dnr?) instead of O(n“).

er Benner, benner@mpi-magdeburg.mpg.de -rank Tensor Methods for Optimal Control of Uncertain Flow


mailto:benner@mpi-magdeburg.mpg.de

@ Overloading Tensor Operations

Always work with factors x(K) € RM%-1Xm*"k instead of full tensors.

Sumz=x+y ~» increase of tensor rank r, = r,+ry.

TT format for a high-dimensional operator

A(iy - igogi--Ja) = A iy, j1) - AD (g, ja)

Matrix-vector multiplication y = Ax;  ~ tensor rank r, = ra - ry.

Additions and multiplications increase TT ranks.

Decrease ranks quasi-optimally via QR and SVD.
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@ Solving KKT System using TT Format

The dimensionality of the saddle point system is vast = use tensor structure and
low tensor ranks.
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The dimensionality of the saddle point system is vast = use tensor structure and
low tensor ranks.

Use tensor train format to approximate the solution as

r...rg—1

y(i, i)~ Yy )Y () -y (a—a)y’D) (ia),

al...ad,1=1

and represent the coefficient matrix as

Ry...Ry_1
. . . D/ a2 . - d)y . .
Al igy gy~ > AP, )AD , (2.2) - AY (g, ja),
Bi...Ba—1=1
where the multi-index i = (i1,. .., lq) is implied by the parametrization of the

approximate solutions of the form

z(t)é.l)"'vgNax)) zZ=y,up,

i.e., solution vectors are represented by d-way tensor with d = N + 2.
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@ Linear Systems in TT Format

Central Question

How to solve Ax = b if Krylov solvers become too expensive?
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@ Linear Systems in TT Format

Central Question

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:
o A(i.j) =AW (iy, j1) - A (i, ja).
@ b(i) = bW (i) --- b (iy).

Seek the solution in the same format:

o x(i) =xM(i)---x9(iy).
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@ Linear Systems in TT Format

Central Question

How to solve Ax = b if Krylov solvers become too expensive?

Data are given in TT format:
o A(i.j) =AW (iy, j1) - A (i, ja).
@ b(i) = bW (i) --- b (iy).

Seek the solution in the same format:

o x(i) =xM(i)---x9(iy).

Use a new block-variant of Alternating Least Squares in a new block TT format
to overcome difficulties with indefiniteness of KKT system matrix.
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@ Alternating Least Squares Method [KrooNENBERG ’80, DE LATHAUWER 00, SCHNEIDER ’12]

o If A= AT > 0: minimize J(x) = x"Ax — 2x T b.

Alternating Least Squares (ALS):

e replace min, J(x) by iteration size n?

’n

o fork=1,...,d, size r
solve minyg J (xM(iy) - - x (i) - - x(D(iy)).

(all other blocks are fixed)
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@ ALS for d =3

1. %) = arg min,q) J (x(l)(,'l)x(2)(i2)x(3)(i3))

(©Peter Benner, benner@mpi-magdeburg.mpg.de Low-rank Tensor Methods for Optimal Control of Uncertain Flow


mailto:benner@mpi-magdeburg.mpg.de

@ ALS for d =3

1. %) = arg min,q) J (x(l)(,'l)x(2)(i2)x(3)(i3))
2. %) = arg min, ) J (52(1)(fl)x(z)(i2)x(3)(i3))
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@ ALS for d =3

1. %) = arg min,q) J (x(l)(,'l)x(2)(i2)x(3)(i3))
2. %) = arg min, ) J (52(1)(fl)x(z)(i2)x(3)(i3))
3. %0 = argmin e J (X ()%? (b)x®(i3))
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d=3

%0 = arg min, ) J

el N

(
%) = arg ming() J (
(
(

x?) = arg min, ) J
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d=3

x(D (i1)x®) (i2)x (’3))
M ()x@ (i2)xB)(i3))
MW ()& )(Iz)x(3)(/3))

)

2
x(?) = argmin @) J (M) (i)x®) (1)%C) (i3)

repeat 1.—4. until convergence

£ = arg min,q) J (
%2 = arg min, ) J (f(
%) = argminyg) J (%

o &~ W=

(©Peter Benner, benner@mpi-magdeburg.mpg.de Low-rank Tensor Methods for Optimal Control of Uncertain Flow 23/36


mailto:benner@mpi-magdeburg.mpg.de

@ ALS = Projection method

If we differentiate J w.r.t. TT blocks, we see that. ..

@ ...each step means solving a Galerkin linear system
(XLAx) 20 = (xLb) € R,

o Xy =TT (,;(1)...;(<k—1)> ® __®TT (X(k+1)...x(d>>.

~~ nxn ~~
nk=lxr_4q nd—kxry
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@ ALS = Projection method

If we differentiate J w.r.t. TT blocks, we see that. ..

@ ...each step means solving a Galerkin linear system
(XLAx) 20 = (xLb) € R,

o Xy =TT (,A(u)...;((k—l)) ® __®TT (x(k+1)---x(d)).

~~ nxn N~
nk=lxr_4q nd—kxry

Properties of ALS include:

+ Effectively 1D complexity in a prescribed format.
—  Tensor format (ranks) is fixed and cannot be adapted.
—  Convergence may be very slow, stagnation is likely.
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@ ALS: Getting rid of “ "

@ Density Matrix Renormalization Group (DMRG) [WHITE ’92]
— updates two blocks x(K)x(k*1) simultaneously.

o Alternating Minimal Energy (AMEn) [DoLcov/SAVOSTYANOV '13]
— augments X, by a TT block of the residual z(F).
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@ Density Matrix Renormalization Group (DMRG) [WHITE "92]
— updates two blocks x(K)x(k*1) simultaneously.

o Alternating Minimal Energy (AMEn)

[DOLGOV/SAVOSTYANOV '13]
— augments X by a TT block of the residual z(F).

But. .., what about saddle point systems A?

o Recall our KKT system:

My

0 L*] [y f

0 M, NT| |u|l =0

L N 0] A g
A

@ The whole matrix is indefinite = X;—kAX;ﬁk can be degenerate.
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@ Block ALS [B./DoLcov/ONWUNTA/STOLL 2016, 2017]

@ Work-around: Block TT representation

()

(k) T
Y Yy (d)
_ (1 d
up =Xu ® ® Ua, g, ® ®xad—1‘
A
AOtk—17041<_
Xtk
. 3
P e P S| ey [ | ey [ el
AR
i1‘ rz‘ ik—l‘

ik‘

@ Xy is the same for y, u, \.
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@ Block ALS [B./DoLcov/ONWUNTA/STOLL 2016, 2017]

@ Work-around: Block TT representation

(k) T
Y Yy (d)
_ (1 d
ul =Xa ® ® Ua, g, ® ®xad—1
A
AOtk—17041<_
Xtk
. 3
P e P S| ey [ | ey [ B )
AR
i ‘ i ‘ ik—1 ‘ k1 ig

ik‘
@ Xy is the same for y, u, \.
o Project each submatrix:
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& ® Numerical Experiments

Vary one of the default parameters:

TT truncation tolerance ¢ = 1074,
mean viscosity vp = 1/20,

uncertainty v; = 1/80,

number of time steps: n; = 210,
time horizon T = 30,
spatial grid size h=1/4 ~ J = 2488,

@ max. degree of Legendre polynomials: P = 8.

[*]
[*]
[+
o regularization/penalty parameter § = 1071,
°
°
°

Solve projected linear systems using block-preconditioned GMRES using efficient
approximation of Schur complement [B/ONwUNTA/STOLL 2016].
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@ Varying regularization 3 (left) and time T (right)

logyo CPU Time TT rank % Mem CPU Time TTrank % Mem
1,200F
112
- 60
1, 110 I
55
1,000 |- 11
411
50
10.9
h 900 -
1% Jos
09 800
Jo. . . . J
0 40 60 80 1060 07
logio 8 T
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Varying Spatial h (left) / Temporal n; (right) Mesh

log;o CPU Time TT rank % Mem CPU Time TT rank % Mem
48y R0 L6
o 80 5,000 *
el | q25
170 114
44f
4,000
4.2 12 42
4 11 3,000
38 115
36 708 2,000 w 40
A 41
34 106 130
1,000
32| 000 el s
‘ ‘ 20 Jo4 ‘ ‘ w :
4 9 10 11 120
loga2(1/h) logane
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Varying the Viscosity

CPU Time TTrank  %Mem  CPU Time TTrank % Mem
1,100 7120 50001 o
| 4 418
1,000 [} 11t
g 4,000 180 1qg
900 1t
800 109 3000| q70 14
700 108 Lo 112
600 Ho07 1,
150
H0s6
500 {08
\ \ ] \
2 4 6 8 0 08 10 20 30 20 5070
vo/v1 1/vo

Figure: Left: vg = 1/10, 14 is varied. Right: v; and v are varied together as
vy = 0.251/0
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@ Controlled von Karman Vortex Street
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@ Emprical Complexity Study

Balance all errors w.r.t.

@ time, spatial, and stochastic
discretization;

o TT truncation.

Call the balanced error €.

-8 10+ Sl
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@ Emprical Complexity Study

Balance all errors w.r.t.

@ time, spatial, and stochastic
discretization;

o TT truncation.

Call the balanced error €.

-8 10+ Sl
[3

This indicates asymptotic complexity e~2, asymptotically equal complexity
as for deterministic problem.
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@ Emprical Complexity Study

Balance all errors w.r.t.

@ time, spatial, and stochastic
discretization;

o TT truncation.

Call the balanced error .

-8 10+ Sl
[3

This indicates asymptotic complexity e~2, asymptotically equal complexity
as for deterministic problem.
This compares favorably to

@ Monte-Carlo O(e7%),
@ quasi Monte-Carlo / stochastic collocation O(s~3).

(©Peter Benner, benner@mpi-magdeburg.mpg.de Low-rank Tensor Methods for Optimal Control of Uncertain Flow 32/36


mailto:benner@mpi-magdeburg.mpg.de

@ Results for Backward Facing Step

Parameters:
viscosity v = vg = 1073, final time T = 20, regularization parameter 3 = 1072,
KL decay rate v = 2.5 for inflow condition.

relative error

——
0t lIve = villz/lIvllz var(v)
wevee [ — 0o/ [l o, v var(u)
— 0.24-¢ 02y Ty exp(—1.1m —0.7)

10

10-¢

1077

1078

1077 109 107° 104 1072
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@ Results for Backward Facing Step

Parameters:
viscosity v = vg = 1073, final time T = 20, regularization parameter 3 = 1072,
KL decay rate v = 2.5 for inflow condition.

max TT rank
CPU time (min) r
50 —e— TT rank
a0t
— O(|loge])
102 a0l
10t 30 +
- 20 +
10+
101
0 .
107? +
104 107* 1072 101 w08 102
€ €
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1. Introduction

2. Optimal Control of Unsteady Navier-Stokes Equations under Uncertainty

3. Conclusions
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@@ Conclusions & QOutlook

o Low-rank tensor solver for unsteady heat and Navier-Stokes equations
with uncertain viscosity.

o Similar techniques already used for Stokes(-Brinkman) optimal control
problems.

o Adapted AMEn (TT) solver to saddle point systems.

o With 1 stochastic parameter, the scheme reduces complexity by up to
2-3 orders of magnitude.

o To consider next:
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@@ Conclusions & QOutlook

o Low-rank tensor solver for unsteady heat and Navier-Stokes equations
with uncertain viscosity.

o Similar techniques already used for Stokes(-Brinkman) optimal control
problems.

o Adapted AMEn (TT) solver to saddle point systems.

o With 1 stochastic parameter, the scheme reduces complexity by up to
2-3 orders of magnitude.

@ To consider next:

o many parameters coming from uncertain geometry or Karhunen-Loéve
expansion of random fields;
Basic observation: the more parameters, the more significant is the
complexity reduction w.r.t. memory — up to a factor of 10° for the
control problem for a backward facing step set-up.

o HPC implementation of AMEn-like solver to deal with even larger
problems.
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