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Problem

Model Reduction
Given a physical problem with dynamics described by the states
x € R", where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:
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where X = UX VT is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.
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Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

~ r T

X = =1 O‘J'UjVj ,
where X = ULV is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.

Idea for dimension reduction

Instead of X save uq,...,u,, o1Vi,...,0,V,.
~» memory = 4r X (nyx + n,) bytes.
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Singular Values of Image Data Matrices

Model Reduction

: Clown Gatlinburg
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y(t) = gt x(t), u(t))

Systems Theory

£ {30 2 MU A=

with
m states x(t) € R”,
m inputs u(t) € R™,
m outputs y(t) € RP.
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Xx(t) = f(t,x(t), u(t = X(t) = f(t,x(t), u(t
e > {ygt; = g((t X(( )) U((t)))) > {yEt; = g((t,&((t)): u((t))))’
e Sy m states x(t) € R”, m states X(t) € R, r < n
m inputs u(t) € R, m inputs u(t) € R”,
m outputs y(t) € RP. m outputs y(t) € RP.

|ly — 7| < tolerance - ||ul| for all admissible input signals.
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State-Space Description for |1/O-Relation

Linear Systems

Hou oy, yp(t)=[° CeAtBu(r)dr forall t > 0.

Note: operator S not suitable for approximation as singular values are
continuous; for model reduction use Hankel operator H.

‘H compact = H has discrete SVD ~~ Hankel singular values
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g(t,x,u) = Cx+ Du, C e RP*", D e RP*™,

T State-Space Description for |/O-Relation

Hou oy, yp(t)=[° CeAtBu(r)dr forall t > 0.

Hankel Singular Values for Atmospheric Storm Model

o
—=—HSVs
machine precision

10"

‘H compact = ~

‘H has discrete SVD o 107 N

) \\

~> Hankel singular values —
1079 \
10

o 100 200 300 400 500 600
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Linear Systems

State-Space Description for |1/O-Relation

Hou oy, yp(t)=[° CeAtBu(r)dr forall t > 0.

‘H compact = H has discrete SVD

= Best approx. problem w.r.t. 2-ind. operator norm well-posed
= solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.
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Ax+ Bu, AER™" B R™m
Cx+Du, CeRPX" D ecRPXm,

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) — x(s), x(t) — sx(s))
to linear system with x(0) = 0:

0 -
—_~
\»H uH
xX X
= =
SN— N
I

Linear Systems

sx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),
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f(t,x,u) = Ax+ Bu, AeRM" BeR™mMm
g(t,x,u) = Cx+ Du, C eRPX" D e RPX™,

Linear Systems
Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) — x(s), X(t) — sx(s))
to linear system with x(0) = 0:

sx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields 1/O-relation in frequency domain:

y(s) = ( C(sl,— A)1B + D)u(s)

=:G(s)
G is the transfer function of X.
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Feter Beme Approximate the dynamical system

% = Ax+Bu, AcCRM™n B cRoXm
Linear Systems y = CX + Du, C S RPXH7 D € RPXm,

by reduced-order system

A% +Bu, AR, BeRxm
y = Cx+Du, ~ CeRPX", DeRPX™M

x>+
|

of order r < n, such that
ly =9l = |Gu — Gul| < |G — G||||ul| < tolerance - ||u]].

= Approximation problem: min_ .

&)< 16 = Gl
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A feedback controller (dynamic
compensator) is a linear system of
order N, where

RS m input = output of plant,
m output = input of plant.

vV =Ev+Fy

Modern (LQG-/Hz-/Hoo-) control u=Hv+Ky

design: N > n

= reduce order of original system.
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REbUeTioN Progressive miniaturization: Moore’s Law states that the

Peter Benne number of on-chip transistors doubles each 12 (now: 18) months.

m Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Application ® Increase in packing density requires modeling of interconncet to
e ensure that thermic/electro-magnetic effects do not disturb
signal transmission.

m Linear systems in micro electronics occur through modified
nodal analysis (MNA) for RLC networks, e.g., when

— decoupling large linear subcircuits,

— modeling transmission lines (interconnect, powergrid),
parasitic effects,

— modeling pin packages in VLSI chips,

— modeling circuit elements described by Maxwell's equation
using partial element equivalent circuits (PEEC).
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MEMS /Microsystems

B RELATED Typical problem in MEMS simulation:
MODEL . . . .
REDUCTION coupling of different models (thermic, structural, electric,

Peter Benner electro-magnetic) during simulation.

Problems and Challenges:

m Reduce simulation times by replacing sub-systems with their
Aot reduced-order models.

Areas

m Stability properties of coupled system may deteriorate through
model reduction even when stable sub-systems are replaced by
stable reduced-order models.

m Multi-scale phenomena.

¥,
ur Thermodynamical [l

Model

s Structural ’s
Dynamics
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Goals

BALANCING- . .
BT m Automatic generation of compact models.
REDUCTION

m Satisfy desired error tolerance for all admissible input signals,

Peter Benner .
l.e., want

lly — ¥ < tolerance - | ul| Yu e L(R,R™).

= Need computable error bound/estimate!
m Preserve physical properties:
— stability (poles of G in C™),
— minimum phase (zeroes of G in C7),
— passivity (“system does not generate energy” ).
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Padé-Approximation and Krylov Subspace Methods
Balanced Truncation

many more. ..

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x ~ VW T x =: X, where

range (V) =V, range(W)=W, W'V =1,
Then, with & = WTx, we obtain x ~ V% and

[Ix = X[ =[x = V&I
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VY = span(vy, ..., V),

Modal vk = eigenvectors corresp. to “dominant” modes = eigenvalues of A.

Truncation

Properties:

m Simple computation for large-scale systems, using, e.g., Krylov
subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

m Error bound:
1

G — Glloo < condy (T) || G121 B2]|2— ’
[ oo < conda ()l Call2 1Bl e,

where T1AT = diag(A;, Ay).
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VY = span(vy, ..., V),

vx = eigenvectors corresp. to “dominant” modes = eigenvalues of A.

Difficulties:

m Eigenvalues contain only limited system information.

Modal
Truncation

m Dominance measures are difficult to compute.
(L1rz 1979: use Jordan canoncial form; otherwise merely
heuristic criteria, e.g., VARGA '95.)

m Error bound not computable for really large-scale problems.
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Rty B m Consider

Ex=Ax+ Bu, y=(Cx
with rational transfer function G(s) = C(sE — A)~1B.
m For 5o € A (A E):

Padé
Approximation

G(s) = mo+m(s—s)+ m(s—s)°+...
m As reduced-order model use rth Padé approximate G to G:
G(s) = G(s) + O((s — %0)*"),

i.e., mj=mjforj=0,...,2r—1
~» moment matching if sp < oo,

~~ partial realization if s = co.
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MODEL
REDUCTION

By B m Moments need not be computed explicitly; moment matching is
equivalent to projecting state-space onto

V =span(B,AB,...,A'B) = K(A, B,r)

Padé (where A = (soE — A)'E, B = (sE — A)~'B) along

Approximation

W =span(C” AP CH .. (AF)ytct) = K(AM, CM ).

m Computation via unsymmetric Lanczos method, yields system
matrices of reduced-order model as by-product.
m PVL applies w/o changes for singular E if sp & A (A, E):
— for sy # 00: GALLIVAN/GRIMME/VAN DOOREN 1994,
FREUND/FELDMANN 1996, GRIMME 1997
— for sp = co: B./SokoLov 2005
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Padé Approximation

BALANCING- , .
RELATED Padé-via-Lanczos Method (PVL)
MODEL

REDUCTION

Difficulties:

m No computable error estimates/bounds for ||y — 7|2.

Peter Benner

m Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional /Rayleigh
Padé damping (BEATTIE/GUGERCIN 2005).

Approximation

m Good approximation quality only locally.

m Preservation of physical properties only in special cases; usually
requires post processing which (partially) destroys moment
matching properties.
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Balanced Truncation

Sy _
RELATED
MODEL

TF?UETI?N m A system ¥, realized by (A7 B, C, D), is called balanced, if
e solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 09 > ... > 0, > 0.

Balanced m {01,...,0,} are the Hankel singular values (HSVs) of X.

m Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
_ A A B
- <[A21 Azz]’{Bz]’[Cl Cz]’D)

N

m Truncation ~~ (/2\ B,C, [A)) = (A11, B1, G, D).
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Balanced Truncation

BALANCING- . o i

RELATED Motivation:

MODEL . 3 :
REDUCTION HSV are system invariants: they are preserved under 7 and determine

Peter Benner the energy transfer given by the Hankel map

H : Ly(—00,0) — Lp(0,00) : u_ — yy.

In balanced coordinates . ..energy transfer from u_ to y;:

Balanced

C oo
Truncat fy(t)Ty(t) dt
E:= sup

u€ly(—o0,0]

(=% f u(t)Tu(t) dt B 0”2

Za

— Truncate states corresponding to “small” HSVs
= complete analogy to best approximation via SVD!
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BALANCING. Implementation: SR Method

MODEL
REDUCTION

Compute Cholesky factors of the solutions of the Lyapunov
equations,

P=S"S, Q=R'R.
Compute SVD

Balnced SRT =[Us, U] [




Balanced Truncation

BALANCING. Implementation: SR Method

MODEL
REDUCTION

S Compute Cholesky factors of the solutions of the Lyapunov
equations,

P=5STS, Q=R'R.

v,
V2T ’

W=RTVis[Y?  v=5Tus Y2
Reduced model is (WT AV, WTB, CV, D).

Compute SVD

>

Balanced

Truncation SRT = [ U17 U2] [

PX

Set
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Balanced Truncation

BALANCING- H .
RELATED Properties:
MODEL
REDUCTION

m Reduced-order model is stable with HSVs o4, ..., 0,.

Peter Benner

m Adaptive choice of r via computable error bound:

by =92 < (2327 k) lull:

Balanced
Truncation
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BALANCING- H .
RELATED Properties:

MODEL
REDUCTION General misconception: complexity O(n®) — true for several

Peter Benner implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

i Eigenvalues of Gramian in ¢
10" = : ; ;

Balanced
Truncation ]
10

— Instead of Gramians P, @
compute S, R € R"™<k, 1l
k < n, such that

P~SS", Q~RRT. & 107

— Compute S, R with
problem-specific Lyapunov

solvers of “low” complexity
DA RN 1™
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Balanced Truncation

BALANCING- H a
AN Properties:
MODEL . . . 3
REDUCTION General misconception: complexity O(n*) — true for several

Peter Benner implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:
— Efficient parallel algorithms based on matrix sign function.
Balanced . 3 )
Truncation — Complexity O(n®/q) on g-processor machine.
— Software library PLICMR, with WebComputing interface.

(B./QUINTANA-ORTT/QUINTANA-ORTT since 1999)

Formatted Arithmetic:

For special problems from PDE control use implementation based on
hierarchical matrices and matrix sign function method (Baur/B.),
complexity O(nlog?(n)r?).



Balanced Truncation

BALANCING- H .
RELATED Properties:

MODEL
REDUCTION General misconception: complexity O(n®) — true for several

Peter Benner implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Sparse Balanced Truncation:

N — Sparse implementation using sparse Lyapunov solver
[rincation (ADI+MUMPS/SuperLU).

— Complexity O(n(k? + r?)).

— Software:

+ MATLAB toolbox LYAPACK (PenzL 1999),
+ Software library SPARED with WebComputing interface.
(BAD{A/B./QUINTANA-ORTI/QUINTANA-ORTI since 2003)
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BALANCING-
RELATED
MODEL
REDUCTION

Basic Principle

Given positive semidefinite matrices P = S7S, Q = RT R, compute
balancing state-space transformation so that

Peter Benner
P = Q = diag(o1,...,00) =X, 01>...>0,>0,
and truncate corresponding realization at size r with o, > 0,41.

Balancing-
Related
MR

Classical Balanced Truncation (BT)  MurLLis/ROBERTS *76, MOORE 81

m P = controllability Gramian of system given by (A, B, C, D).
m Q = observability Gramian of system given by (A, B, C, D).
m P, @ solve dual Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+C'C = 0.
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BALANCING-
RELATED
MODEL
REDUCTION

Basic Principle

Given positive semidefinite matrices P = S7S, Q = RT R, compute
balancing state-space transformation so that

Peter Benner
P = Q = diag(o1,...,00) =X, 01>...>0,>0,
and truncate corresponding realization at size r with o, > 0,41.

Balancing-
Related
MR

LQG Balanced Truncation (LQGBT) JONCKHEERE/SILVERMAN 83

m P/Q = controllability/observability Gramian of closed-loop
system based on LQG compensator.

m P, Q solve dual algebraic Riccati equations (AREs)

0 AP+ PAT — PCTCP+ B"B,
0 = ATQ+QA—QBB™Q+CTC.



BALANCING-

RELATED
MODEL
REDUCTION

Peter Benner

Balancing-
Related
MR

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S7S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,00) =X, 01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

Balanced Stochastic Truncation (BST) DEsal/PAL '84, GREEN 88

m P = controllability Gramian of system given by (A, B, C, D),
i.e., solution of Lyapunov equation AP + PAT + BB = 0.

m @ = observability Gramian of right spectral factor of power
spectrum of system given by (A, B, C, D), i.e., solution of ARE

ATQ+ QA+ QBw(DDT) By Q+ CT(DDT)'C =0,

where A = A — Bw(DD")™'C, Bw :==BD" + PC".
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BALANCING-
RELATED
MODEL
REDUCTION

Basic Principle

Given positive semidefinite matrices P = S7S, Q = RT R, compute
balancing state-space transformation so that

Peter Benner
P = Q = diag(o1,...,00) =X, 01>...>0,>0,
and truncate corresponding realization at size r with o, > 0,41.

Balancing-
Related
MR

Positive-Real Balanced Truncation (PRBT) CREEN 88

m Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

m P, @ solve dual AREs
= AP+ PA" + PC"TR™'cP+ BR'BT,
ATQ+ QA+ QBR'BTQ+ C'R7'C,
where R=D+ D", A=A—- BR™IC.
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S7S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,00) =X, 01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

Other Balancing-Based Methods

m Bounded-real balanced truncation (BRBT) — based on bounded
real lemma [OPDENACKER/JONCKHEERE ’88];

m H,, balanced truncation (HinfBT) — closed-loop balancing based
on H,, compensator [Mustara/GLOVER ’91].
Both approaches require solution of dual AREs.
m Frequency-weighted versions of the above approaches.



Balancing-Related Model Reduction

Properties

BALANCING- . . . .
RELATED m Guaranteed preservation of physical properties like

REDUCTION — stability (aII),
Peter Benner - passivity (PRBT),
— minimum phase (BST).

m Computable error bounds, e.g.,

n
E BT
2 OJ 5

BT: |G- Glls <

j=r+1

LR Z o

Ra LQGBT: [G -Gl <25 L
o ey

z 140557
BST: [|G—Gillee < ot — 1| [|Glle,

j=r+1 !

m Can be combined with singular perturbation approximation for
steady-state performance.

m Computations can be modularized.



Examples
Optimal Control: Cooling of Steel Profiles

BALANCING-
RELATED .
MODEL m Mathematical model: boundary control
CTIO . . .
REPUCTION for linearized 2D heat equation.
Peter Benner

—x = Mx, e

A—x = k(u—x), €T, 1<k<T7,

Optimal Cooling 8”

—x = 0, Eerly.

— m=7,p=06.

m FEM Discretization, different models
for initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement =
n = 1357,5177,20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: TROLTZSCH/UNGER 1999/2001, PENZL 1999, SaAK 2003.
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Peter Benner

Examples
Optimal Control: Cooling of Steel Profiles

1 Absolute Err

Absolute Error

T error bound
107 |eee modal truncation
Y alanced truncation
3 10 e
3 “~
2 6 SN
[URET) K
Optimal Cooling [N E N =
o < ,
g S,
P s
10 <
OE \,\.
10" &=
14
10
10° 10" 100 10* 10°
Frequency(w)

— BT model computed with sign
function method,

— MT w/o static condensation,
same order as BT model.




Examples
Optimal Control: Cooling of Steel Profiles

BALANCING-
RELATED
MODEL
REDUCTION

n = 1357, Absolute Error n = 79841, Absolute error

Absolute Error

Peter Benner

T error bound .
102 |mme modal fruncation ”’
‘~\\\ alanced truncation
A ~ o
2 10 Ssel E
EX S
3 N e
o 10° b g
Optimal Cooling ,'§ ‘‘‘‘‘‘‘‘‘‘ 5 Sy 5
s < ey .
&5 10 Ty Ssy i
k= ~ 5
) ~. g
10 ~ o
E S w
1072 o -
"
10
10% 10° 10° 10* 10°
Frequency(w) o' 10 10° 10 1

— BT model computed with sign — BT model computed using
function method, SpaRed,

— MT w/o static condensation,

— computation time: 8 min.
same order as BT model.



Examples

MEMS: Microthruster

BALANCING- . . . .
RELATED Co-integration of solid fuel with
MODEL e . .

REDUCTION silicon micromachined system.

Peter Benner

m Goal: Ignition of solid fuel cells by
electric impulse.

m Application: nano satellites.

m Thermo-dynamical model, ignition
via heating an electric resistance by

Microthruster

applying voltage source. Eobs S0c
SiNx
m Design problem: reach ignition e

temperature of fuel cell w/o firing
neighbouring cells.

m Spatial FEM discretization of et Si-substrate
thermo-dynamical model ~~ linear
system, m=1, p=7.

Source: The Oberwolfach Benchmark Collection nttp://uww. intek. de/simulation/benchnark
Courtesy of C. Rossi, LAAS-CNRS/EU project “Micropyros”.


http://www.imtek.de/simulation/benchmark
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MEMS: Microthruster
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RELATED 13]- 1
obeL m axial-symmetric 2D model

CTIO . . . . . .
F:ErDUETyN m FEM discretisation using linear (quadratic) elements ~» n = 4,257

(11,445) m=1, p=T7.

m Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.

Microthruster



Examples

MEMS: Microthruster

BALANCING-
RESAIED m axial-symmetric 2D model

MODEL
F:E?UETION m FEM discretisation using linear (quadratic) elements ~» n = 4,257
e (11,445) m=1, p=T7.
m Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.

Microthruster
Relative error n = 4,257

o
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e ~ K
) e
W
v/ =
10° = /‘/(‘)—-J )
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i :
g / \ !
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e i I} \ 4
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——-BT x i
—--PVL, ’n" Shea o
e sn:|e4
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Examples

MEMS: Microthruster

m axial-symmetric 2D model

m FEM discretisation using linear (quadratic) elements ~» n = 4,257

(11,445) m=1, p=T7.

m Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.

Relative error n = 4,257 Relative error n = 11, 445

10" oo -— 10°
T I
e //
N
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Examples

MEMS: Microthruster

BALANCING-

RELATED 13]- 1
obeL m axial-symmetric 2D model

REDUCTION

m FEM discretisation using linear (quadratic) elements ~» n = 4,257
(11,445) m=1, p=T7.

m Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.

Frequency Response BT /PVL

Peter Benner

Microthruster

Full order
5 == =PVL, 50-1, r=21
10 == PVL, s0=1,r=30
N—— —==PVL, 50=1, r=40
4 e —=-PVL, 50-1, r=50
10 ™ ——-BT, r-21
o R N
o
£ 10! \
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g
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Examples
MEMS: Microthruster

BALANCING-
RELATED
MODEL
REDUCTION

m axial-symmetric 2D model

m FEM discretisation using linear (quadratic) elements ~» n = 4,257
(11,445) m=1, p=T7.

m Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.

Frequency Response BT /PVL Frequency Response BT/MT

4

Peter Benner

Microthruster

10

Full order Full order
5 == =PVL 50-1, r=21 === MT, r=21
100N == PVL, s0=1,r=30 b == MT, r=200
SN—_——— —==PVL, 50-1, r=40 jjoh || MReSRSE === MT, r=500
2 o ===PVL, 50=1, r=50 v —— MT, r-=1000
10 ™~ ——-BTr=21 S —=-BLr=21
2 &= 3 p
2 .1 \ 2.0 -
E 10 N £ 10 S S
% 5
g g N
z . S p- ;
10 ~
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NS 10 <
1 N = &
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Examples
MEMS: Microgyroscope (Butterfly Gyro)

BALANCING-
RELATED

MODEL . . . .
REDUCTION m Vibrating micro-mechanical

Peter Benner —_— gyroscope for inertial navigation.

m Rotational position sensor.

fion axis

Butterfly Gyro

m By applying AC voltage to Sepsitivy
electrodes, wings are forced to
vibrate in anti-phase in wafer

plane.

m Coriolis forces induce motion of A S a
wings out of wafer plane Gorolis ace. Gorolis ace,
yielding sensor data.

Source: The Oberwolfach Benchmark Collection nttp://uww. intek.de/simulation/benchnark
Courtesy of D. Billger (Imego Institute, Géteborg), Saab Bofors Dynamics AB.
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~n=234,722, m=1, p=12.

m Reduced model computed using SPARED, r = 30.

Butterfly Gyro



Examples
MEMS: Butterfly Gyro

BALANCING-
RELATED
MODEL
REDUCTION

m FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=34,722, m=1, p=12.

Peter Benner

m Reduced model computed using SPARED, r = 30.

Butterfly Gyro Freq Repsonse Analysis

Bade Diagram

Magnitude (48)
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Peter Benner

Butterfly Gyro

Examples
MEMS: Butterfly Gyro

Frequency Repsonse Analysis Hankel Singular Values

Magnitude (48)

m FEM discretization of structure dynamical model using quadratic

tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, p=12.

m Reduced model computed using SPARED, r = 30.

Hankel singular values
Boe Diagram

et

10° e

R

10 10 10 10 0 10 20 30 2 50
Frequency (rad/sec) k
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m Parametric Models

where p € R?® is free parameter vector; parameters should be
preserved in the reduced-order model.

Current and
Future Work
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RELATED H
NODEL m Parametric Models

REDUCTION

Peter Benne x = A(p)x + B(p)u, y = C(p)x+ D(p)u,

where p € R?® is free parameter vector; parameters should be
preserved in the reduced-order model.

Current and

Futare Work m Nonlinear Systems

Exploit structure of nonlinearities, e.g., in optimal control of
linear PDEs with nonlinear BCs ~

— bilinear control systems x = Ax + 3. Njxu; + Bu,
— formal linear systems (cf. FOLLINGER 1982)
. u
x=Ax+Ng(Hx)+ Bu=Ax+| B N ,
g(Hx) [ ] [ g(2) ]

where z .= Hx e RY, ¢ < n.
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RELATED

MODEL G. Obinata and B.D.O. Anderson
REDUCTION Model Reduction for Control System Design.
Springer-Verlag, London, UK, 2001

Z. Bai.

Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems.

APPL. NUMER. MATH, 43(1-2):9-44, 2002

R. Freund.
Model reduction methods based on Krylov subspaces.
AcTA NUMERICA, 12:267-319, 2003.

P. Benner, E.S. Quintana-Orti, and G. Quintana-Orti.
References State-space truncation methods for parallel model reduction of large-scale systems.
PARALLEL CompPUT., 29:1701-1722, 2003

P. Benner, V. Mehrmann, and D. Sorensen (editors).
Dimension Reduction of Large-Scale Systems.
LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, Vol. 45,
Springer-Verlag, Berlin/Heidelberg, Germany, 2005

E A.C. Antoulas.
Lectures on the Approximation of Large-Scale Dynamical Systems.
SIAM Publications, Philadelphia, PA, 2005

P. Benner, R. Freund, D. Sorensen, and A. Varga (editors).
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Thanks for your attention!
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