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Distributed Parameter Systems
Parabolic PDEs as infinite-dimensional systems

Given Hilbert spaces

X – state space,

U – control space,

Y – output space,

and operators
A : dom(A) ⊂ X → X ,
B : U → X ,
C : X → Y.

Linear Distributed Parameter System (DPS)

Σ :

{
ẋ = Ax + Bu,
y = Cx,

x(0) = x0 ∈ X ,

i.e., abstract evolution equation together with observation equation.
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Parabolic Systems

The state x = x(t, ξ) is a weak solution of a parabolic PDE with
(t, ξ) ∈ [0,T ]× Ω, Ω ⊂ Rd :

∂tx −∇(a(ξ).∇x) + b(ξ).∇x + c(ξ)x = Bpc(ξ)u(t), ξ ∈ Ω, t > 0

with initial and boundary conditions

α(ξ)x + β(ξ)∂ηx = Bbc(ξ)u(t), ξ ∈ ∂Ω, t ∈ [0,T ]
x(0, ξ) = x0(ξ) ∈ X , ξ ∈ Ω,

y(t) = C (ξ)x , ξ ∈ Ω, t ∈ [0,T ].

Bpc = 0 =⇒ boundary control problem
Bbc = 0 =⇒ point control problem
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Infinite-Dimensional Systems

Assume

A generates C0-semigroup T (t) on X ,

(A,B) is exponentially stabilizable, i.e., there exists
F : dom(A) 7→ U such that A + BF generates an exponentially
stable C0-semigroup S(t);

(A,C) is exponentially detectable, i.e., (A∗,C∗) is exponentially
stabilizable;

B,C are finite-rank and bounded, e.g., U = Rm, Y = Rp.

Then the system Σ(A,B,C ) has a transfer function

G = C(sI− A)−1B ∈ L∞.

If, in addition, A is exponentially stable, G is in the Hardy space H∞.

Weaker assumptions:

Σ(A,B,C) is Pritchard-Salomon system, allows for certain unboundedness

of B,C.
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(Exponentially) Stable Systems

G is the Laplace transform of

h(t) := CT (t)B

and symbol of the Hankel operator H : L2(0,∞; Rm) 7→ L2(0,∞; Rp),

(Hu)(t) :=

∫ ∞

0

h(t + τ)u(τ) dτ.

H is compact with countable many singular values σj , j = 1, . . . ,∞,
called the Hankel singular values (HSVs) of G. Moreover,∑∞

j=1
σj <∞.

HSVs are system invariants, used for approximation similar to truncated SVD.

The 2-induced operator norm is the H∞ norm; here,

‖G‖H∞ =
∑∞

j=1
σj .
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Model Reduction Based on Balancing
Motivation

Designing a controller for parabolic control systems requires
semi-discretization in space, control design for n-dim. system.

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n

Real-time control is only possible with controllers of low complexity.

 Modern feedback control for parabolic systems w/o model
reduction impossible due to large scale of discretized systems.
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Balanced Truncation
Balanced Realization

Definition: [Curtain/Glover/(Partington) 1986,1988 ]

For G ∈ H∞, Σ(A,B,C) is a balanced realization of G if the
controllability and observability Gramians, given by the unique
self-adjoint positive semidefinite solutions of the Lyapunov equations

APz + PA∗z + BB∗z = 0 ∀ z ∈ dom(A∗)

A∗Qz + QAz + C∗Cz = 0 ∀ z ∈ dom(A)

satisfy P = Q = diag(σj) =: Σ.
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Balanced Truncation
Model reduction by truncation

Abstract balanced truncation [Glover/Curtain/Partington 1988]

Given balanced realization with

P = Q = diag(σj) = Σ,

choose r with σr > σr+1 and partition Σ(A,B,C) according to

Pr = Qr = diag(σ1, . . . , σr ),
so that

A =

[
Ar ∗
∗ ∗

]
, B =

[
Br

∗

]
, C =

[
Cr ∗

]
,

then the reduced-order model is the stable system Σr (Ar ,Br ,Cr )
with transfer function Gr satisfying

‖G− Gr‖H∞ ≤ 2
∑∞

j=r+1
σj .
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LQG Balanced Truncation
LQG Balanced Realization

Balanced truncation only applicable for stable systems.
Now: unstable systems

Definition: [Curtain 2003].

For G ∈ L∞, Σ(A,B,C) is an LQG-balanced realization of G if the
unique self-adjoint, positive semidefinite, stabilizing solutions of the
operator Riccati equations

APz + PA∗z− PC∗CPz + BB∗z = 0 for z ∈ dom(A∗)

A∗Qz + QAz−QBB∗Qz + C∗Cz = 0 for z ∈ dom(A)

are bounded and satisfy P = Q = diag(γj) =: Γ.
(P stabilizing ⇔ A− PC∗C generates exponentially stable C0-semigroup.)
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LQG Balanced Truncation
Model reduction by truncation

Abstract LQG Balanced Truncation [Curtain 2003]

Given balanced realization with

P = Q = diag(γj) = Γ,
choose r with γr > γr+1 and partition Σ(A,B,C) according to

Pr = Qr = diag(γ1, . . . , γr ),
so that

A =

[
Ar ∗
∗ ∗

]
, B =

[
Br

∗

]
, C =

[
Cr ∗

]
,

then the reduced-order model is the LQG balanced system
Σr (Ar ,Br ,Cr ) with transfer function Gr satisfying

“‖G− Gr‖L∞” ≤ 2
∞∑

j=r+1

γj√
1+γ2

j

.
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Computation of Reduced-Order Systems

Spatial discretization (FEM, FDM)  finite-dimensional system on
Xn ⊂ X with dimXn = n:

ẋ = Ax + Bu, x(0) = x0,

y = Cx ,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, with corresponding

algebraic Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

algebraic Riccati equations (AREs)

0 = Rf (P) := AP + PAT − PCTCP + BBT ,

0 = Rc(Q) := ATQ + QA− QBBTQ + CTC .
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ẋ = Ax + Bu, x(0) = x0,

y = Cx ,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, with corresponding

algebraic Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

algebraic Riccati equations (AREs)

0 = Rf (P) := AP + PAT − PCTCP + BBT ,

0 = Rc(Q) := ATQ + QA− QBBTQ + CTC .



PDE Model
Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing

Motivation

Balanced
Truncation

LQG Balanced
Truncation

Computation of
Reduced-Order
Systems

Large Matrix
Equations

LQR Problem

Numerical Results

Conclusions and
Open Problems

Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for Σ(A,B,C), the solutions of the
algebraic Lyapunov equations on Xn converge in the nuclear norm to
the solutions of the corresponding operator equations and the
transfer functions converge in the gap topology if the n-dimensional
approximations satisfy the assumptions:

∃ orthogonal projector Πn : X 7→ Xn such that

Πnz→ z (n→∞) ∀z ∈ X , B = ΠnB, C = C|Xn .

For all z ∈ X and n→∞,

eAtΠnz→ T (t)z, (eAt)∗Πnz→ T (t)∗z,

uniformly in t on bounded intervals.

A is uniformly exponentially stable.
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Convergence of Gramians

Theorem [Curtain 2003]

Under given assumptions for Σ(A,B,C), the stabilizing solutions of
the algebraic Riccati equations on Xn converge in the nuclear norm
to the solutions of the corresponding operator equations and the
transfer functions converge in the gap topology if the n-dimensional
approximations satisfy the assumptions:

∃ orthogonal projector Πn : X 7→ Xn such that

Πnz→ z (n→∞) ∀z ∈ X , B = ΠnB, C = C|Xn .

For all z ∈ X and n→∞,

eAtΠnz→ T (t)z, (eAt)∗Πnz→ T (t)∗z,

uniformly in t on bounded intervals.

(A,B,C ) is uniformly exponentially stabilizable and detectable.
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Error Bounds

For control applications, want to estimate/bound

‖y − yr‖L2(0,T ;Rm) or ‖y(t)− yr (t)‖2.

Error bound includes approximation errors caused by

Galerkin projection/spatial FEM discretization,

model reduction.

Ultimate goal

Balance the discretization and model reduction errors vs. each other
in fully adaptive discretization scheme.
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Output Error Bound

Assume C ∈ L(X , Rp) bounded, C = C|Xn , Xn ⊂ X . Then:

‖y − yr‖L2(0,T ;Rp) ≤ ‖y − y‖L2(0,T ;Rp) + ‖y − yr‖L2(0,T ;Rp)

= ‖Cx− Cx‖L2(0,T ;Rp) + ‖y − yr‖L2(0,T ;Rp)

≤ |||C|||︸︷︷︸
=:c

·‖x− x‖L2(0,T ;X )︸ ︷︷ ︸
FEM error

+ ‖y − yr‖L2(0,T ;Rp)︸ ︷︷ ︸
model reduction error

.

Corollary

Balanced truncation:

‖y − yr‖L2(0,T ;Rp) ≤ c‖x− x‖L2(0,T ;X ) + 2‖u‖L2(0,T ;Rp)

∑n
j=r+1 σj .
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Solving Large-Scale Matrix Equations
Large-Scale Algebraic Lyapunov and Riccati Equations

General form for A,G = GT ,W = W T ∈ Rn×n given and P ∈ Rn×n

unknown:

0 = L(Q) := ATQ + QA + W ,

0 = R(Q) := ATQ + QA− QGQ + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!
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Low-Rank Approximation
ARE 0 = AT Q + QA− QBBT Q + CCT

Consider spectrum of ARE solution (analogous for Lyapunov
equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: Q = QT ≥ 0 =⇒

Q = ZZT =
n∑

k=1

λkzkz
T
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkz
T
k .
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ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(A
T − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(A

T − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT = −BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl 1997, Li/White 2002, B./Li/Penzl 1999/2006]

V1 ←
p
−2Re (p1)(A + p1I )

−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )

−1Vk−1

´
,

Yk ←
ˆ

Yk−1 Vk

˜
At convergence, YkmaxY

T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m

Note: Implementation in real arithmetic possible by combining two steps.
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,
B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(Q) = CTC + ATQ + QA− QBBTQ.

Frechét derivative of R(Q) at Q:

R′Q : Z → (A− BBTQ)TZ + Z (A− BBTQ).

Newton-Kantorovich method:

Qj+1 = Qj −
(
R′Qj

)−1

R(Qj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTQj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Qj).

3 Qj+1 ← Qj + tjNj .

END FOR j
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Newton’s Method for AREs
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTQj is stable ∀ j ≥ 0.
limj→∞ ‖R(Qj)‖F = 0 (monotonically).
limj→∞Qj = Q∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient
matrix Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using
Sherman-Morrison-Woodbury formula:

(A− BKj)
−1 = (In + A−1B(Im − KjA

−1B)−1Kj)A
−1.

BUT: Q = QT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!
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linear systems with dense, but “sparse+low rank” coefficient
matrix Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using
Sherman-Morrison-Woodbury formula:

(A− BKj)
−1 = (In + A−1B(Im − KjA

−1B)−1Kj)A
−1.

BUT: Q = QT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Qj)

⇐⇒

AT
j (Qj + Nj)︸ ︷︷ ︸

=Qj+1

+(Qj + Nj)︸ ︷︷ ︸
=Qj+1

Aj = −CTC − QjBBTQj︸ ︷︷ ︸
=:−WjW T

j

Set Qj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+

(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl 1999/2006]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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LQR Problem

Linear-Quadratic Regulator Problem

Linear-quadratic optimization problem w/o control/state constraints:

min
u∈L2

∫ ∞

0

〈Cx(t),Cx(t)〉Y + 〈u(t),u(t)〉U dt

subject to ẋ = Ax + Bu, x(0) = x0.

Solution: feedback control law ( static feedback controller)

u(t) = Kx(t) := B∗Qx(t)

(with Q as in LQG operator Riccati equation).

Finite-dimensional approximation is

u(t) = K∗x(t) := BTQ∗x(t),

where Q∗ is the stabilizing solution of the corresponding ARE.
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subject to ẋ = Ax + Bu, x(0) = x0.

Solution: feedback control law ( static feedback controller)

u(t) = Kx(t) := B∗Qx(t)

(with Q as in LQG operator Riccati equation).

Finite-dimensional approximation is

u(t) = K∗x(t) := BTQ∗x(t),

where Q∗ is the stabilizing solution of the corresponding ARE.



PDE Model
Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing

Large Matrix
Equations

LQR Problem

Numerical Results

Conclusions and
Open Problems

LQR Problem

Linear-Quadratic Regulator Problem

Linear-quadratic optimization problem w/o control/state constraints:

min
u∈L2

∫ ∞

0

〈Cx(t),Cx(t)〉Y + 〈u(t),u(t)〉U dt
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Application to LQR Problem
Feedback Iteration

K∗ can be computed by direct feedback iteration:

jth Newton iteration:

Kj = BTZjZ
T
j =

kmax∑
k=1

(BTVj,k)V
T
j,k

j→∞
−−−−→ K∗ = BTZ∗Z

T
∗

Kj can be updated in ADI iteration, no need to even form Zj ,
need only fixed workspace for Kj ∈ Rm×n!
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Optimal Control from Reduced-Order Model

LQR solution for the reduced-order model yields

ur (t) = Kr ,∗xr (t) := BrQr ,∗xr (t).

Theorem

Let K∗ be the feedback matrix computed from finite-dimensional
approximation to LQR problem, Kr ,∗ the feedback matrix obtained
from the LQR problem for the LQG reduced-order model obtained
using the projector VW T , then

Kr ,∗ = K∗V
T .

Consequence: the reduced-order optimal control can be computed as
by-product in the model reduction process!
Similar result for LQG controller.
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Numerical Results
Performance of Matrix Equation Solvers

Linear 2D heat equation with homogeneous Dirichlet boundary
and point control/observation.
FD discretization on uniform 150× 150 grid.
n = 22.500, m = p = 1, 10 shifts for ADI iterations.
Convergence of large-scale matrix equation solvers:
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Numerical Results
Performance of matrix equation solvers

Performance of Newton’s method for accuracy ∼ 1/n

grid unknowns
‖R(P)‖F
‖P‖F

it. (ADI it.) CPU (sec.)

8× 8 2,080 4.7e-7 2 (8) 0.47
16× 16 32,896 1.6e-6 2 (10) 0.49
32× 32 524,800 1.8e-5 2 (11) 0.91
64× 64 8,390,656 1.8e-5 3 (14) 7.98

128× 128 134,225,920 3.7e-6 3 (19) 79.46

Here,

Convection-diffusion equation,

m = 1 input and p = 2 outputs,

Q = QT ∈ Rn×n ⇒ n(n+1)
2 unknowns.
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Numerical Results
Model Reduction Performance

Numerical ranks of Gramians are 31 and 26, respectively.

Computed reduced-order model (BT): r = 6 (σ7 = 5.8 · 10−4),

BT error bound δ = 1.7 · 10−3.



PDE Model
Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing

Large Matrix
Equations

LQR Problem

Numerical Results

Matrix Equation
Solvers

Model Reduction
Performance

Reconstruction
of the State

Conclusions and
Open Problems

Numerical Results
Model Reduction Performance

Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.

Solve LQR problem: quadratic cost functional, solution is linear
state feedback.

Computed controls and outputs (implicit Euler):



PDE Model
Reduction

Peter Benner

DPS

Model Reduction
Based on
Balancing

Large Matrix
Equations

LQR Problem

Numerical Results

Matrix Equation
Solvers

Model Reduction
Performance

Reconstruction
of the State

Conclusions and
Open Problems

Numerical Results
Model Reduction Performance

Computed reduced-order model (BT): r = 6, BT error bound
δ = 1.7 · 10−3.

Solve LQR problem: quadratic cost functional, solution is linear
state feedback.

Errors in controls and outputs:
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Numerical Results
Model Reduction Performance: BT vs. LQG BT

Boundary control problem for 2D heat flow in copper on rectangular
domain; control acts on two sides via Robins BC.

FDM  n = 4496, m = 2; 4 sensor locations  p = 4.

Numerical ranks of BT Gramians are 68 and 124, respectively, for
LQG BT both have rank 210.

Computed reduced-order model: r = 10.

Source: COMPle ib v1.1, www.compleib.de.

www.compleib.de
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Numerical Results
Reconstruction of the State

BT is often criticized for its bias towards the input-output behavior of
the system. But states can also be reconstructed using

x(t) ≈ Vxr (t).

Example: 2D heat equation with localized heat source, 64× 64 grid,
r = 6 model by BT, simulation for u(t) = 10 cos(t).
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Numerical Results
Reconstruction of the State
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Numerical Results
BT modes are shape functions for Galerkin projection
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Conclusions and Open Problems

BT (and LQG) BT perform well for model reduction of (as of
yet, simple) parabolic PDE control problems.

Robust control design can be based on LQG BT (see Curtain
2004).

Need more numerical tests.

Find implementations for other balancing schemes
(H∞-/bounded real BT,. . . ).

Open Problems:

Optimal combination of FEM and BT error estimates/bounds —
use convergence of Hankel singular values for control of mesh
refinement?
BT modes are intelligent ansatz functions for (Petrov-)Galerkin
projection—how to exploit?
Application to nonlinear problems: for some semilinear problems,
BT approaches seem to work well.
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Ad(é)

Thank you for your attention!
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