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Model Reduction for Dynamical Systems

Original System

Σ :


Eẋ(t) = f (t, x(t), u(t)),

y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order System

bΣ :


Ê ˙̂x(t) = bf (t, x̂(t), u(t)),

ŷ(t) = bg(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

Eẋ(t) = Ax(t) + Bu(t), A,E ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx(t) + Du(t), C ∈ Rp×n, D ∈ Rp×m.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) 7→ x(s), ẋ(t) 7→ sx(s))
to linear system with x(0) = 0:

sEx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields I/O-relation in frequency domain:

y(s) =
(

C (sE − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s)

G is the transfer function of Σ.



MOR for IP

Peter Benner

Introduction

Model Reduction

Inverse Problems

System-Theoretic
Model Reduction

Numerical
Examples

Conclusions and
Outlook

Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems
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Model Reduction for Linear Systems

Problem

Approximate the dynamical system

Eẋ = Ax + Bu, A,E ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Â, Ê ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Inverse Problems for Linear Dynamical Systems

System inversion

Assume m = p, D ∈ Rm×m invertible (generalizations possible!), then

G−1(s) = −D−1C (sE − (A− BD−1C ))−1BD−1 + D−1.

Some applications like

– inverse-based control,

– identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given

Y (s), the Laplace transform of y(t), compute U(s) = G−1(s)Y (s).
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G−1(s) = −D−1C (sE − (A− BD−1C ))−1BD−1 + D−1.

Some applications like

– inverse-based control,

– identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given

Y (s), the Laplace transform of y(t), compute U(s) = G−1(s)Y (s).

Goal: reduced-order transfer function Ĝ (s) such that

Û(s) = Ĝ−1(s)Y (s)

has small error

‖U− Û‖ = ‖G−1Y − Ĝ−1Y ‖ ≤ ‖G−1− Ĝ−1‖‖Y ‖ ≤ tolerance · ‖Y ‖.
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Balancing Basics
(E = In for ease of notation)

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).
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Balancing Basics
(E = In for ease of notation)

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given P,Q ∈ Rn×n symmetric positive definite (spd), and a
contragredient transformation T : Rn → Rn,

TPTT = T−TQT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.

Generalization to P,Q ≥ 0 possible: if n̂ is McMillan degree of Σ, then

T (PQ)T−1 = diag(σ1, . . . , σn̂, 0, . . . , 0).
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Balancing Basics
(E = In for ease of notation)

Basic Model Reduction Procedure

1 Given Σ ≡ (A,B,C ,D) and balancing (w.r.t. given P,Q spd)
transformation T ∈ Rn×n nonsingular, compute

(A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
,D

)
2 Truncation  reduced-order model:

(Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).



MOR for IP

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Methods

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Balancing Basics
(E = In for ease of notation)

Basic Model Reduction Procedure

1 Given Σ ≡ (A,B,C ,D) and balancing (w.r.t. given P,Q spd)
transformation T ∈ Rn×n nonsingular, compute

(A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
,D

)
2 Truncation  reduced-order model:
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Balancing Basics
(E = In for ease of notation)

Implementation: SR Method

1 Compute Cholesky (square) or full-rank (maybe rectangular,
“thin”) factors of P,Q

P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced-order model is

(Â, B̂, Ĉ , D̂) := (W TAV ,W TB,CV ,D) (≡ (A11,B1,C1,D).)
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Methods
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Classical Balanced Truncation (BT) Mullis/Roberts ’76, Moore ’81

P/Q = controllability/observability Gramian of Σ ≡ (A,B,C ,D).

For asymptotically stable systems, P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

{σBT
1 , . . . , σBT

n } are the Hankel singular values (HSVs) of Σ.

Preserves stability, extends to unstable systems w/o purely imaginary
poles using frequency domain definition of the Gramians
[Zhou/Salomon/Wu ’99].

Can be applied to inverse system (A− BD−1C ,BD−1,D−1C ,D−1).

Computable error bound comes for free:

‖G − ĜBT‖H∞ ≤ 2
nX

j=r+1

σBT
j ,

allows adaptive choice of r !
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Balancing for Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .
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Balancing for Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .

Preserves stability; needs stability of AW .

Computable relative error bound [Green ’88]:

‖∆BST‖H∞ = ‖G−1(G − ĜBST)‖H∞ ≤
nY

j=r+1

1 + σBST
j

1− σBST
j

− 1,

 uniform approximation quality over full frequency range.

Note: |σBST
j | ≤ 1.
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AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .

Zeros of G(s) are preserved in Ĝ(s) =⇒
G(s) minimum-phase =⇒ Ĝ(s) minimum-phase.

Error bound for inverse system [B. ’03]

If G(s) is square, minimal, stable, minimum-phase, nonsingular on R,
then

‖G−1 − Ĝ−1‖H∞ ≤

 
nY

j=r+1

1 + σBST
j

1− σBST
j

− 1

!
‖Ĝ−1‖H∞ .
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Balancing for Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(σ1, . . . , σn) = Σ,
σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . σn ≥ 0 at size r .

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of Σ ≡ (A,B,C ,D), i.e., solution of
Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of Σ, i.e., solution of ARE

AT
W Q + QAW + QBW (DDT )−1BT

W Q + CT (DDT )−1C = 0,

where AW := A− BW (DDT )−1C , BW := BDT + PCT .

For minimum-phase systems, no ARE necessary [Obinata/Anderson ’01]:

Solving the Lyapunov equation

(A− BD−1C)TR + R(A− BD−1C) + CT (DDT )−1C = 0,

and balancing P vs. R yields BST reduced-order model.

Note: σBST
j = αj(1 + α2

j )−
1
2 ,

where the αj ’s are the square roots of the eigenvalues of PR.
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Solving Large-Scale Matrix Equations
Algebraic Lyapunov and Riccati Equations

General form for A,G = GT ,W = W T ∈ Rn×n given and P ∈ Rn×n

unknown:

0 = L(Q) := ATQ + QA + W ,

0 = R(Q) := ATQ + QA− QGQ + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!
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Solving Large-Scale Matrix Equations
Algebraic Lyapunov and Riccati Equations

General form for A,G = GT ,W = W T ∈ Rn×n given and P ∈ Rn×n

unknown:

0 = L(Q) := ATQ + QA + W ,

0 = R(Q) := ATQ + QA− QGQ + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!
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Solving Large-Scale Matrix Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Solving Large-Scale Matrix Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).



MOR for IP

Peter Benner

Introduction

System-Theoretic
Model Reduction

Balancing

Methods

Matrix
Equations

Numerical
Examples

Conclusions and
Outlook

Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[

V1, . . . , Vr

]
.

Note: ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,
B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(Q) = CTC + ATQ + QA− QBBTQ.

Frechét derivative of R(Q) at Q:

R′Q : Z → (A− BBTQ)TZ + Z (A− BBTQ).

Newton-Kantorovich method:

Qj+1 = Qj −
(
R′Qj

)−1

R(Qj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTQj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Qj).

3 Qj+1 ← Qj + tjNj .

END FOR j
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Newton’s Method for AREs
[Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,
B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(Q) = CTC + ATQ + QA− QBBTQ.

Frechét derivative of R(Q) at Q:

R′Q : Z → (A− BBTQ)TZ + Z (A− BBTQ).

Newton-Kantorovich method:

Qj+1 = Qj −
(
R′Qj

)−1

R(Qj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTQj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Qj).

3 Qj+1 ← Qj + tjNj .

END FOR j
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Qj)

⇐⇒

AT
j (Qj + Nj)︸ ︷︷ ︸

=Qj+1

+ (Qj + Nj)︸ ︷︷ ︸
=Qj+1

Aj = −CTC − QjBBTQj︸ ︷︷ ︸
=:−WjW T

j

Set Qj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Qj)

⇐⇒

AT
j (Qj + Nj)︸ ︷︷ ︸

=Qj+1

+ (Qj + Nj)︸ ︷︷ ︸
=Qj+1

Aj = −CTC − QjBBTQj︸ ︷︷ ︸
=:−WjW T

j

Set Qj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl ’99/’08]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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Low-Rank Newton-ADI for AREs
Implementation issues for BST ARE

Right-hand of Lyapunov equation in jth Newton step:

−CT (DDT )−1C +QjB(DDT )−1BTQj =: −Wj,1W
T
j,1+Wj,2W

T
j,2.

 solve two Lyapunov equations in parallel:

AT
j

(
Zj+1,`Z

T
j+1,`

)
+
(
Zj+1,`Z

T
j+1,`

)
Aj = −Wj,`W

T
j,`, ` = 1,2.

After convergence, one more Lyapunov equation to obtain final
low-rank factor:

AT (YY T ) + (YY T )A + W TW = 0,

where

W = (DDT )−
1
2 C − (DDT )−

1
2 B [Zjmax,1,Zjmax,1]

[
Y T

jmax,2

−Y T
jmax,2

]
.
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 1.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 6.114 · 10−6.

Transfer functions Error
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 10.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 6.3975 · 10−8.

Transfer functions Error
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 100.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 6.4275 · 10−10.

Transfer functions Error
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 0.01.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 1.225 · 10−2.

Transfer functions Error



MOR for IP

Peter Benner

Introduction

System-Theoretic
Model Reduction

Numerical
Examples

Conclusions and
Outlook

Numerical Examples
Random example

n = 500, m = 1 = p; D = 0.01.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 1.225 · 10−2.

Transfer functions Error (including BT)
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 10−4.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 1.2392.

Transfer functions Error
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Numerical Examples
Random example

n = 500, m = 1 = p; D = 10−4.

Reduced order: r = 2; ‖G−1 − Ĝ−1‖∞ ≤ 1.2392.

Transfer functions Error (including BT)
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Numerical Examples
Convection-diffusion with distributed control

xt = ∆x− [1000, 0] · ∇x + bu.

30× 30 uniform grid  n = 900, m = 1 = p; D = 1.

Reduced order: r = 26; ‖G−1 − Ĝ−1‖∞ ≤ 3.7452 · 10−6.

Transfer functions Error



MOR for IP

Peter Benner

Introduction

System-Theoretic
Model Reduction

Numerical
Examples

Conclusions and
Outlook

Numerical Examples
Convection-diffusion with distributed control

xt = ∆x− [1000, 0] · ∇x + bu.

30× 30 uniform grid  n = 900, m = 1 = p; D = 10−3.

Reduced order: r = 33; ‖G−1 − Ĝ−1‖∞ ≤ 6.9565 · 10−3.

Transfer functions Error
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Conclusions and Outlook

Balanced stochastic truncation yields reduced-order models that
can approximate inverse systems to a prescribed tolerance.

Main message:

Balanced truncation and family are applicable to large-scale
systems.

(If efficient numerical algorithms are employed.)

Efficiency of numerical algorithms can be further enhanced,
several details require deeper investigation.

Future work:

– Better understanding of the role played by feedthrough
term D: can it be used/seen as ”regularization” parameter.

– Implementation for non-square systems/approximation of
left/right inverse systems.

– Extension to descriptor systems.
– Sharper error bound?
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Announcement
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