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Original System Reduced-Order System

D Ex(t) = f(t,x(t), u(t)), = [ EX(t) = F(¢,%(¢), u(t)),
AR i SR (e KB A A
m states x(t) € R”, m states X(t) €R’, r < n
m inputs u(t) € R”, m inputs u(t) € R7,
m outputs y(t) € RP. m outputs y(t) € RP.
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lly — 7|l < tolerance - ||u|| for all admissible input signals.




Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

Model Reduction EX(t) = AX(t) + Bu(t)’ A E e R™" BeR™m
y(t) = Cx(t)+ Du(t), C e RPX" D € RPX™,



Linear Systems

Linear, Time-Invariant (LTI) / Descriptor Systems

Model Reduction EX(t) = AX(t) + Bu(t)’ A E e R™" BeR™m
y(t) = Cx(t)+ Du(t), C e RPX", D e RPXM,

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t) — x(s), x(t) — sx(s))
to linear system with x(0) = 0:

sEx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),
yields |/O-relation in frequency domain:

y(s) = ( C(sE—A)'B+D ) u(s)
—G(s)

G is the transfer function of X.
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Approximate the dynamical system

Model Reduction

Ex = Ax+ Bu, A EcR™"  BeR™M,
y = Cx+ Du, C eRPX" D e RPXM

by reduced-order system

EX = Ax+Bu, AEeR™, BeR™m
y = Cx+Du, CeRrP*r, DeRP*m,

of order r < n, such that
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Mjl Model Reduction for Linear Systems

MOR for IP

Model Reduction

Approximate the dynamical system

Ex = Ax+ Bu, A EcR™"  BeR™M,
y = Cx+ Du, C eRPX" D e RPXM

by reduced-order system

EX = Ax+Bu, AEeR™, BeR™m
y = Cx+Du, CeRrP*r, DeRP*m,

of order r < n, such that
ly = 9l = |Gu — Gul| < |G — G|||jul| < tolerance - ||u]].

= Approximation problem: min_ .

&)< 16 = Gl



Inverse Problems for Linear Dynamical Systems

System inversion

Assume m = p, D € R™*™ invertible (generalizations possible!), then
G\ (s)= D C(sE — (A—BD'C))"'BD ! + DL,

Some applications like
— inverse-based control,
— identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given
Y (s), the Laplace transform of y(t), compute U(s) = G *(s)Y(s).
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Inverse Problems for Linear Dynamical Systems

System inversion

Assume m = p, D € R™*™ invertible (generalizations possible!), then
G\ (s)= D C(sE — (A—BD'C))"'BD ! + DL,

Some applications like
— inverse-based control,
— identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given
Y (s), the Laplace transform of y(t), compute U(s) = G *(s)Y(s).

Goal: reduced-order transfer function G(s) such that
U(s) = GY(s)Y(s)
has small error

[U=0|| =Gty =GtY| < ||G* = G Y| Y] < tolerance- || Y||.



Balancing Basics

(E = I, for ease of notation)

Linear, Time-Invariant (LTI) Systems

x(t) = Ax+Bu, AeR™n BeR™m
y(t) = Cx+Du, CeRP*"  DeRPxm,

(A, B, C,D) is a realization of X (nonunique).

Balancing
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Balancing Basics

(E = I, for ease of notation)

Linear, Time-Invariant (LTI) Systems

x(t) = Ax+Bu, AeR™n BeR™m
y(t) = Cx+Du, CeRPX" D eRP*m,

(A, B, C,D) is a realization of X (nonunique).

Balancing

Model Reduction Based on Balancing

Given P, Q € R™" symmetric positive definite (spd), and a
contragredient transformation T : R" — R”,

TPTT = T-TQT ! = diag(oy,...,0,), 01>...>0,>0.
Balancing ¥ w.r.t. P, Q:
Y =(AB,C,D)— (TAT 1, TB,CT},D) = ¥.
Generalization to P, Q > 0 possible: if 7 is McMillan degree of ¥, then
T(PQ)T~! = diag(oy,...,04,0,...,0).



Balancing Basics

(E = I, for ease of notation)

Basic Model Reduction Procedure

Given X = (A, B, C, D) and balancing (w.r.t. given P, @ spd)
transformation T € R"*" nonsingular, compute

Balancing

(A,B,C,D) +— (TAT Y TB,CT 1 D)

_ A A B
B ([Azl A22]’{52]a[(:1 Cz],D)



Balancing Basics

(E = I, for ease of notation)

Basic Model Reduction Procedure

Given X = (A, B, C, D) and balancing (w.r.t. given P, @ spd)
transformation T € R"*" nonsingular, compute

Balancing

(A,B,C,D) +— (TAT Y TB,CT 1 D)
A A By

- G GJ|,D

([a 2] (8] e ale)

Truncation ~ reduced-order model:

A A

(’a7 Ba C7 ﬁ) - (Alla 817 C17 D)



Balancing Basics

(E = I, for ease of notation)

Implementation: SR Method

Compute Cholesky (square) or full-rank (maybe rectangular,
“thin") factors of P, Q

Balancing

P=S"S, Q=R'R.
Compute SVD

SRT =[ Uy, Us]




Balancing Basics

(E = I, for ease of notation)

Implementation: SR Method

Compute Cholesky (square) or full-rank (maybe rectangular,
“thin") factors of P, Q

Balancing

P=5STS, Q=R'R.

Cn ]
22 VZT i

W=RrRTViE; 2  v=5Tux 2

Compute SVD

SRT =[ Uy, Us]

Set

Reduced-order model is

(A,B,C,D):= (WTAV,W'B,CV,D) (= (Auw,Bi, C,D).)



Methods

Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP
Classical Balanced Truncation (BT)  MutLis/ROBERTS

Peter Benner

m P/Q = controllability /observability Gramian of ¥ = (A, B, C, D).
m For asymptotically stable systems, P, Q solve dual Lyapunov equations

Methods AP+ PAT + BBT = 0, ATQ+QA+CTC = 0.
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Methods

Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP
Classical Balanced Truncation (BT)  MurLis/ROBERTS *76, MOORE 81

Peter Benner

P/Q = controllability /observability Gramian of X = (A, B, C, D).
m For asymptotically stable systems, P, Q solve dual Lyapunov equations

Methods AP+ PAT + BBT = 0, ATQ+QA+CTC = 0.

m {oPT,..., 05T} are the Hankel singular values (HSVs) of .

m Preserves stability, extends to unstable systems w/o purely imaginary
poles using frequency domain definition of the Gramians
[Zrou/SAaLoMoN/WuU ’99].

m Can be applied to inverse system (A— BD~'C,BD™' D™'C,D™1).
m Computable error bound comes for free:
16— G lue <2 o,
j=r+1

allows adaptive choice of r!



Balancing for Inverse Problems

Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n0) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP
Peter Benner Balanced Stochastic Truncation (BST) DEsAI/PAL ’84, GREEN ’88

m P = controllability Gramian of X = (A, B, C, D), i.e., solution of
Lyapunov equation AP + PAT + BB” = 0.

e ros m Q = observability Gramian of right spectral factor of power spectrum
of ¥, i.e., solution of ARE

Al Q + QAw + @Bw(DDT)'BRQ + CT(DD)7'C =0,
where Ay := A— Bw(DD7)™'C, Bw := BD" + PC".
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Balancing for Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n0) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP

Peter Benner Balanced Stochastic Truncation (BST) DEsAI/PAL ’84, GREEN ’88

m P = controllability Gramian of X = (A, B, C, D), i.e., solution of
Lyapunov equation AP + PAT + BB” = 0.

e ros m Q = observability Gramian of right spectral factor of power spectrum
of ¥, i.e., solution of ARE

AlQ + QAw + QBw(DDT) B, @ + CT(DDT)C =0,
where Ay := A— Bw(DD7)™'C, Bw := BD" + PC".
m Preserves stability; needs stability of Ay .

m Computable relative error bound [GREEN ’88]:

n 1_|_O,BST
||ABST|| HG (G GBST) |Hoo < H ﬁ -1,
j=r+1 J

~ uniform approximation quality over full frequency range.
Note: [o/5T| < 1.
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Balancing for Inverse Problems
Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n0) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP

Peter Benner Balanced Stochastic Truncation (BST) DEsAI/PAL ’84, GREEN ’88

m P = controllability Gramian of X = (A, B, C, D), i.e., solution of
Lyapunov equation AP + PAT + BB” = 0.

e ros m Q = observability Gramian of right spectral factor of power spectrum
of ¥, i.e., solution of ARE

AlyQ+ QAw + QBw(DDT)'Bi,Q + CT(DDT) ' C =0,
where Ay := A— Bw(DD")™*C, Bw := BD" + PC".
m Zeros of G(s) are preserved in G(s) =
G(s) minimum-phase => G(s) minimum-phase.
m Error bound for inverse system [B. ’03]

If G(s) is square, minimal, stable, minimum-phase, nonsingular on jR,
then

i A n 140757 -
167 =6 e < | ] ﬁ—l 167 1o -

j=r+1 J



Balancing for Inverse Problems

Truncate realization, balanced w.r.t. P = Q = diag(o1,...,0n0) = X,
012> ...20r>0r41 2> ...0n >0 at size r.

MOR for IP

Peter Benner Balanced Stochastic Truncation (BST) AL ’84, GREEN 8§

m P = controllability Gramian of X = (A, B, C, D), i.e., solution of
Lyapunov equation AP + PAT + BB” = 0.

e ros m Q = observability Gramian of right spectral factor of power spectrum
of ¥, i.e., solution of ARE

Al Q + QAw + QBw(DDT) By, Q + C"(DDT) ' C =0,
where Ay := A— Bw(DD7)™'C, Bw := BD" + PC".

m For minimum-phase systems, no ARE necessary [osmam/axpersox 01):

Solving the Lyapunov equation
(A—BD'C)'R+R(A-BD'C)+ CT(DD")'C =0,
and balancing P vs. R yields BST reduced-order model.

1
Note: 075" = a(1 + )2,
where the a;'s are the square roots of the eigenvalues of PR.



Solving Large-Scale Matrix Equations

Algebraic Lyapunov and Riccati Equations

MOR for IP

General form for A,G = GT,W = WT € R"™ " given and P € R"*"
unknown:

0 = L(Q:=ATQ+ QA+ W,
Matri 0 = R(Q:=ATQ+ QA-QGQ+ W.

Equations

In large scale applications from semi-discretized control problems for
PDEs,

m n=10%-10°% (= 10° — 10'2 unknowns!),
m A has sparse representation (A = —M~1K for FEM),

m G, W low-rank with G, W € {BBT,CTC}, where
BeR™™ m<«n CeRP" p<on.



Solving Large-Scale Matrix Equations

Algebraic Lyapunov and Riccati Equations

MOR for IP

General form for A,G = GT,W = WT € R"™ " given and P € R"*"
unknown:

0 = L(Q:=ATQ+ QA+ W,
Matri 0 = R(Q:=ATQ+ QA-QGQ+ W.

Equations

In large scale applications from semi-discretized control problems for
PDEs,
m n=10%-10° (= 10° — 1012 unknowns!),
m A has sparse representation (A = —M~1K for FEM),
m G, W low-rank with G, W € {BBT,CTC}, where
BeR™™ m«n CeRP" pgon.

m Standard (eigenproblem-based) O(n®) methods are not
applicable!



Solving Large-Scale Matrix Equations

ADI Method for Lyapunov Equations

MOR for IP

m For A € R"™" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

i S m ADI Iteration: [WACHSPRESS 1988]
(A+pc)Xj1y2 = —BBT — Xi1 (AT — pil)
(A+pc)X” = —BBT = X;_1)2(AT — pil)

with parameters py € C™ and pyi1 = Pr if px € R.

m For Xy = 0 and proper choice of py: klim X = X superlinear.
— 00



Solving Large-Scale Matrix Equations

ADI Method for Lyapunov Equations

MOR for IP

m For A € R"™" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

Matrix

Equations m ADI lteration: [WAcCHSPRESS 1988]
(A+pc)Xj1y2 = —BBT — Xi1 (AT — pil)
(A+pc)X” = —BBT = X;_1)2(AT — pil)

with parameters py € C™ and pyi1 = Pr if px € R.

m For Xy = 0 and proper choice of py: klim Xx = X superlinear.
— 00

m Re-formulation using X, = Yk YkT yields iteration for Yk...



Factored ADI lteration

Lyapunov equation 0 = AX + XAT + BBT.

MOR for IP

Ceer Benner Setting Xx = Yk YkT, some algebraic manipulations =

Algorithm [PenzL '97/°00, Li/WHITE ’99/°02, B. 04, B./L1/PENzL '99/°08]

Vi «— +/—2Re(p1)(A+pil)7 !B, Yi « Wi

Matrix

e FOR j = 2,3,...
Vie — RI:?pfk)l (Vi—1 — (pk + Pe=1) (A + picl) " Vi)
Ye—[ Yeor Vi ]
Yi < rrlg( Yk, 7) % column compression

At convergence, Y Ykzax ~ X, where

max

Y kima o

Z[Vl .. Vi }, Vk:He(C"X’".

Note: Implementation in real arithmetic possible by combining two steps.



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

MOR for P Projection-based methods for Lyapunov equations with A+ AT < 0:

Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.

Set A:=Z"AZ, B:=Z"B.

Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Use X ~ ZXZT.

Matrix
Equations

Examples:

m Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].
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Lyapunov equation 0 = AX + XAT + BBT

MOR for P Projection-based methods for Lyapunov equations with A+ AT < 0:

Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.

Set A:=Z"AZ, B:=Z"B.

Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Use X ~ ZXZT.

Matrix
Equations

Examples:

m Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].

m K-PIK [Smnvoncint 707],

Z=K(A B,r)UK(A™}, B,r).



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

MOR for P Projection-based methods for Lyapunov equations with A+ AT < 0:

Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.

Set A:=Z"AZ, B:=Z"B.

Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Use X ~ ZXZT.

Matrix
Equations

Examples:

m ADI subspace [B./R.-C. Li/TRUHAR ’08]:
Z:colspan[ Vi, ..., V, ]

Note: ADI subspace is rational Krylov subspace [J.-R. Li/WHITE ’02].



Factored Galerkin-ADI lteration

Numerical example

MOR for IP FEM semi-discretized control problem for parabolic PDE:
Pt B m optimal cooling of rail profiles,
mn=20,209, m=7, p=6.

Good ADI shifts

Matrix

Equations 5 Iteration history for controllability gramian 5 Iteration history for observability gramian
—no projection —no projection
o —every step —every step
10 —_ =y
= every 5 steps s 107 every 5 steps
] £
b= =)
8 107
3 g 10
N o N
T 10 s
£ £
o S 1g°
< 0 <
8 8
10, 10 20 30 40 10, 10 20 30 40

iteration number iteration number

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.



Factored Galerkin-ADI lteration

Numerical example

MOR for IP FEM semi-discretized control problem for parabolic PDE:
Pt B m optimal cooling of rail profiles,
mn=20,209, m=7, p=6.

Bad ADI shifts
Matrix

Equations 5 Iteration history for controllability gramian 5 Iteration history for observability gramian

—no projection
— every step
——every 5 steps

—no projection
—every step
—every 5 steps

normalized residual
normalized residual
=

0 50 100 150 200 250 o] 50 100 150 200 250
iteration number iteration number

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.



Newton's Method for AREs

[KLEINMAN ’68, MEHRMANN 91, LANCASTER/RODMAN ’95,

B./BYERs ’94/'98, B. '97, Guo/LAUB ’99]

MOR for IP
m Consider 0=R(Q)=C'C+A"Q+ QA QBB'Q.
m Frechét derivative of R(Q) at Q:

Rg:Z— (A-BBTQ)TZ+Z(A-BBTQ).
m Newton-Kantorovich method:

Matrix
Equations

’ -1 .
Q=@ (Rg) R(Q). j=012...



Newton's Method for AREs

[KLEINMAN ’68, MEHRMANN 91, LANCASTER/RODMAN ’95,

B./BYERs ’94/'98, B. '97, Guo/LAUB ’99]

m Consider 0=R(Q)=C'C+A"Q+ QA QBB'Q.
m Frechét derivative of R(Q) at Q:

Ro:Z— (A-BBTQ)TZ+Z(A-BBTQ).
m Newton-Kantorovich method:

Matrix
Equations

/7 _1 .
Qit1=Q — (RQJ) R(Q;), j=0,1,2,...

Newton's method (with line search) for AREs
FORj=0,1,...
A — A—BBTQ = A BK,
Solve the Lyapunov equation A N; + N;A; = —R(Q)).
Qi1 — Q + ;.
END FOR j




Low-Rank Newton-ADI for AREs

MOR for IP

Re-write Newton’'s method for AREs

AN + NiAj = —R(Q))

<~
Mt AT (Q+ N)) +(Q+N) A = —CTC - QBBTQ
Equations S—_— Y
:QJ 1 :Qj 1 = VVJVVJT

Set Q) = Z;Z| for rank (Zj) < n =

Al (Z11Z80) + (ZinZla) A = —ww)T



Low-Rank Newton-ADI for AREs

MOR for IP

Re-write Newton's method for AREs

AN + NiAj = —R(Q))

<~
Mt AT (Q+ N)) +(Q+N) A = —CTC - QBBTQ
Equations S—_— Y
:QJ 1 :QJ 1 = VVJVVJT

Set Q) = Z;Z| for rank (Zj) < n =

Al (Z11Z80) + (ZinZla) A = —ww)T

Factored Newton lteration [B./Li/PENzL '99/°08]

Solve Lyapunov equations for Z;1; directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of A;.



Low-Rank Newton-ADI for AREs

Implementation issues for BST ARE

MOR for IP

m Right-hand of Lyapunov equation in jth Newton step:
—CT(DDT)'C+@QB(DDT) ' BT Q; = =W, Wl + W o W/,

~~ solve two Lyapunov equations in parallel:

Matrix
Equations

AjT (Zj+1 ZZ+1 e) (Zj+1 ZZ+1 e) Aj =Wy VVJQ’ =12
m After convergence, one more Lyapunov equation to obtain final
low-rank factor:
AT(YTY+(YWYDHA+WTW =0,

where .
W= (0D7) 1€ = (D7) 28 [z 2l | 5 |

Jmax,2



Numerical Examples

Random example

MOR for IP

Peter Benner

Numerical
Examples

mn=500, m=1=p; D=1
m Reduced order: r =2; |G — G1||o < 6.114-10°°.
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Numerical Examples

Random example
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m n=500, m=1=p; D=10.
= Reduced order: r = 2; |G — G 1|0 < 6.3975 108,

ransfer functions Error

Bode Diagram (Error)
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Numerical Examples

Random example

MOR for IP

m n=500, m=1=p; D=100.
m Reduced order: r = 2; |G — G1||o < 6.4275 1010

ransfer functions Error
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Numerical Examples

Random example

m n=500, m=1=p; D=0.01.
m Reduced order: r = 2; ||G™1 — G1|o < 1.225-102.

ransfer functions Error
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Numerical Examples

Random example

m n=500, m=1=p; D=0.01.
m Reduced order: r = 2; ||G™1 — G1|o < 1.225-102.

Transfer functions Error (including BT)
Bode Diagram (Error)
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Numerical Examples

Random example
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Numerical Examples

Random example

MOR for IP

mn=500 m=1=p; D=10""%
= Reduced order: r =2; |[G™1 — G~ 1|0 < 1.2392.

Error (including BT)
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Numerical Examples

Convection-diffusion with distributed control

MOR for IP

S m x; = Ax — [1000, 0] - Vx + bu.
m 30 x 30 uniform grid ~ n=900, m=1=p; D =1.

m Reduced order: r = 26; ||G™! — G|, < 3.7452-107°.

er functions

Bode Diagram (Error)
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Numerical Examples

Convection-diffusion with distributed control

MOR for IP

S m x; = Ax — [1000, 0] - Vx + bu.
m 30 x 30 uniform grid ~ n =900, m=1=p; D =103,

m Reduced order: r = 33; |G~ — G|, < 6.9565- 10 2.

er functions

Bode Diagram (Error)
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MOR for IP . . .
Balanced stochastic truncation yields reduced-order models that

can approximate inverse systems to a prescribed tolerance.

Peter Benner

® Main message:

Balanced truncation and family are applicable to large-scale
systems.

Conclusi d 1cl 1 1
condi-onte (If efficient numerical algorithms are employed.)

m Efficiency of numerical algorithms can be further enhanced,
several details require deeper investigation.

m Future work:

— Better understanding of the role played by feedthrough
term D: can it be used/seen as "regularization” parameter.

— Implementation for non-square systems/approximation of
left/right inverse systems.

— Extension to descriptor systems.

— Sharper error bound?
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