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Introduction
Model Reduction

Dynamical Systems

Model Reduction . E(P)X(t,P) = f(t,x(t;p),u(t),p), X(to):XO, (a)
wipyed SO — Mmoo (b)

with
m (generalized) states x(t; p) € R" (E € R"*"),
m inputs u(t) € R”,
m outputs y(t; p) € RY, (b) is called output equation,
m p € RY is a parameter vector.

E singular = (a) is system of differential-algebraic equations (DAEs)
otherwise = (a) is system of ordinary differential equations (ODEs)




Mjl Model Reduction for Dynamical Systems

Model Reduction

Peter Benner

Original System Reduced-Order System

1odel Reduction Z(p) s { E(P)X = f(t3 X, U, P), i(p) . E)? = ?(t, )/\(7 u, P)a
y = g(t7X> U,P)- ’ j\/ - E(tv)?v U,p).
m states x(t; p) € R”, m states X(t;p) € R", r < n

m inputs u(t) € R”, m inputs u(t) € R”,
m outputs y(t; p) € RY, m outputs y(t; p) € RY,
m parameters p € RY. m parameters p € RY.




Mjl Model Reduction for Dynamical Systems

Model Reduction

Peter Benner

Original System Reduced-Order System

e L o0: { B 2 7(t,%,0.p)
y = g(t,x, u, p). 7 = &8(t, %, u,p).
m states x(t; p) € R, m states X(t;p) ER", r < n
m inputs u(t) € R”, m inputs u(t) € R”,
m outputs y(t; p) € RY, m outputs y(t; p) € RY,
m parameters p € RY. parameters p € R,

4.“_.

|ly — 9|| < tolerance - ||u|| for all admissible input signals and relevant
parameter settings.




Motivation
Applications in Microsystems/MEMS Design

Model Reduction

Feter Benner Compact models for electro-thermic simulation

m Goal: controlling the thermic behavior in ICs and MEMS.

Motivation
m Joule effect: electric current flowing through a conductor induces
heat.

m For ICs: dissipate heat.
For MEMS: employ Joule effect for designing MEMS with switching
behavior (“hotplate”).

m Spatial discretization of heat equation using FEM leads to large-scale
system; generate compact models for MST model library, essential
parameters for heat exchange need to be preserved symbolically:

— film coefficients (convection boundary conditions),
— heat conductivity /exchange coefficients.

Source: The Oberwolfach Benchmark Collection nttp://wuw. intek.de/similation/benchmark


http://www.imtek.de/simulation/benchmark

Motivation
Applications in Microsystems/MEMS Design

Model Reduction

Feter Benner Compact models for electro-thermic simulation

e Example: 3 fllm_ coefficients PolySi e
(top, bottom, side) =
SiNx

, 3 si02

Ex(t) = (Ao+ Y piA)x(t)+ bu(t)
i=1
y(t) = ¢'x(1)
Fuel Si-substrate
m n=4.257

m A;, i =1,2,3, diagonal.

Source: The Oberwolfach Benchmark Collection nttp://wuw. intek.de/similation/benchmark


http://www.imtek.de/simulation/benchmark

Motivation
Applications in Microsystems/MEMS Design

Model Reduction

Peter Benner

Flow sensor (anemometer)

m Sensor measuring flow rates of fluids or gas.

Motivation

m Based on one heater with thermo-sensors on both sides.

m Design process requires compact model, in which flow velocity and,
possibly, material parameters (viscosity, density) appear as symbolic
quantities.

m Mathematical model: Linear convection-diffusion equation.

FlowProfile

SenL Heater SenR

Figure: Anemometer model generated using ANSYS



Motivation
Applications in Microsystems/MEMS Design

Model Reduction

Peter Benner Electro-chemical scanning electron microscope (SEM)

m Used for high resolution measurements of chemical reactivity and
Mtivation topography of surfaces, in particular for biological systems and
nano-structures.

m Based on measuring current through a micro-electrode which is
moved through electrolyte along surface.

m Measurements lead to cyclic voltammogram, plotting the current vs.
applied potential.

m Mathematical model: Multi-species diffusion equations with mixed
boundary conditions, defined by Butler-Volmer equation.

Film coefficient depending on the applied potential is to be preserved.



Motivation
Applications in Microsystems/MEMS Design

Model Reduction

Peter Benner Electro-chemical scanning electron microscope (SEM)
Example: 2 film coefficients =

Ex(t) = (Ao + p1A1 + p2A2)x(t) + Bu(t), y(t)=c'x(t).
FEM model: n =16.912, m = 3 inputs, A1, A> diagonal.

Motivation

——fullsimulation, n=16912
— =~ reduced order 26

current, nA

Axis of symmetry

05 05 1

0
voltage uft), alpha=0.5

Figure: Schematic diagram of experimental set-up and corresponding
voltammogram



Mjl Model Reduction Basics

Model Reduction . .
Simulation-Free Methods

Modal Truncation
Guyan-Reduction/Substructuring

Basics

Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~~ interpolatory methods)

Balanced Truncation (~ system-theoretic methods)

many more. . .



Mjl Model Reduction Basics

Model Reduction . .
Simulation-Free Methods

Modal Truncation
Guyan-Reduction/Substructuring

Basics

Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~~ interpolatory methods)

Balanced Truncation (~ system-theoretic methods)

many more. . .

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x ~ VW T x =: %, where

range (V) =V, range(W)=W, W'V =1,.
Then, with & = W T x, we obtain x &~ V& and

[Ix = X[ = [lx = VX|.



Linear Parametric Systems

Linear, time-invariant systems depending on parameters

E(p)x(t; p) A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
y(tip) = Cx(tip), B(p) € R™™, C(p) € R7".

Basics



Linear Parametric Systems

Linear, time-invariant systems depending on parameters

E(p)x(t;p) = A(p)x(t:p) + B(p)u(t), A(p), E(p) € R™",
y(t:ip) = Cx(tip), B(p) € R™™, C(p) € R7".

Basics

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) — x(s; p),
X(t; p) — sx(s; p)) to linear system with x(0) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:

y(s:p) = ( C(P)(E(P) — Alp) ' B(p) ) u(s)

=:G(s;p)
G(s: p) is the parameter-dependent transfer function of X(p).




Mjl Model Reduction for Linear Parametric Systems

Model Reduction

Problem
Approximate the dynamical system

Basics E(p)X
y

A(p)x + B(p)u,  A(p), E(p) € R™",
C(p)Xv B(p) S RnXm7 C(p) = ]qun’

by reduced-order system

E(pk = A(p)x+B(p)u, A(p),E(p) e R,
y C(p)x, B(p) € R™™, C(p) € RY*",

of order r < n, such that

ly =91l = l6u = Gul| < |G — &]ll|ull < tolerance - |u].



Mjl Model Reduction for Linear Parametric Systems

Model Reduction

Problem
Approximate the dynamical system

Basics E(p)X
y

A(p)x + B(p)u,  A(p), E(p) € R™",
C(p)Xv B(p) S RnXm7 C(p) = ]qun’

by reduced-order system

E(pk = A(p)x+B(p)u, A(p),E(p) e R,
y C(p)x, B(p) € R™™, C(p) € RY*",

of order r < n, such that
ly =91l = |Gu — Gul| < |G — G|||jul| < tolerance - ||u]].

= Approximation problem: min, ;.. &), G — G|



Mjl Model Reduction for Linear Parametric Systems

Parametric System

[ E(p)x(tip) = A(p)x(t: p)+ B(p)u(t)),
(p): { y(tip) = Clp)x(t:p).



Model Reduction for Linear Parametric Systems

Parametric System

[ E(p)x(t; p)
(p): { y(t; p)

A(p)x(t; p) + B(p)u(t)),
Cp)x(t: p).

Basics

Appropriate representation:

E(p) Eo+ ei(p)Er + ...+ eqe(p)Eqges
A(p) = A+ al(p)Al +...t an(p)AqA,
B(p) = Bo+b1(p)Bl—l—...—l—qu(P)BqB,
C(p) G+ alp)CG+ ...+ coe(p)Cocs

allows easy parameter preservation for projection based model reduc-
tion.



Mjl Model Reduction for Linear Parametric Systems

Model Reduction X
- Parametric System

| E(p)x(t; p) A(p)x(t; p) + B(p)u(t)),
=(p): { y(tip) = C(p)x(t:p).

Basics

Applications:

m Repeated simulation for varying material or geometry
parameters, boundary conditions,

m Optimization and design.



Mjl Model Reduction for Linear Parametric Systems

Model Reduction X
- Parametric System

[ E(p)x(t; p) A(p)x(t; p) + B(p)u(t)),
Z(”)'{ y(tp) = Cpx(E:p).

Basics

Applications:

m Repeated simulation for varying material or geometry
parameters, boundary conditions,

m Optimization and design.

Additional model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

o\ [ E(px(tip) = Ap)x(t:p)+ B(p)u(t)),
z(”)'{ AR ()

with states X(t; p) € R".



Interpolatory Model Reduction

Short Introduction

Model Reduction . - -
Computation of reduced-order model by projection
Peter Benner

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with
transfer function  G(s) = C(sE — A)™'B, a reduced-order model is
obtained with projection matrices V, W € R"™" with W™V = |,
Inroduction (~ (VWWT)? = VWT is projector) by computing

E=wW"EV, A=wWTAv, B=W'B, C=cV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.



Interpolatory Model Reduction

Short Introduction

Model Reduction . . .
: Computation of reduced-order model by projection

Peter Benner
Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with
transfer function  G(s) = C(sE — A)™'B, a reduced-order model is
obtained with projection matrices V, W € R"™" with W™V = |,
Inroduction (~ (VWWT)? = VWT is projector) by computing

E=wW"EV, A=wWTAv, B=W'B, C=cV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V/, W such that
G(s) = @(sj)7 j=1,...,k,

and )
dl
ds’

d . . .
G(SI):EG(SJ)ﬂ I:]-w"?/(h J:]-v"'ak'



Interpolatory Model Reduction

Short Introduction

span {(s:E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(stE —A)"TCT,....(skE—A)TCT} < Ran(W),

Introduction

then

R d d . .
G(s)) = G(s), —G(s) = EG(SJ)’ forj=1,... k.

ds



Introduction

Interpolatory Model Reduction

Short Introduction

span {(s:E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(stE —A)"TCT,....(skE—A)TCT} < Ran(W),

then

d d . .
gG(Sj) = EG(SJ'), forj=1,..., k.

G(sj) = G(s)).

Remarks:
computation of V| W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi or rational Lanczos [GRIMME ’97],

— lIterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN '07].




Introduction

Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(s:E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(stE —A)"TCT,....(skE—A)TCT} < Ran(W),

then

R d d . .
G(s)) = G(s), —G(s) = EG(SJ)’ forj=1,... k.

ds

Remarks:

using Galerkin /one-sided projection yields G(s;) = G(s;), but in general

9 6(s) # S6(s).



Introduction

Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span {(s:E — A)"'B,...,(skE — A)"'B} C Ran(V),
span {(stE —A)"TCT,....(skE—A)TCT} < Ran(W),

then

G(s;) = G(s)).

d d . .
gG(Sj) = EG(SJ'), forj=1,..., k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K ~» moment-matching
methods/Padé approximation,

d’ d’
dsi Gls1) = dsi

G(s1), i=0,...,K—1(+K).




Interpolatory Model Reduction

Notation

Model Reduction

Peter Benner

Parametric Systems

[ E(p)x(t:p) = A(p)x(t:p) + B(pu(t)),
Z(P)-{ y(t:p) = C(p)x(t:p)-

Assume
E(p) = Eo+e(p)Er+... .+ eq(p)Ege
A(p) = Ao+ ai(p)AL+ ...+ ag,(p)Agss
B(p) = Bo+ bi(p)Bi+ ...+ bgy(p)Bgs,
Clp) = G+aP)G+...4+ce(p)Cq-



Reduced-order model

Model Reduction

Petrov-Galerkin-type projection
For given projection matrices V, W € R"*" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

Introduction

E(p) WTEV +e(p)W EV + ...+ e (p)W'E,V,
A(p) WT AV +ai(p)W ALV + ...+ ag,(p) W' AV,
Blp) = W'By +bi(p)W'B1 +...+ by (p)W ' Bas,

C(p) GV + al(p)GV+...+ Cac(p)Coc V.



Parametric Model Reduction based on

Multi-Moment Matching

Model Reduction

Idea: choose appropriate frequency parameter S and parameter vector
P, expand into multivariate power series about (3, p) and compute
reduced model, so that

G(s,p) = G(s,p) + O (Is — 8" + llp — Bll* + s — 3/"llp — £

MMM-PMOR
i.e., first K, L,k + ¢ (mostly: K =L = k + ¢) coefficients
(multi-moments) of Taylor/Laurent series coincide.



® Parametric Model Reduction based on
M:ll Multi-Moment Matching

Model Reduction Idea: choose appropriate frequency parameter S and parameter vector
P, expand into multivariate power series about (3, p) and compute
reduced model, so that

G(s,p) = G(s.p) + O (Is =3/ + [lp— Bl + s = 8[| p — £I) ,
MMM-PMOR

i.e., first K, L,k + ¢ (mostly: K =L = k + ¢) coefficients
(multi-moments) of Taylor/Laurent series coincide.

Algorithms:

m [DaNIEL ET AL. 04]: explicit computation of moments, numerically
unstable.

B [FARLE ET AL. '06/°07]: Krylov subspace approach, only
polynomial parameter-dependance, numerical properties not
clear, but appears to be robust.

m [FenG/B. ’07/°09]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger
as with [FARLE ET AL.].



. Parametric Model Reduction based on
M:ll Multi-Moment Matching

Numerical Examples

Model Reduction

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

Ex(t) = (Ao + prAL + p2A2)x(t) + Bu(t), y(t) = ¢ x(t),
where n = 16.912, m = 3, A; diagonal.

K=L=k+(=9 = r=286

MMM-PMOR

K=L=k+l=4 = r=26

—ful simulation, =16912
——~reduced order 26

current, nA
current, nA

] -05 ) 05
voltage u(t), alpha=0.5



Parametric Model Reduction based on
Multi-Moment Matching

Numerical Examples

Model Reduction
Anemometer:
FEM model

Ex(t) = (Ao + prA)x(t) + bu(t),  y(t) = c"x(t),
where n =29,008, m=q = 1.

Outputs for p =1 Output errors for p =1

Peter Benner

MMM-PMOR

x10°
4 4
0 —artors ot reciced mocel by or roposed agorm
. Al | == etrors ofne reduced mocel by onperemetric mogel recucton
—original output at p=1 ... |_=* —errors of the reduced madel by explicitly computing moment vectors
———output at p=1 by nonparametric model reduction, error=4e-5
35 + outputat p=1 by our proposed algoritim, error=de-4
cuiput o p=1 by xplciy computng momentvectors,aor=1e-2
4 =
T
B 1
]
B2
g
3
15| 1
1 ]
osf
. T 07 0% 07 05 07 0% 0f 04 0%
6T o0z 062 004 G5 6% 007 008 065 o parameter: p

time (seconds)



Parametric Model Reduction based on Rational Interpolation
Theory

Model Reduction

Peter Benner

Theorem [BEATTIE/B./GUGERCIN '07]

Suppose E(p), A(p), B(p). C(p) are Lipschitz in neighborhood of
p=1[p,., Pa]" and let 5 € C be such that both 3 E(p) — A(p) and
RatPMIOR SE(p) — A(p) are invertible.




Parametric Model Reduction based on Rational Interpolation

Model Reduction
Pe
Theorem [BEATTIE/B./GUGERCIN '07]
Suppose E(p), A(p), B(p). C(p) are Lipschitz in neighborhood of
p=1[p,., Pa]" and let 5 € C be such that both 3 E(p) — A(p) and
RatPMIOR SE(p) — A(p) are invertible.

if (3E(p) — A(p))~! B(p) € Ran(V), then G(3,p) = G(5, p);




Parametric Model Reduction based on Rational Interpolation

Model Reduction
Pe
Theorem [BEATTIE/B./GUGERCIN '07]
Suppose E(p), A(p), B(p). C(p) are Lipschitz in neighborhood of

p=1[p,., Pa]" and let 5 € C be such that both 3 E(p) — A(p) and
YR SE(p) — A(p) are invertible.

if (C(,s) (BE(p) — A(,a))—l) "¢ Ran(W), then G(3,p) = G(5,p);



Parametric Model Reduction based on Rational Interpolation

Theorem [BEATTIE/B./GUGERCIN '07]

Suppose E(p), A(p), B(p), C(p) are Lipschitz in neighborhood of
and let § € C be such that both § E(p) — A(p) and

p — [p17 s Pd]
s E(p) — A(p) are invertible.

if (8 E(p) — A(p)) " B(p) € Ran(V), then G(5,p) = G(5, p);
it (C(p) (E(p) ~ A(B) ") € Ran(W), then G(.p) = G(5. )
if both (3 E(p) — A(p)) " B(p) € Ran(V) and

(CB)EE®) ~ AE) )" € Ran(W), then

() V,6(3,5) = V,6.(5,)
(i) %6(3.) = %6(3.p).

RatPMOR



Parametric Model Reduction based on Rational Interpolation

Model Reduction
Pe:

Theorem [BEATTIE/B./GUGERCIN '07]

Suppose E(p), A(p), B(p). C(p) are Lipschitz in neighborhood of
p=1[p,., Pa]" and let 5 € C be such that both 3 E(p) — A(p) and
RatPMIOR SE(p) — A(p) are invertible.

if (8 E(p) — A(p)) " B(p) € Ran(V), then G(5,p) = G(5, p);
it (C(p) (E(p) ~ A(B) ") € Ran(W), then G(.p) = G(5. )
if both (3 E(p) — A(p)) " B(p) € Ran(V) and

(CB)EE®) ~ AE) )" € Ran(W), then

(i) VPG(‘,S\» IAJ) - V,,AG,(A,;“)),
(i) 26(3.5)= 2G(5p).

Note: result extends to MIMO case using tangential interpolation.



Parametric Model Reduction based on Rational Interpolation
Algorithm

Model Reduction

Generic implementation of interpolatory PMOR
Define A(s, p) := sE(p) — A(p).

Peter Benner

Select “frequencies” si,...,sx € C and parameter vectors
1 ‘ d
p( ),...,p( ) e R,
RatPMOR Compute (orthonormal) basis of

v = span {AGs, o) B(0), .. (s, p0) B0 ]
Compute (orthonormal) basis of

W = span {A(s1, p) D). (s, ) (O .

Set V :=[vi,...,vke], W:=[w,..., wie], and W := W(WH V)=t
(Note: r = k¢).

A(p) = WHA(P)V,

C(p) := WC(p)V,

B(p) := W"B(p)V,
Compute { E(p) := WHME(p)V.



Parametric Model Reduction based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Model Reduction

Peter Benner

® Important requirement for a compact model of thermal conduction is
boundary condition independence.

m The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection

RatPMOR boundary conditions containing film coefficients {p;};_;, to describe

the heat exchange at the ith interface.

m Spatial semi-discretization leads to
3
Ex(t) = (Ao+ > piAx(t) + bu(t), y(t)=c"x(t),
i=1
where n = 4257, A;, i = 1,2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact
thermal modeling phenomena, |IEEE. Trans. Components and Packaging
Technologies, Vol. 24, No. 4, pp. 559-565, 2001.



Parametric Model Reduction based on Rational Int

Numerical Example: Thermal Conduction in a Semiconductor Chip

Model Reduction Choose 4 interpolation points for parameters (“important” configurations),
Peter Benner 6 interpolation frequencies are picked H» optimal by IRKA.
= k=26, =4, hence r = 24.

Relative H_ error vs parameter values (logarithmic scale)

RatPMOR

-2
-3

-4

i

-5

log (I1H=H_II/ITHII)

log (p,) 0 o log (p,)



System-Theoretic Methods

Balanced Truncation

Idea (for simplicity, E = I,)

m A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+ QA+ CTC = 0,

Balanced
Truncation

satisfy: P = Q = diag(o1,...,0,) withoy > 00> ... >0, > 0.



System-Theoretic Methods

Balanced Truncation

Idea (for simplicity, E = I,)

m A system X, realized by (A, B, C, D), is called balanced, if
solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+ QA+ CTC = 0,

Balanced
Truncation

satisfy: P = Q = diag(o1,...,0,) withoy > 00> ... >0, > 0.
m {01,...,0,} are the Hankel singular values (HSVs) of X.



System-Theoretic Methods

Balanced Truncation

Idea (for simplicity, E = I,,)

m A system X, realized by (A, B, C, D), is called balanced, if
solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+ QA+ CTC = 0,

Balanced
Truncation

satisfy: P = Q = diag(o1,...,0,) withoy > 00> ... >0, > 0.
m {01,...,0,} are the Hankel singular values (HSVs) of .
m Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)

. A A B
- ([Azl Azz]’{Bz]’[Cl C2]7D>



System-Theoretic Methods

Balanced Truncation

Idea (for simplicity, E = I,,)

m A system X, realized by (A, B, C, D), is called balanced, if
solutions P, Q of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+ QA+ CTC = 0,

Balanced
Truncation

satisfy: P = Q = diag(o1,...,0,) withoy > 00> ... >0, > 0.
m {01,...,0,} are the Hankel singular values (HSVs) of .
m Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
A A B

A

m Truncation ~ (/2\, B, &, ﬁ) = (A11, B1, G, D).



System-Theoretic Methods

Balanced Truncation

HSV are system invariants: they are preserved under 7 and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ — yy.

Balanced
Truncation



System-Theoretic Methods

Balanced Truncation

Model Reduction Motivation.

- HSV are system invariants: they are preserved under 7 and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ — yy.

Balanced
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System-Theoretic Methods

Balanced Truncation

Model Reduction Motivation.

- HSV are system invariants: they are preserved under 7 and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ — yy.

Balanced

Truncation In balanced coordinates . ..energy transfer from u_ to y;:
T T
f y(t)"y(t) dt
E:= sup 05X
u€lLy(—o0,0] Z

(=% f u(t)Tu(t) dt B 0”2

— Truncate states corresponding to “small” HSVs
—> analogy to best approximation via SVD, therefore
balancing-related methods are sometimes called SVD methods.
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Implementation: SR Method

Compute (Cholesky) factors of the solutions of the Lyapunov
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Implementation: SR Method

Compute (Cholesky) factors of the solutions of the Lyapunov
equations,

P=S"S, Q=R'R.
Compute SVD

Balanced
Truncation

SRT =[ U, Ug]l




System-Theoretic Methods

Balanced Truncation

Implementation: SR Method

Compute (Cholesky) factors of the solutions of the Lyapunov
equations,
P=S"S, @=R'R.

v,
V2T ’

W=RTVis[Y?  v=5Tus Y
Reduced model is (WT AV, WTB, CV, D).

Balanced Compute SVD

Truncation

5
SRT = [Uy, Us] l '

PX

Set
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Balanced Truncation

m Reduced-order model is stable with HSVs o4, ..., 0,.

m Adaptive choice of r via computable error bound:

n
by =gl (232 ok lull

m General misconception (not at RICE, though — contributions by
Antoulas, Gugercin, Heinkenschloss, Sorensen, Zhou):
complexity O(n%) — true for several implementations (e.g.,
MATLAB, SLICOT, MorLAB).
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System-Theoretic Methods

Balanced Truncation

Model Reduction Properties-

m Reduced-order model is stable with HSVs o4, ..., 0,.

m Adaptive choice of r via computable error bound:

n
Balanced ”y _y||2 < (2 Zk:r—H (Tk) ||u||2

Truncation

m General misconception (not at RICE, though — contributions by
Antoulas, Gugercin, Heinkenschloss, Sorensen, Zhou):
complexity O(n®) — true for several implementations (e.g.,
MATLAB, SLICOT, MorLAB).

But: recent developments in Numerical Linear Algebra yield
matrix equation solvers with sparse linear systems complexity!



rw Solving Large-Scale Lyapunov Equations

Model Reduction

General form for A, W = WT € R"™ " given and P € R"*" unknown:

0 = L(Q:=ATQ+ QA+ W.

In large scale applications from semi-discretized control problems for

e PDEs,

m n=10%-10° (= 10° — 10'2 unknowns!),

m A has sparse representation (A= —M~1K for FEM),

m W low-rank with W € {BBT, CT C}, where
BeR™™ m« n CeRI*" p<n.

m Standard (Schur decomposition-based) O(n*) methods are not
applicable!



Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

Model Reduction

m For A € R"*" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

m ADI Iteration: [WACHSPRESS 1988]
SR — _BBT_ T_
: (A+pil)X(k-1)2 = —BB" = Xk—1(A" — pil)
(A+p)XT = —=BBT — Xy 1)2(AT = pil)

with parameters py € C~ and pxi1 = px if px € R.

m For Xy = 0 and proper choice of py: klim X=X

(super)linearly.



Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

Model Reduction

m For A € R"*" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

m ADI Iteration: [WACHSPRESS 1988]
SR — _BBT_ T_
: (A+pil)X(k-1)2 = —BB" = Xk—1(A" — pil)
(A+p)XT = —=BBT — Xy 1)2(AT = pil)

with parameters py € C~ and pxi1 = px if px € R.

m For Xy = 0 and proper choice of py: klim X=X

(super)linearly.

m Re-formulation using X, = Yk YkT yields iteration for Yi...



Factored ADI lteration

Lyapunov equation 0 = AX + XAT + BBT.

Model Reduction

Setting Xx = Yk Y,”, some algebraic manipulations =

Peter Benner

Algorithm [PenzL '97/°00, Li/WHITE ’99/°02, B. 04, B./L1/PENzL '99/°08]

Vi «— +/—2Re(p1)(A+pil)7 !B, Yi « Wi

FOR j = 2,3,.
Lyapunov
s 7%= Re(pfk)l (Vi—1 — (pk + Pe=1) (A + picl) " Vi)
Ye—[ Yeor Vi ]
Yi < rrlg( Yk, 7) % column compression
At convergence, Yj Y, ~ X, where

Yew =[ Vi oo Vi |, Vk:HeC"X’".

max

Note: Implementation in real arithmetic possible by combining two steps.



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

o) Rttt Projection-based methods for Lyapunov equations with A+ AT < 0:
Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Set A:=Z"AZ, B:=Z"B.
Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Use X ~ ZXZT.
Examples:

Lyapunov
Equations

m Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].
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Lyapunov equation 0 = AX + XAT + BBT

o) Rttt Projection-based methods for Lyapunov equations with A+ AT < 0:
Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Set A:=Z"AZ, B:=Z"B.
Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Use X ~ ZXZT.
Examples:

Lyapunov
Equations

m Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].

m K-PIK [Smnvoncint 707],

Z=K(A B,r)UK(A™}, B,r).



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

o) Rttt Projection-based methods for Lyapunov equations with A+ AT < 0:
Peter Benner Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Set A:=Z"AZ, B:=Z"B.
Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Use X ~ ZXZT.
Examples:

Lyapunov
Equations

m ADI subspace [B./R.-C. Li/TRUHAR ’08]:
Z:colspan[ Vi, ..., V, ]

Note: ADI subspace is rational Krylov subspace [J.-R. L1i/WHITE 02].



Factored Galerkin-ADI lteration

Numerical example

Model Reduction FEM semi-discretized control problem for parabolic PDE:
Pt B m optimal cooling of rail profiles,
mn=20,209, m=7, p=6.

Good ADI shifts

Iteration history for controllability gramian 5 Iteration history for observability gramian
Lyapunov —no projection —no projection
Equations o —every step —every step
_ 10 —every 5 steps e sy —every 5 steps
] © 10
] £
b= =)
8 107
3 g 10
B i N
g 10 =
£ £
2 2 10°
8 8
10 10
0 10 20 30 40 0 10 20 30 40

iteration number iteration number

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.



Factored Galerkin-ADI lteration

Numerical example

Model Reduction FEM semi-discretized control problem for parabolic PDE:
Pt B m optimal cooling of rail profiles,
mn=20,209, m=7, p=6.

Bad ADI shifts

Iteration history for controllability gramian 5 Iteration history for observability gramian

Lyapunov —no projection
Equations —every step
——every 5 steps

—no projection
—every step
—every 5 steps

normalized residual
normalized residual
=

0 50 100 150 200 250 o] 50 100 150 200 250
iteration number iteration number

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.



Parametric Model Reduction Using Balanced Truncation

[Baur/B. '09]

Model Reduction

Idea: for selected parameter values pU?, j=1,...,k, compute
reduced-order models G;(s) of G(s; p¥) by BT.

Parametric reduced-order system by Lagrange interpolation:
K

Gsip) = Y _h(p)Gi(s)

1

Peter Benner

.
I

k k 0] R R R
=1 \i=1i%
N T PN N
G(p) (sl — A1) B
C(p) (shy, — A) ™ B

Note: no discretization/grid for frequency parameter s necessary!
Current work: employ rational Hermite interpolation w.r.t. p.



PMOR using BT (d =1)

Error Bound

Model Reduction
Combination of interpolation error and balanced truncation bound —-

sup [|G(s;p) — G(sip)ll = sup [G(s;p) =D hi(p)Gi(s)l

seCct seCt

pEla,b] pEla,b] =0
k k
< sup |G(s; p) — Z L(P)Gi(s)Il + sup Il Z (P)(Gi(s) — Gi(s))l
pelanb] =0 pelas) 470
BTPMOR
p
< sup [|Re(G,s,p)| +tol- sup |Z/j(P)|
s€e[c+b] pEla,b] =0
p€la,

~

with remainder Ri(G,s, p) = G(s; p) — G(s; p)

k+1 k
Ru(G.5.9) = Gy (s SCSi€0)) 1 —»)

at £(p) € [min; pj, max; pj].



PMOR Using BT (d

Numerical Example

Convection-diffusion equation

Ge(t.€) = AT(t,€)+p-VT(t,) +b€)u(t) &€ (0,1)?
y  FDM with n = 400
dx(t) = (A+pA)x(t)+bu(t), b=e
BTPMOR y(t) = CTX(t), cl = [1, 1,--- 7]_]

Choose pg,- -, ps € [0, 10] as Chebyshev points;
prescribe BT error bound for G(s; p;) by tol=10"*
= systems of reduced order r; € {3,4};
error estimate for @(s;p) obtained by Lagrange interpolation:
sup  [|G(s,p) — G(s,p)|| <2.6 x 1075,

s€[710—2,7100]
p€(0,10]



Parametric Model Reduction Using Balanced

Truncation (d = 1)

Numerical Example — Convection-Diffusion Equation

Model Reduction

Peter Benner

BTPMOR == -

W
W

10"

p (parameter) o (frequencies)



Parametric Model Reduction Using Balanced Truncation on

Sparse Grids [Baur/B. '09]

Model Reduction

Peter Benner

Disadvantage of interpolating BT reduced-order models:
for d-dimensional parameter spaces p € [0,1]¢ with d > 2
we need many interpolation points = many times BT,

i.e. very high complexity!

SGBTPMOR Thus

employ sparse grid interpolation [Zenger 91, Griebel 91, Bungartz 92].

Main advantages:
m requires significantly fewer grid points,
m preserves asymptotic error decay with increasing grid resolution
(up to logarithmic factor).



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

LR On [0, 1], construct equidistant grid with mesh size h; = 2~¢ and

Peter Benner

associated (2¢ — 1)-dim. space of piecewise linear functions S;.

Hierarchical basis decomposition Subspaces of S,
[Yserentant '86]

Se=T1®---®Te u

SGBTPMOR

T

T3




PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

LR On [0, 1], construct equidistant grid with mesh size h; = 2~¢ and

Peter Benner

associated (2¢ — 1)-dim. space of piecewise linear functions S;.

Hierarchical basis decomposition Subspaces of S,
[Yserentant '86]

Se=T1®---®Te u
For f € C?[0, 1] and interpolant f1 € S;

SGBTPMOR

T

£
fi=) £, ficT,
i=1

//‘\“T3
the interpolation error is bounded by 3

If = fille < chy.

1 _; 8%
il < 24755 loo-
[filloc < >4 IIalel




PMOR Using BT on Sparse Grids

Hierarchical basis decomposition in d = 2

Model Reduction

Peter Benner On [0, 1]? construct rectangular grid with mesh size hy, =271, hy, = 2%

and (2° — 1)%-dim. space of piecewise bilinear functions S, (£ := (£, £))

Hierarchical basis decomposition: Subspaces of Sss:
VA
=P i=(ii) ; .
=1 ip=1 . .
SGBTPMOR . :

supports of bases of Ty, ...



PMOR Using BT on Sparse Grids

Hierarchical basis decomposition in d = 2

Model Reduction

Peter Benner On [0, 1]? construct rectangular grid with mesh size hy, =271, hy, = 2%

and (2° — 1)%-dim. space of piecewise bilinear functions S, (£ := (£, £))

Hierarchical basis decomposition' Subspaces of Sss:
DB -G I
i1=1 =1 . *
SGBTPMOR . . :
For f: [0, 12 = R, £{%0n € C°([0, 1%)
L¢ R . | .
fi=) > fi fieT N R
=1 ir=1 b
the interpolation error is bounded . . ANNIDDDE
B |If — il < O(K)

B |fi]le < 247072) 0 8X28X2 Il supports of bases of Ty1,. ..



PMOR Using BT on Sparse Grids

Sparse grids in d =2  [Zenger 91, Griebel 91, Bungartz 92]

Model Reduction

Peter Benner

Sparse decomposition:
= P T i=(ih)
i <e+1
with reduced dimension

dimS, =2 —1)+1

SGBTPMOR

Subspaces of Ss3:

-\--

LFTR

supports of bases of Tii,...



PMOR Using BT on Sparse Grids

Sparse grids in d =2  [Zenger 91, Griebel 91, Bungartz 92]

Model Reduction

Peter Benner

Sparse decomposition: Subspaces of Ss3:

S5= P T oi=(hi)

i+ <l4+1

with reduced dimension

dimS, =2 —1)+1

SGBTPMOR ) @ 0 ) b
For f: [07 1] — R, f;<1X1X2X2 eC ([Oa 1] )7 NN AN
olele]e QRN
?I = Z fb f;, € Tb AN AT
i <+1

supports of bases of Tii,...
the interpolation error is bounded:

If = Frlloe < O(h7log(hy ).



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Model Reduction

On [0, 1]9, construct grids with mesh size hy (i := (i

For f: [0, 1]9 - R, ax?%.d.(gxd € C°([o, 1]7) search

interpolant fr in space of piecewise d-linear functions:

SGBTPMOR



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Model Reduction

On [0, 1]9, construct grids with mesh size hy (i := (i

2d
For f: [0, 1]9 — R, ax?..éxd € C([0, 1]9) search
interpolant fr in space of piecewise d-linear functions:

SGBTPMOR

full grid space

¢ ¢
S=@ O,
A=l ig=1
dimension O(h; )

I = fillo O(h7)



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Model Reduction

On [0, 1]9, construct grids with mesh size hy (i := (i, ..., ig) € N9).

For f: [0, 119 - R, ax??.d.éxd € C°([0, 1)¢) search

interpolant fr in space of piecewise d-linear functions:

SGBTPMOR

full grid space sparse grid space
S=@ & 5= @ T
=1 ig=1 lijs <¢+d—1
dimension O(h; ) O(h,* (log(h, 1))4—1)
I = filloo O(hy) O(h7 (log(h;))*™1)



PMOR Using BT on Sparse Grids

MATLAB Sparse Grid Interpolation Toolbox [Klimke/WohImuth ‘05, Klimke '07]

Model Reduction

Peter Benner

Points: 5, Level: 1 Points: 13, Level: 2 Points: 29, Level: 3

Points: 65, Level: 4

Points full grid: 9 Points full grid: 25 Points full grid: 81 Points full grid:289
1 1 1 - 1 T
08 08 08 08
06 0.6 0.6 06
04 04 04 04
02 02 02 02
[ 05 1 0 05 1 0 05 1 0 05 1
SGBTPMOR
Points: 7, Level: 1 Points: 25, Level: 2 Points: 69, Level: 3 Points: 177, Level: 4

Points full grid: 27 Points full grid: 125 Points full grid:729 Point full grid: 4913

=




PMOR Using BT on Sparse Grids

Algorithmic Framework

Model Reduction

For level ¢ choose O(h, *(log(h;))™") sparse grid points.

SGBTPMOR



PMOR Using BT on Sparse Grids

Algorithmic Framework

Model Reduction

Peter Benner For level ¢ choose O(h, *(log(h;))™") sparse grid points.

Apply balanced truncation to Gj(s) := G(s; p;):
Gi(s) = G (s, - A) "B,
determine r; by prescribed error tolerance:

I1G; = Gilloo < tol.

SGBTPMOR



PMOR Using BT on Sparse Grids

Algorithmic Framework

Model Reduction
Peter Benner For level ¢ choose O(h, *(log(h;))™") sparse grid points.
Apply balanced truncation to Gj(s) := G(s; p;):
Gi(s) = G (s, - A) "B,
determine r; by prescribed error tolerance:

16 = Glloo < tol.
SGBTPMOR
Parametric reduced-order system:

G(sip)= Y ilp)alGuls), Gals),---)

i <e+d—1

with interpolation error

d
PET? ||, <e+d—1

IG = Glloe <tol- C-sup > [4i(p)| + O(h;(log(hy*))* ™).



PMOR Using BT on Sparse Grids

Numerical Examples — Convection-Diffusion Equation

Model Reduction

Z16) = Ax(t.€)+p-Vx(t.6)+ b(E)u(t), €< (0,17

ot
I FDM with n = 400
X(t) = (A—|—p1A1—|-p2A2)X(t)—|—bu(t)

SGBTPMOR



PMOR Using BT on Sparse Grids

Numerical Examples — Convection-Diffusion Equation

Model Reduction

Z16) = Ax(t.€)+p-Vx(t.6)+ b(E)u(t), €< (0,17

ot
I FDM with n = 400
X(t) = (A—|—p1A1—|—p2A2)X(t)—|—bu(t)

SGBTPMOR

b=e,c" =[1,1,---,1]
Parameter space: p1, p2 € [0, 1].

Chebyshev-Gauss-Lobatto grid with polynomial interpolation,
level £ =1 = k =5 sparse grid points.

m Error tolerance for BT applied to G(s; pU)): 1074
= system of reduced order r; =3 for j =1,... k.

Estimated interpolation error: 1.8 x 1074,



PMOR Using BT on Sparse Grids

Numerical Examples — Convection-Diffusion Equation

Model Reduction

Peter Benner

SGBTPMOR




PMOR Using BT on Sparse Grids

Numerical Examples — Convection-Diffusion Equation

Model Reduction

Feter Benner H. error of transfer function

SGBTPMOR

p

max_ ||G - Gr||
a\

10 ‘ ‘ ‘
107 10° 10° 10* 10°
frequency




Conclusions and Outlook

Model Reduction

We have presented a general framework for interpolation-based model
reduction of parametric systems.

Peter Benner

m Applications: microsystems technology in particular, but also
applicable to other areas where design and optimization are important.

m Approximation results for partial derivatives w.r.t. parameters ~~
Conclusions and sensitivities for process variations, optimization can be computed
onclusions an

Outlook based on reduced-order model.

m Implementation of parametric model reduction based on
multi-moment matching or rational Krylov methods (requires
discretization w.r.t. frequency parameter) or balanced truncation (no
discretization of frequency parameter).

m Efficiency of parametric model reduction methods can be enhanced
when combined with sparse grid ideas.

m Wide variety of algorithmic possibilities, further need for optimization
of interpolation point selection and error bounds, numerous possible
applications.
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