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Introduction
Model Reduction

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Rd is a parameter vector.

E singular ⇒ (a) is system of differential-algebraic equations (DAEs)
otherwise ⇒ (a) is system of ordinary differential equations (ODEs)
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Model Reduction for Dynamical Systems

Original System

Σ(p) :


E(p)ẋ = f (t, x , u, p),

y = g(t, x , u, p).

states x(t; p) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq,

parameters p ∈ Rd .

Reduced-Order System

bΣ(p) :


Ê ˙̂x = bf (t, x̂ , u, p),

ŷ = bg(t, x̂ , u, p).

states x̂(t; p) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t; p) ∈ Rq,

parameters p ∈ Rd .

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals and relevant
parameter settings.
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Model Reduction for Dynamical Systems
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Motivation
Applications in Microsystems/MEMS Design

Compact models for electro-thermic simulation

Goal: controlling the thermic behavior in ICs and MEMS.

Joule effect: electric current flowing through a conductor induces
heat.

For ICs: dissipate heat.

For MEMS: employ Joule effect for designing MEMS with switching
behavior (“hotplate”).

Spatial discretization of heat equation using FEM leads to large-scale
system; generate compact models for MST model library, essential
parameters for heat exchange need to be preserved symbolically:

– film coefficients (convection boundary conditions),
– heat conductivity/exchange coefficients.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

http://www.imtek.de/simulation/benchmark
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Motivation
Applications in Microsystems/MEMS Design

Compact models for electro-thermic simulation

Example: 3 film coefficients
(top, bottom, side) =⇒

Eẋ(t) = (A0 +
3X

i=1

piAi )x(t) + bu(t)

y(t) = cT x(t)

n = 4.257

Ai , i = 1, 2, 3, diagonal.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

http://www.imtek.de/simulation/benchmark
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Motivation
Applications in Microsystems/MEMS Design

Flow sensor (anemometer)

Sensor measuring flow rates of fluids or gas.

Based on one heater with thermo-sensors on both sides.

Design process requires compact model, in which flow velocity and,
possibly, material parameters (viscosity, density) appear as symbolic
quantities.

Mathematical model: Linear convection-diffusion equation.

SenL Heater SenR

FlowProfile

Figure: Anemometer model generated using ANSYS
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Motivation
Applications in Microsystems/MEMS Design

Electro-chemical scanning electron microscope (SEM)

Used for high resolution measurements of chemical reactivity and
topography of surfaces, in particular for biological systems and
nano-structures.

Based on measuring current through a micro-electrode which is
moved through electrolyte along surface.

Measurements lead to cyclic voltammogram, plotting the current vs.
applied potential.

Mathematical model: Multi-species diffusion equations with mixed
boundary conditions, defined by Butler-Volmer equation.

Film coefficient depending on the applied potential is to be preserved.
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Motivation
Applications in Microsystems/MEMS Design

Electro-chemical scanning electron microscope (SEM)

Example: 2 film coefficients =⇒
Eẋ(t) = (A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = cT x(t).

FEM model: n = 16.912, m = 3 inputs, A1,A2 diagonal.

Figure: Schematic diagram of experimental set-up and corresponding
voltammogram
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Model Reduction Basics

Simulation-Free Methods

1 Modal Truncation

2 Guyan-Reduction/Substructuring

3 Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods ( interpolatory methods)

4 Balanced Truncation ( system-theoretic methods)

5 many more. . .

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ and

‖x − x̃‖ = ‖x − V x̂‖.
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Linear Parametric Systems

Linear, time-invariant systems depending on parameters

E(p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E(p) ∈ Rn×n,
y(t; p) = Cx(t; p), B(p) ∈ Rn×m,C(p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p),
ẋ(t; p) 7→ sx(s; p)) to linear system with x(0) = 0:

sE (p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(s; p) = C (p)x(s; p),

yields I/O-relation in frequency domain:

y(s; p) =
(

C (p)(sE (p)− A(p))−1B(p)︸ ︷︷ ︸
=:G(s;p)

)
u(s)

G (s; p) is the parameter-dependent transfer function of Σ(p).
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Model Reduction for Linear Parametric Systems

Problem

Approximate the dynamical system

E (p)ẋ = A(p)x + B(p)u, A(p),E (p) ∈ Rn×n,
y = C (p)x , B(p) ∈ Rn×m,C (p) ∈ Rq×n,

by reduced-order system

Ê (p) ˙̂x = Â(p)x̂ + B̂(p)u, Â(p), Ê (p) ∈ Rr×r ,

ŷ = Ĉ (p)x̂ , B̂(p) ∈ Rr×m, Ĉ (p) ∈ Rq×r ,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).
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Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).

Appropriate representation:

E (p) = E0 + e1(p)E1 + . . .+ eqE
(p)EqE

,

A(p) = A0 + a1(p)A1 + . . .+ aqA
(p)AqA

,

B(p) = B0 + b1(p)B1 + . . .+ bqB
(p)BqB

,

C (p) = C0 + c1(p)C1 + . . .+ cqC
(p)CqC

,

allows easy parameter preservation for projection based model reduc-
tion.
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Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).

Applications:

Repeated simulation for varying material or geometry
parameters, boundary conditions,

Optimization and design.
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Model Reduction for Linear Parametric Systems

Parametric System

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).

Applications:

Repeated simulation for varying material or geometry
parameters, boundary conditions,

Optimization and design.

Additional model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

Σ̂(p) :

{
Ê (p) ˙̂x(t; p) = Â(p)x̂(t; p) + B̂(p)u(t)),

ŷ(t; p) = Ĉ (p)x̂(t; p)

with states x̂(t; p) ∈ Rr .
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Interpolatory Model Reduction
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with
transfer function G(s) = C(sE − A)−1B, a reduced-order model is
obtained with projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .
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Interpolatory Model Reduction
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with
transfer function G(s) = C(sE − A)−1B, a reduced-order model is
obtained with projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

Rational Interpolation/Moment-Matching

Choose V ,W such that

G(sj) = Ĝ(sj), j = 1, . . . , k,

and
d i

ds i
G(sj) =

d i

ds i
Ĝ(sj), i = 1, . . . ,Kj , j = 1, . . . , k.
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

computation of V ,W from rational Krylov subspaces, e.g.,

– dual rational Arnoldi or rational Lanczos [Grimme ’97],

– Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin ’07].
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

using Galerkin/one-sided projection yields G(sj) = Ĝ(sj), but in general

d

ds
G(sj) 6=

d

ds
Ĝ(sj).
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K  moment-matching
methods/Padé approximation,

d i

ds i
G(s1) =

d i

ds i
Ĝ(s1), i = 0, . . . ,K − 1(+K).
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Interpolatory Model Reduction
Notation

Parametric Systems

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).

Assume

E (p) = E0 + e1(p)E1 + . . .+ eqE
(p)EqE

,

A(p) = A0 + a1(p)A1 + . . .+ aqA
(p)AqA

,

B(p) = B0 + b1(p)B1 + . . .+ bqB
(p)BqB

,

C (p) = C0 + c1(p)C1 + . . .+ cqC
(p)CqC

.
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Reduced-order model

Petrov-Galerkin-type projection

For given projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector), compute

Ê(p) = W TE0V + e1(p)W TE1V + . . .+ eqE (p)W TEqE V ,

Â(p) = W TA0V + a1(p)W TA1V + . . .+ aqA (p)W TAqAV ,

B̂(p) = W TB0 + b1(p)W TB1 + . . .+ bqB (p)W TBqB ,

Ĉ(p) = C0V + c1(p)C1V + . . .+ cqC (p)CqC V .
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Parametric Model Reduction based on
Multi-Moment Matching

Idea: choose appropriate frequency parameter ŝ and parameter vector
p̂, expand into multivariate power series about (ŝ, p̂) and compute
reduced model, so that

G (s, p) = Ĝ (s, p) +O
(
|s − ŝ|K + ‖p − p̂‖L + |s − ŝ|k‖p − p̂‖`

)
,

i.e., first K , L, k + ` (mostly: K = L = k + `) coefficients
(multi-moments) of Taylor/Laurent series coincide.

Algorithms:

[Daniel et al. ’04]: explicit computation of moments, numerically
unstable.

[Farle et al. ’06/’07]: Krylov subspace approach, only
polynomial parameter-dependance, numerical properties not
clear, but appears to be robust.

[Feng/B. ’07/’09]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger
as with [Farle et al.].
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Parametric Model Reduction based on
Multi-Moment Matching
Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

Eẋ(t) = (A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = cT x(t),

where n = 16.912, m = 3, Ai diagonal.

K = L = k + ` = 4 ⇒ r = 26 K = L = k + ` = 9 ⇒ r = 86



Model Reduction

Peter Benner

Introduction

Interpolatory
Model Reduction

Introduction

MMM-PMOR

RatPMOR

System-Theoretic
Methods

Conclusions and
Outlook

Parametric Model Reduction based on
Multi-Moment Matching
Numerical Examples

Anemometer:
FEM model

Eẋ(t) = (A0 + p1A1)x(t) + bu(t), y(t) = cT x(t),

where n = 29, 008, m = q = 1.

Outputs for p = 1 Output errors for p = 1
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Parametric Model Reduction based on Rational Interpolation
Theory

Theorem [Beattie/B./Gugercin ’07]

Suppose E(p), A(p), B(p), C(p) are Lipschitz in neighborhood of
p̂ = [p̂1, ..., p̂d ]T and let ŝ ∈ C be such that both ŝ E(p̂) − A(p̂) and
ŝ Ê(p̂) − Â(p̂) are invertible.

1 if (ŝ E(p̂)− A(p̂))−1 B(p̂) ∈ Ran(V ), then G(ŝ, p̂) = Ĝ(ŝ, p̂);

2 if
“
C(p̂) (ŝ E(p̂)− A(p̂))−1

”T

∈ Ran(W ), then G(ŝ, p̂) = Ĝ(ŝ, p̂);

3 if both (ŝ E(p̂)− A(p̂))−1 B(p̂) ∈ Ran(V ) and“
C(p̂) (ŝ E(p̂)− A(p̂))−1

”T

∈ Ran(W ), then

(i) ∇pG(ŝ, p̂) = ∇pGr (ŝ, p̂),

(ii) ∂
∂s

G(ŝ, p̂) = ∂
∂s

Ĝ(ŝ, p̂).

Note: result extends to MIMO case using tangential interpolation.
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3 if both (ŝ E(p̂)− A(p̂))−1 B(p̂) ∈ Ran(V ) and“
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3 if both (ŝ E(p̂)− A(p̂))−1 B(p̂) ∈ Ran(V ) and“
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Parametric Model Reduction based on Rational Interpolation
Algorithm

Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p)− A(p).

1 Select “frequencies” s1, . . . , sk ∈ C and parameter vectors
p(1), . . . , p(`) ∈ Rd .

2 Compute (orthonormal) basis of

V = span
˘
A(s1, p

(1))−1B(p(1)), . . .A(sk , p(`))−1B(p(`))

ff
.

3 Compute (orthonormal) basis of

W = span
˘
A(s1, p

(1))−HC(p(1))H , . . . ,A(sk , p(`))−HC(p(`))H

ff
.

4 Set V := [v1, . . . , vk`], W̃ := [w1, . . . ,wk`], and W := W̃ (W̃ HV )−1.
(Note: r = k`).

5 Compute

(
Â(p) := W HA(p)V , B̂(p) := W HB(p)V ,

Ĉ(p) := W HC(p)V , Ê(p) := W HE(p)V .
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Parametric Model Reduction based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Important requirement for a compact model of thermal conduction is
boundary condition independence.

The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection
boundary conditions containing film coefficients {pi}3

i=1, to describe
the heat exchange at the ith interface.

Spatial semi-discretization leads to

Eẋ(t) = (A0 +
3X

i=1

piAi )x(t) + bu(t), y(t) = cT x(t),

where n = 4257, Ai , i = 1, 2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact

thermal modeling phenomena, IEEE. Trans. Components and Packaging

Technologies, Vol. 24, No. 4, pp. 559–565, 2001.
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Parametric Model Reduction based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 4 interpolation points for parameters (“important” configurations),
6 interpolation frequencies are picked H2 optimal by IRKA.
=⇒ k = 6, ` = 4, hence r = 24.

p3 = 1, p1, p2 ∈ [1, 104].
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System-Theoretic Methods
Balanced Truncation

Idea (for simplicity, E = In)

A system Σ, realized by (A,B,C ,D), is called balanced, if
solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
,D

«
Truncation  (Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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System-Theoretic Methods
Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and
determine the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.
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System-Theoretic Methods
Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and
determine the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j
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System-Theoretic Methods
Balanced Truncation

Motivation:

HSV are system invariants: they are preserved under T and
determine the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

=⇒ Truncate states corresponding to “small” HSVs
=⇒ analogy to best approximation via SVD, therefore

balancing-related methods are sometimes called SVD methods.



Model Reduction

Peter Benner

Introduction

Interpolatory
Model Reduction

System-Theoretic
Methods

Balanced
Truncation

Lyapunov
Equations

BTPMOR

SGBTPMOR

Conclusions and
Outlook

System-Theoretic Methods
Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the solutions of the Lyapunov
equations,

P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D).
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System-Theoretic Methods
Balanced Truncation

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2.

General misconception (not at RICE, though — contributions by
Antoulas, Gugercin, Heinkenschloss, Sorensen, Zhou):
complexity O(n3) – true for several implementations (e.g.,
Matlab, SLICOT, MorLAB).

But: recent developments in Numerical Linear Algebra yield
matrix equation solvers with sparse linear systems complexity!
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Solving Large-Scale Lyapunov Equations

General form for A,W = W T ∈ Rn×n given and P ∈ Rn×n unknown:

0 = L(Q) := ATQ + QA + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

W low-rank with W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rq×n, p � n.

Standard (Schur decomposition-based) O(n3) methods are not
applicable!
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Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(k−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(k−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X

(super)linearly.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[

V1, . . . , Vr

]
.

Note: ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.
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Parametric Model Reduction Using Balanced Truncation
[Baur/B. ’09]

Idea: for selected parameter values p(j), j = 1, . . . , k, compute
reduced-order models Ĝj(s) of G(s; p(j)) by BT.

Parametric reduced-order system by Lagrange interpolation:

Ĝ(s; p) =
kX

j=1

lj(p)Ĝj(s)

=
kX

j=1

0@ kY
i=1,i 6=j

p − p(i)

p(i) − p(j)

1A ĈT
j (sIrj − Âj)

−1B̂j

=

264 Ĉ1(p)
...

Ĉk(p)

375
T 264 (sIr1 − Â1)−1

. . .

(sIrk − Âk)−1

375
264 B̂1

...

B̂k

375
Note: no discretization/grid for frequency parameter s necessary!

Current work: employ rational Hermite interpolation w.r.t. p.
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PMOR using BT (d = 1)
Error Bound

Combination of interpolation error and balanced truncation bound =⇒

sup
s∈C+

p∈[a,b]

‖G(s; p)− Ĝ(s; p)‖ = sup
s∈C+

p∈[a,b]

‖G(s; p)−
kX

j=0

lj(p)Ĝj(s)‖

≤ sup
s∈C+

p∈[a,b]

‖G(s; p)−
kX

j=0

lj(p)Gj(s)‖+ sup
s∈C+

p∈[a,b]

‖
kX

j=0

lj(p)(Gj(s)− Ĝj(s))‖

≤ sup
s∈C+

p∈[a,b]

‖Rk(G , s, p)‖+ tol · sup
p∈[a,b]

|
kX

j=0

lj(p)|

with remainder Rk(G , s, p) = G(s; p)− Ĝ(s; p)

Rk(G , s, p) =
1

(k + 1)!

„
∂k+1

∂pk+1
G(s; ξ(p))

« kY
i=0

(p − pi )

at ξ(p) ∈ [minj pj ,maxj pj ].
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PMOR Using BT (d = 1)
Numerical Example

Convection-diffusion equation

∂T
∂t

(t, ξ) = ∆T (t, ξ) + p · ∇T (t, ξ) + b(ξ)u(t) ξ ∈ (0, 1)2

⇓ FDM with n = 400

d
dt

x(t) = (A + p A1) x(t) + b u(t), b = e1

y(t) = cT x(t), cT = [1, 1, · · · , 1]

1 Choose p0, · · · , p5 ∈ [0, 10] as Chebyshev points;

2 prescribe BT error bound for Ĝ (s; pj) by tol=10−4

⇒ systems of reduced order rj ∈ {3, 4};
3 error estimate for Ĝ (s; p) obtained by Lagrange interpolation:

sup
s∈[10−2,106]

p∈[0,10]

‖G (s, p)− Ĝ (s, p)‖ ≤ 2.6× 10−5.
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Parametric Model Reduction Using Balanced

Truncation (d = 1)
Numerical Example – Convection-Diffusion Equation

|G (s; p)− Ĝ (s; p)|
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Parametric Model Reduction Using Balanced Truncation on

Sparse Grids [Baur/B. ’09]

Disadvantage of interpolating BT reduced-order models:
for d-dimensional parameter spaces p ∈ [0, 1]d with d ≥ 2
we need many interpolation points ⇒ many times BT,

i.e. very high complexity!

Thus:

employ sparse grid interpolation [Zenger 91, Griebel 91, Bungartz 92 ].

Main advantages:

requires significantly fewer grid points,

preserves asymptotic error decay with increasing grid resolution
(up to logarithmic factor).
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PMOR Using BT on Sparse Grids
Sparse Grids [Zenger ’91, Griebel ’91, Bungartz ’92 ]

On [0, 1], construct equidistant grid with mesh size h` = 2−` and

associated (2` − 1)-dim. space of piecewise linear functions S`.

Hierarchical basis decomposition
[Yserentant ’86 ]

S` = T1 ⊕ · · · ⊕ T`

For f ∈ C 2[0, 1] and interpolant f I ∈ S`

f I =
X̀
i=1

fi , fi ∈ Ti ,

the interpolation error is bounded by

‖f − f I‖∞ ≤ ch2
`.

‖fi‖∞ ≤ 1

2
4−i‖∂

2f

∂x2
‖∞.

Subspaces of S`

T

T

T3

2

1
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PMOR Using BT on Sparse Grids
Sparse Grids [Zenger ’91, Griebel ’91, Bungartz ’92 ]

On [0, 1], construct equidistant grid with mesh size h` = 2−` and

associated (2` − 1)-dim. space of piecewise linear functions S`.

Hierarchical basis decomposition
[Yserentant ’86 ]

S` = T1 ⊕ · · · ⊕ T`

For f ∈ C 2[0, 1] and interpolant f I ∈ S`

f I =
X̀
i=1

fi , fi ∈ Ti ,

the interpolation error is bounded by
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PMOR Using BT on Sparse Grids
Hierarchical basis decomposition in d = 2

On [0, 1]2 construct rectangular grid with mesh size h`1 = 2−`1 , h`2 = 2−`2

and (2` − 1)2-dim. space of piecewise bilinear functions S` (` := (`, `))

Hierarchical basis decomposition:

S` =
M̀
i1=1

M̀
i2=1

Ti , i = (i1, i2)

For f : [0, 1]2 → R, f
(4)
x1x1x2x2 ∈ C 0([0, 1]2)

f I =
X̀
i1=1

X̀
i2=1

fi , fi ∈ Ti

the interpolation error is bounded

‖f − f I‖∞ ≤ O(h2
`)

‖fi‖∞ ≤ 1
4
4−i1−i2‖ ∂4f

∂x2
1 ∂x2

2
‖∞

Subspaces of S33:

supports of bases of T11, . . .
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PMOR Using BT on Sparse Grids
Hierarchical basis decomposition in d = 2

On [0, 1]2 construct rectangular grid with mesh size h`1 = 2−`1 , h`2 = 2−`2

and (2` − 1)2-dim. space of piecewise bilinear functions S` (` := (`, `))

Hierarchical basis decomposition:

S` =
M̀
i1=1

M̀
i2=1

Ti , i = (i1, i2)

For f : [0, 1]2 → R, f
(4)
x1x1x2x2 ∈ C 0([0, 1]2)

f I =
X̀
i1=1

X̀
i2=1

fi , fi ∈ Ti

the interpolation error is bounded

‖f − f I‖∞ ≤ O(h2
`)

‖fi‖∞ ≤ 1
4
4−i1−i2‖ ∂4f

∂x2
1 ∂x2
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‖∞

Subspaces of S33:

supports of bases of T11, . . .
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PMOR Using BT on Sparse Grids
Sparse grids in d = 2 [Zenger 91, Griebel 91, Bungartz 92 ]

Sparse decomposition:

S̃` =
M

i1+i2≤`+1

Ti , i = (i1, i2)

with reduced dimension

dim S̃` = 2`(`− 1) + 1

For f : [0, 1]2 → R, f
(4)
x1x1x2x2 ∈ C 0([0, 1]2),

f̃ I =
X

i1+i2≤`+1

fi , fi ∈ Ti ,

the interpolation error is bounded:

‖f − f̃ I‖∞ ≤ O(h2
` log(h−1

` )).

Subspaces of S33:

supports of bases of T11, . . .
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PMOR Using BT on Sparse Grids
Sparse grids in d = 2 [Zenger 91, Griebel 91, Bungartz 92 ]

Sparse decomposition:

S̃` =
M

i1+i2≤`+1

Ti , i = (i1, i2)

with reduced dimension

dim S̃` = 2`(`− 1) + 1

For f : [0, 1]2 → R, f
(4)
x1x1x2x2 ∈ C 0([0, 1]2),

f̃ I =
X
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fi , fi ∈ Ti ,

the interpolation error is bounded:

‖f − f̃ I‖∞ ≤ O(h2
` log(h−1
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PMOR Using BT on Sparse Grids
Sparse Grids [Zenger ’91, Griebel ’91, Bungartz ’92 ]

On [0, 1]d , construct grids with mesh size h` (i := (i1, . . . , id) ∈ Nd).

For f : [0, 1]d → R, ∂2d f
∂x2

1 ...∂x2
d
∈ C 0([0, 1]d) search

interpolant f I in space of piecewise d-linear functions:

full grid space sparse grid space

S` =
⊕̀
i1=1

· · ·
⊕̀
id =1

Ti S̃` =
⊕

|i|1≤`+d−1

Ti

dimension O(h−d
` ) O(h−1

` (log(h−1
` ))d−1)

‖f − f I‖∞ O(h2
`) O(h2

` (log(h−1
` ))d−1)



Model Reduction

Peter Benner

Introduction

Interpolatory
Model Reduction

System-Theoretic
Methods

Balanced
Truncation

Lyapunov
Equations

BTPMOR

SGBTPMOR

Conclusions and
Outlook
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PMOR Using BT on Sparse Grids
Sparse Grids [Zenger ’91, Griebel ’91, Bungartz ’92 ]

On [0, 1]d , construct grids with mesh size h` (i := (i1, . . . , id) ∈ Nd).
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1 ...∂x2
d
∈ C 0([0, 1]d) search

interpolant f I in space of piecewise d-linear functions:

full grid space sparse grid space

S` =
⊕̀
i1=1

· · ·
⊕̀
id =1

Ti S̃` =
⊕

|i|1≤`+d−1

Ti

dimension O(h−d
` ) O(h−1

` (log(h−1
` ))d−1)

‖f − f I‖∞ O(h2
`) O(h2

` (log(h−1
` ))d−1)



Model Reduction

Peter Benner

Introduction

Interpolatory
Model Reduction

System-Theoretic
Methods

Balanced
Truncation

Lyapunov
Equations

BTPMOR

SGBTPMOR

Conclusions and
Outlook

PMOR Using BT on Sparse Grids
Matlab Sparse Grid Interpolation Toolbox [Klimke/Wohlmuth ’05, Klimke ’07 ]

Clenshaw-Curtis grid
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PMOR Using BT on Sparse Grids
Algorithmic Framework

1 For level ` choose O(h−1
` (log(h−1

` ))d−1) sparse grid points.

2 Apply balanced truncation to Gj(s) := G(s; pj):

Ĝj(s) = ĈT
j (sIrj − Âj)

−1B̂j ,

determine rj by prescribed error tolerance:

‖Gj − Ĝj‖∞ ≤ tol.

3 Parametric reduced-order system:

Ĝ(s; p) =
X

|i|1≤`+d−1

φi (p) ci (Ĝ1(s), Ĝ2(s), · · · )

with interpolation error

‖G − Ĝ‖∞ ≤ tol · C · sup
p∈Id

X
|i|1≤`+d−1

|φi (p)|+O(h2
`(log(h−1

` ))d−1).
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Algorithmic Framework
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PMOR Using BT on Sparse Grids
Algorithmic Framework

1 For level ` choose O(h−1
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` ))d−1) sparse grid points.
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−1B̂j ,

determine rj by prescribed error tolerance:
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PMOR Using BT on Sparse Grids
Numerical Examples — Convection-Diffusion Equation

∂x

∂t
(t, ξ) = ∆x(t, ξ) + p · ∇x(t, ξ) + b(ξ)u(t), ξ ∈ (0, 1)2

⇓ FDM with n = 400

ẋ(t) = (A + p1A1 + p2A2) x(t) + b u(t)

b = e1, cT = [1, 1, · · · , 1]

Parameter space: p1, p2 ∈ [0, 1].

Chebyshev-Gauss-Lobatto grid with polynomial interpolation,
level ` = 1 =⇒ k = 5 sparse grid points.

Error tolerance for BT applied to G (s; p(j)): 10−4

=⇒ system of reduced order rj = 3 for j = 1, . . . , k.

Estimated interpolation error: 1.8× 10−4.
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PMOR Using BT on Sparse Grids
Numerical Examples — Convection-Diffusion Equation
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PMOR Using BT on Sparse Grids
Numerical Examples — Convection-Diffusion Equation

Absolute error of transfer function
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PMOR Using BT on Sparse Grids
Numerical Examples — Convection-Diffusion Equation
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Conclusions and Outlook

We have presented a general framework for interpolation-based model
reduction of parametric systems.

Applications: microsystems technology in particular, but also
applicable to other areas where design and optimization are important.

Approximation results for partial derivatives w.r.t. parameters  
sensitivities for process variations, optimization can be computed
based on reduced-order model.

Implementation of parametric model reduction based on
multi-moment matching or rational Krylov methods (requires
discretization w.r.t. frequency parameter) or balanced truncation (no
discretization of frequency parameter).

Efficiency of parametric model reduction methods can be enhanced
when combined with sparse grid ideas.

Wide variety of algorithmic possibilities, further need for optimization
of interpolation point selection and error bounds, numerous possible
applications.
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