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Introduction

Dynamical Systems/DAEs

Σ :

{
Eẋ(t) = f (t, x(t), u(t)), x(t0) = x0,

y(t) = g(t, x(t), u(t)),

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

E ∈ Rn×n singular  differential-algebraic equations (DAEs)
(DAEs), otherwise ordinary differential equations (ODEs).
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Model Reduction for Dynamical Systems

Original System

Σ :


Eẋ(t) = f (t, x(t), u(t)),

y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order System

bΣ :


Ê ˙̂x(t) = bf (t, x̂(t), u(t)),

ŷ(t) = bg(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Model Reduction for Linear Systems

Linear Descriptor Systems

Eẋ = f (t, x , u) = Ax + Bu, A,E ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Linear Systems in Frequency Domain

Application of Laplace transformation (x(t) 7→ x(s), ẋ(t) 7→ sx(s))
to linear descriptor system with x(0) = 0:

sEx(s) = Ax(s) + Bu(s), y(s) = Bx(s) + Du(s),

yields I/O-relation in frequency domain:

y(s) =
(

C (sE − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s)

G is the transfer function of Σ.
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Model Reduction for Linear Descriptor Systems

Problem

Approximate the dynamical system

Eẋ = Ax + Bu, A,E ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Â, Ê ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m,

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: minorder (Ĝ)≤r ‖G − Ĝ‖.
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Circuit Simulation

(Electronic) circuit simulation

utilizes mathematical models to replicate the behavior of an actual
electronic device or circuit.

Simulating a circuit’s behavior before actually building it greatly
improves efficiency and provides insights into the behavior of
electronics circuit designs.

In particular, for integrated circuits,

– the tooling (photomasks) is expensive,
– breadboards are impractical,
– probing the behavior of internal signals is extremely difficult.

Therefore almost all IC design relies heavily on simulation.

quoted from http://en.wikipedia.org/wiki/Circuit_simulation

http://en.wikipedia.org/wiki/Circuit_simulation


BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Linear Systems

Circuit
Simulation

Goals

Balanced
Truncation

Miscellanea

Conclusions

References

Circuit Simulation

(Electronic) circuit simulation

utilizes mathematical models to replicate the behavior of an actual
electronic device or circuit.

Simulating a circuit’s behavior before actually building it greatly
improves efficiency and provides insights into the behavior of
electronics circuit designs.

In particular, for integrated circuits,

– the tooling (photomasks) is expensive,
– breadboards are impractical,
– probing the behavior of internal signals is extremely difficult.

Therefore almost all IC design relies heavily on simulation.

quoted from http://en.wikipedia.org/wiki/Circuit_simulation

http://en.wikipedia.org/wiki/Circuit_simulation


BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Linear Systems

Circuit
Simulation

Goals

Balanced
Truncation

Miscellanea

Conclusions

References

Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Moore’s Law (1965/75)
states that the number of
on-chip transistors
doubles each 24 months.

Source: http://en.wikipedia.org/wiki/Image:Moores_law.svg

http://en.wikipedia.org/wiki/Image:Moores_law.svg
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Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations,
i.e., network topology (Kirchhoff’s laws) and characteristic
element/semiconductor equations.

Increase in packing density and multilayer technology requires
modeling of interconncet to ensure that thermic/electro-magnetic
effects do not disturb signal transmission.

Intel 4004 (1971) Intel Core 2 Extreme (quad-core) (2007)

1 layer, 10µ technology 9 layers, 45nm technology
2,300 transistors > 8, 200, 000 transistors
64 kHz clock speed > 3 GHz clock speed.
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Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations,
i.e., network topology (Kirchhoff’s laws) and characteristic
element/semiconductor equations.

Increase in packing density and multilayer technology requires
modeling of interconncet to ensure that thermic/electro-magnetic
effects do not disturb signal transmission.
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Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations,
i.e., network topology (Kirchhoff’s laws) and characteristic
element/semiconductor equations.

Multilayer technology

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.

http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png
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Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

 Clear need for model reduction techniques in order to facilitate or
even enable circuit simulation for current and future VLSI design.
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Circuit Simulation
The need for model reduction techniques

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of
simulations for different input signals.

 Clear need for model reduction techniques in order to facilitate or
even enable circuit simulation for current and future VLSI design.

Here: linear systems, they occur in micro electronics through modified
nodal analysis (MNA) for RLC networks. e.g., when

decoupling large linear subcircuits,

modeling transmission lines,

modeling pin packages in VLSI chips,

modeling circuit elements described by Maxwell’s equation using
partial element equivalent circuits (PEEC).
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Goals of model reduction

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals,
i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−, i.e., Λ (A) ⊂ C−),
– minimum phase (zeroes of G in C−),
– passivity
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Goals of model reduction

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals,
i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−, i.e., Λ (A) ⊂ C−),
– minimum phase (zeroes of G in C−),
– passivity:∫ t

−∞ u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R, ∀u ∈ L2(R,Rm).

(“system does not generate energy”).
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Goals of model reduction

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals,
i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−, i.e., Λ (A) ⊂ C−),
– minimum phase (zeroes of G in C−),
– passivity

A variety of methods for linear model reduction exist (e.g., moment-
matching, rational interpolation, . . . ), here we only consider system-
theoretic methods which have advantageous theoretical properties, but
are often considered not applicable for really large-scale problems.
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Balanced Truncation
Motivation: best approximation using SVD

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

bX =
Xr

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X , where
U = [u1, . . .], V = [v1, . . .], Σ = diag(σ1, . . .).

The approximation error is ‖X − bX‖2 = σr+1.
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Balanced Truncation
Motivation: best approximation using SVD

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

bX =
Xr

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X , where
U = [u1, . . .], V = [v1, . . .], Σ = diag(σ1, . . .).

The approximation error is ‖X − bX‖2 = σr+1.

Idea for dimension reduction

Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .

⇒ memory = r × (nx + ny ) instead of nx × ny .
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Balanced Truncation
Motivation: best approximation using SVD

Data compression via SVD works, if the singular values decay (expo-
nentially).

Singular Value Decay
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Balanced Truncation
The Basic Ideas (E nonsingular)

Idea:

A system Σ, realized by (A,B,C ,D,E ), is called balanced, if
solutions P,Q of the Lyapunov equations

APET + EPAT + BBT = 0, ATQE + ETQA + CTC = 0,

satisfy: P = ETQE = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via system
equivalence transformation (S ,T ∈ Rn×n nonsingular)

T : (A,B,C ,D,E) 7→ (TAS ,TB,CS ,D,TES)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
,D,

»
E11 E12

E21 E22

–«
Truncation  (Â, B̂, Ĉ , D̂, Ê ) = (A11,B1,C1,D,E11).
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Balanced Truncation
The Basic Ideas (E nonsingular)

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.
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Balanced Truncation
The Basic Ideas (E nonsingular)

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j
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Balanced Truncation
The Basic Ideas (E nonsingular)

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

=⇒ Truncate states corresponding to “small” HSVs
=⇒ complete analogy to best approximation via SVD!
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Balanced Truncation
The Basic Ideas (E nonsingular)

Implementation: SR Method

1 Compute Cholesky factors of the solutions of the Lyapunov
equations,

P = STS , ETQE = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = (RE−1)TV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D,W TEV︸ ︷︷ ︸
=Ir

).

Remark: Low-rank (rectangular) approximations of S ,R can be computed
directly using several methods, e.g. sign function [B./Quintana-Ort́ı] and
methods for large, sparse problems ( later) .
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Balanced Truncation
The Basic Ideas (E nonsingular)

Implementation: SR Method

1 Compute Cholesky factors of the solutions of the Lyapunov
equations,

P = STS , ETQE = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = (RE−1)TV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D,W TEV︸ ︷︷ ︸
=Ir

).

Remark: Low-rank (rectangular) approximations of S ,R can be computed
directly using several methods, e.g. sign function [B./Quintana-Ort́ı] and
methods for large, sparse problems ( later) ⇒ small-size SVD.



BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Balanced
Truncation

The Basic Ideas

Balancing-
Related
MR

Descriptor
systems

Large-Scale,
Sparse Systems

Miscellanea

Conclusions

References

Balanced Truncation
The Basic Ideas (E nonsingular)

Implementation: SR Method

1 Compute Cholesky factors of the solutions of the Lyapunov
equations,

P = STS , ETQE = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = (RE−1)TV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D,W TEV︸ ︷︷ ︸
=Ir

).

Remark: Reduced-order model with E 6= Ir can be computed using
balancing-free SR method [Safonov/Chiang ’89, Stykel ’04].
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Classical Balanced Truncation (BT) Mullis/Roberts ’76, Moore ’81

P = controllability Gramian of system given by (A,B,C ,D).

Q = observability Gramian of system given by (A,B,C ,D).

P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Need stability of A!
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

LQG Balanced Truncation (LQGBT) Jonckheere/Silverman ’83

P/Q = controllability/observability Gramian of closed-loop
system based on LQG compensator.

P,Q solve dual algebraic Riccati equations (AREs)

0 = AP + PAT − PCTCP + BTB,

0 = ATQ + QA− QBBTQ + CTC .

Can be applied to unstable systems!
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Balanced Stochastic Truncation (BST) Desai/Pal ’84, Green ’88

P = controllability Gramian of system given by (A,B,C ,D),
i.e., solution of Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power
spectrum of system given by (A,B,C ,D), i.e., solution of ARE

ÂTQ + QÂ + QBW (DDT )−1BT
W Q + CT (DDT )−1C = 0,

where Â := A− BW (DDT )−1C , BW := BDT + PCT .
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Positive-Real Balanced Truncation (PRBT) Green ’88

Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

P,Q solve dual AREs

0 = ĀP + PĀT + PCT R̄−1CP + BR̄−1BT ,

0 = ĀTQ + QĀ + QBR̄−1BTQ + CT R̄−1C ,

where R̄ = D + DT , Ā = A− BR̄−1C .
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Balancing-Related Model Reduction
Assuming E = In for simplicity.

Basic Principle of Balanced Truncation

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Other Balancing-Based Methods

Bounded-real balanced truncation (BRBT) – based on bounded
real lemma [Opdenacker/Jonckheere ’88];

H∞ balanced truncation (HinfBT) – closed-loop balancing based
on H∞ compensator [Mustafa/Glover ’91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.
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Balancing-Related Model Reduction
Properties

Guaranteed preservation of physical properties like

– stability (all),
– passivity (PRBT),  cf. Oral CS 3C (T. Stykel) Thu, 16:00h,
– minimum phase (BST).

Computable error bounds, e.g.,

BT: ‖G − Ĝ‖∞ ≤ 2
nX

j=r+1

σBT
j ,

LQGBT: ‖G − Ĝ‖∞ ≤ 2
nX

j=r+1

σLQG
jq

1+(σLQG
j )2

,

BST: ‖G − Ĝ‖∞ ≤

 
nY

j=r+1

1+σBST
j

1−σBST
j

− 1

!
‖G‖∞,

Can be combined with singular perturbation approximation for
steady-state performance.

Computations can be modularized.
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Application to Descriptor Systems

Now: E singular.

Often, one finds statements that BT can be based on the generalized
Lyapunov equations

APET + EPAT + BBT = 0, ATQE + ETQA + CTC = 0, (1)

e.g.,

1 J. Phillips, L.M. Silveira.
Poor Man’s TBR: A Simple Model Reduction Scheme.
Proc. DATE 2004, Vol. 2.

2 J.R. Phillips, L.M. Silveira.
Poor man’s TBR: A simple model reduction scheme.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 24(1):43–55, 2005.
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Application to Descriptor Systems

Now: E singular.

Often, one finds statements that BT can be based on the generalized
Lyapunov equations

APET + EPAT + BBT = 0, ATQE + ETQA + CTC = 0, (1)

e.g.,

1 J. Phillips, L.M. Silveira.
Poor Man’s TBR: A Simple Model Reduction Scheme.
Proc. DATE 2004, Vol. 2.

2 J.R. Phillips, L.M. Silveira.
Poor man’s TBR: A simple model reduction scheme.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 24(1):43–55, 2005.

This is wrong in general! — (1) may or may not have solutions, no
matter whether the associated system is asymptotically stable or not!

Thus, model reduction algorithms should not be based on (1)!
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Application to Descriptor Systems

Fully developed theory and numerical algorithms for balanced
truncation [Stykel ’02–’08], based on projected generalized Lyapunov
equations

APET + EPAT + P`BBTPT
` = 0, P = PrP,

ATQE + ETQA + PT
r CTCPr = 0, Q = QP`,

where Pr ,P` are the spectral projectors onto the right and left
deflating subspaces of λE − A corresponding to the finite eigenvalues.

Theory and algorithms are based implicitly on Weierstraß canonical
form

λE − A = T

"
λInf − J0 0

0 λN − J∞

#
S−1,

where

– J0 contains finite eigenvalues,
– N ∈ Rn∞×n∞ is nilpotent of index ν (Nν = 0, Nν−1 6= 0), and
– n∞ = n − nf is the number of infinite eigenvalues.
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Application to Descriptor Systems

Fully developed theory and numerical algorithms for balanced
truncation [Stykel ’02–’08], based on projected generalized Lyapunov
equations

APET + EPAT + P`BBTPT
` = 0, P = PrP,

ATQE + ETQA + PT
r CTCPr = 0, Q = QP`,

where Pr ,P` are the spectral projectors onto the right and left
deflating subspaces of λE − A corresponding to the finite eigenvalues.

Theory and algorithms are based implicitly on Weierstraß canonical
form

λE − A = T

"
λInf − J0 0

0 λN − J∞

#
S−1,

where

– J0 contains finite eigenvalues,
– N ∈ Rn∞×n∞ is nilpotent of index ν (Nν = 0, Nν−1 6= 0), and
– n∞ = n − nf is the number of infinite eigenvalues.
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Application to Descriptor Systems

Here: use algorithm mathematically equivalent to [Stykel ’02–’08]

based on explicit decomposition

G(s) = Gf (s) + G∞(s),

where Gf (s),G∞(s) correspond to finite, infinite poles, resp.

lock-diagonalization of λE − A:

λÊ − Â := U(λE − A)V−1 = λ

"
E0 0

0 E∞

#
−

"
Af 0

0 A∞

#
,

and setting

B̂ := UB =:

»
Bf

B∞

–
, Ĉ := CV−1 =: [ Cf C∞ ] , D̂ := D.



BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Balanced
Truncation

The Basic Ideas

Balancing-
Related
MR

Descriptor
systems

Large-Scale,
Sparse Systems

Miscellanea

Conclusions

References

Application to Descriptor Systems

Here: use algorithm mathematically equivalent to [Stykel ’02–’08]

based on explicit decomposition

G(s) = Gf (s) + G∞(s),

where Gf (s),G∞(s) correspond to finite, infinite poles, resp.

This is achieved by computing block-diagonalization of λE − A:

λÊ − Â := U(λE − A)V−1 = λ

"
E0 0

0 E∞

#
−

"
Af 0

0 A∞

#
,

and setting

B̂ := UB =:

»
Bf

B∞

–
, Ĉ := CV−1 =: [ Cf C∞ ] , D̂ := D.
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Application to Descriptor Systems

Block-diagonalization of λE − A:

λÊ − Â := U(λE − A)V−1 = λ

"
E0 0

0 E∞

#
−

"
Af 0

0 A∞

#
,

and setting

B̂ := UB =:

»
Bf

B∞

–
, Ĉ := CV−1 =: [ Cf C∞ ] , D̂ := D.

Then

G(s) = C(sE − A)−1B + D = Ĉ(sÊ − Â)−1B̂ + D̂

=
ˆ

Cf C∞
˜ " sEf − Af

sE∞ − A∞

#−1 »
Bf

B∞

–
+ D

= Cf (sEf − Af )−1Bf| {z }
=:Gf (s)

+ C∞(sE∞ − A∞)−1B∞ + D| {z }
:=G∞(s)

.

 apply BT to Gf  Ĝf , compute minimal realization of G∞.
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Application to Descriptor Systems

Implementation: block diagonalization

1 (Block-triangular form) Use disk function method (quadratically
convergent, matrix multiplication rich, inverse-free algorithm) to
obtain Q,Z orthogonal such that

QT (λE − A)Z = λ

"
Ef WE

0 E∞

#
−

"
Af WA

0 A∞

#
.

2 (Block-diagonal form) Solve generalized Sylvester equation

Af Y + ZA∞ + WA = 0, Ef Y + ZE∞ + WE = 0.



BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Balanced
Truncation

The Basic Ideas

Balancing-
Related
MR

Descriptor
systems

Large-Scale,
Sparse Systems

Miscellanea

Conclusions

References

Application to Descriptor Systems

Implementation: block diagonalization

1 (Block-triangular form) Use disk function method (quadratically
convergent, matrix multiplication rich, inverse-free algorithm) to
obtain Q,Z orthogonal such that

QT (λE − A)Z = λ

"
Ef WE

0 E∞

#
−

"
Af WA

0 A∞

#
.

2 (Block-diagonal form) Solve generalized Sylvester equation

Af Y + ZA∞ + WA = 0, Ef Y + ZE∞ + WE = 0.

Then

λÊ − Â :=

"
I Z

0 I

#
QT (λE − A)Z

"
I Y

0 I

#

= λ

"
Ef 0

0 E∞

#
−

"
Af 0

0 A∞

#
.
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Application to Descriptor Systems

Implementation: block diagonalization

1 (Block-triangular form) Use disk function method (quadratically
convergent, matrix multiplication rich, inverse-free algorithm) to
obtain Q,Z orthogonal such that

QT (λE − A)Z = λ

"
Ef WE

0 E∞

#
−

"
Af WA

0 A∞

#
.

2 (Block-diagonal form) Solve generalized Sylvester equation

Af Y + ZA∞ + WA = 0, Ef Y + ZE∞ + WE = 0.

Simplification for index ν = 1:

E∞ = 0
A∞ nonsingular

ff
⇒


Y = −E−1

f WE ,
Z = −(WA − Af Y )A−1

∞ ,

otherwise use appropriate solver for Sylvester equations, e.g., from
SLICOT, see www.slicot.org.

www.slicot.org
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Application to Descriptor Systems

Implementation: solution of Lyapunov equations

Solve

Af PET
f + Ef PAT

f + Bf B
T
f = 0, AT

f QEf + ET
f QAf + CT

f Cf = 0,

via dual gen. Newton it. for sign function [B./Claver/Quintana-Ort́ı ’97]:

A0 ← A, S0 ← B, R0 ← C
for j = 0, 1, 2, . . .

Aj+1 ← 1√
2cj

`
Aj + c2

j Ef A
−1
j Ef

´
,

Sj+1 ← full-rank factor of 1√
2cj

ˆ
Sj cjEf A

−1
j Sj

˜
Rj+1 ← full-rank factor of 1√

2cj

»
Rj

cjRjA
−1
j Ef

–

Set S := 1√
2
E−1

f lim
j→∞

Sj = factor of P,

R := 1√
2

lim
j→∞

Rj = factor of ET
f QEf .
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Application to Descriptor Systems

Implementation: solution of Lyapunov equations

Solve

Af PET
f + Ef PAT

f + Bf B
T
f = 0, AT

f QEf + ET
f QAf + CT

f Cf = 0,

via dual gen. Newton it. for sign function [B./Claver/Quintana-Ort́ı ’97]:

A0 ← A, S0 ← B, R0 ← C
for j = 0, 1, 2, . . .

Aj+1 ← 1√
2cj

`
Aj + c2

j Ef A
−1
j Ef

´
,

Sj+1 ← full-rank factor of 1√
2cj

ˆ
Sj cjEf A

−1
j Sj

˜
Rj+1 ← full-rank factor of 1√

2cj

»
Rj

cjRjA
−1
j Ef

–
Note: Full-rank factors are computed using rank-revealing LQ/QR factorization
(RRLQ/RRQR) with respect to tolerance τ for rank determination, without
accumulation of Q.
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Application to Descriptor Systems

Implementation: minimal realization of G∞(s)

If index ν = 1:

G∞(s) ≡ D̂ := D − C∞A−1
∞ B∞.
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Application to Descriptor Systems

Implementation: minimal realization of G∞(s)

If index ν = 1:

G∞(s) ≡ D̂ := D − C∞A−1
∞ B∞.

If no feed-through term allowed in simulation software:

Â :=

[
Â

−Im

]
, B̂ :=

[
B̂
Im

]
,

Ĉ :=
[

Ĉ D̂
]
, Ê :=

[
Ê

0m

]
.

=⇒

Ĝ (s) := Ĝf (s) + G∞(s) = Ĉ (sÊ − Â)−1B̂ + D̂

= Ĉ (sÊ − Â)−1B̂
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Application to Descriptor Systems

Implementation: minimal realization of G∞(s)

If index ν > 1: the McMillan degree n̂∞ of G∞(s) satisfies
[Stykel ’02/’04]

n̂∞ ≤ min{νm, νp, n∞}.

Corresponding minimal realization can be computed by applying
balanced truncation with “zero” threshold for polynomial part
G∞(s); for details see [Stykel ’02/’04].
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Application to Descriptor Systems

Implementation: minimal realization of G∞(s)

If index ν > 1: the McMillan degree n̂∞ of G∞(s) satisfies
[Stykel ’02/’04]

n̂∞ ≤ min{νm, νp, n∞}.

Corresponding minimal realization can be computed by applying
balanced truncation with “zero” threshold for polynomial part
G∞(s); for details see [Stykel ’02/’04].

In any case, Ĝ∞(s) = G∞(s) and thus,

G (s)− Ĝ (s) = Gf (s)− Ĝf (s),

therefore

‖G − Ĝ‖∞ ≤ 2

nf∑
j=r+1

σf
j .
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Application to Descriptor Systems
Numerical results

Descriptor systems BT algorithm was implemented in circuit simulator TI-
TAN (Qimonda AG, Diploma thesis R. Günzel, 2008).

Example 1: small nonlinear circuit

297 resistors, 268 capacitors, 4 voltage sources, 8 MOSFETs.
Linear subcircuit of order n = 297 extracted, reduced to order r = 31.
TITAN simulation results:
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Application to Descriptor Systems
Numerical results

Descriptor systems BT algorithm was implemented in circuit simulator TI-
TAN (Qimonda AG, Diploma thesis R. Günzel, 2008).

Example 2: industrial circuit

14,677 resistors, 15,404 capacitors, 14 voltage sources, 4,800 MOSFETs.
14 linear subcircuit of varying order extracted and reduced.
TITAN simulation results:
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Application to Large-Scale, Sparse Systems

General misconception: complexity of BT O(n3) – true for several im-
plementations (e.g., Matlab, SLICOT)!
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Application to Large-Scale, Sparse Systems

General misconception: complexity of BT O(n3) – true for several im-
plementations (e.g., Matlab, SLICOT)!

Algorithmic ideas from numerical linear algebra (since ∼ 1997):

– Instead of Gramians P,Q or
Cholesky factors thereof
compute S ,R ∈ Rn×k ,
k � n, such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific
Lyapunov/Riccati solvers of
“low” complexity directly.
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Application to Large-Scale, Sparse Systems

General misconception: complexity of BT O(n3) – true for several im-
plementations (e.g., Matlab, SLICOT)!

Algorithmic ideas from numerical linear algebra (since ∼ 1997):

– Instead of Gramians P,Q or
Cholesky factors thereof
compute S ,R ∈ Rn×k ,
k � n, such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific
Lyapunov/Riccati solvers of
“low” complexity directly.

 need solver for large-scale matrix equations which computes S ,R
directly!
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Application to Large-Scale, Sparse Systems
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress ’88]

(A + pk I )X(j−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(j−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation AX + XAT = −BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97, Li/White ’02, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
,

Yk ← rrqr
`ˆ

Yk−1 Vk

˜´
% column compression

At convergence, YkmaxY
T
kmax
≈ X , where

range (Ykmax ) = range
([

V1 . . . Vkmax

])
, Vk = ∈ Cn×m.
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Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
,

Yk ← rrqr
`ˆ

Yk−1 Vk

˜´
% column compression

At convergence, YkmaxY
T
kmax
≈ X , where

range (Ykmax ) = range
([

V1 . . . Vkmax

])
, Vk = ∈ Cn×m.
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Application to Large-Scale, Sparse Systems
Numerical example: butterfly gyro

FEM discretization of MEMS device (micro gyroscope)
 n = 34, 722, m = 1, p = 12.

Reduced model computed using BT with low-rank ADI for Lyapunov
equations, r = 30.

Frequency Response Analysis Hankel Singular Values
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Application to Large-Scale, Sparse Systems
Recent developments for large-scale Lyapunov equations

Improved ADI parameter selection strategies for non-real spectra
[B./Mena/Saak ’06/’08, Sabino ’06, Truhar/Li/Tomljanović ’08].

Competitive Krylov subspace method based on projection onto

K(A,B, k) ∪ K(A−1,A−1B, k) = span{b,A−1b,Ab,A−2b,A2b, . . .},

called K-PIK [Simoncini ’06/’07].

Hybrid ADI + Galerkin projection [B./li/Truhar ’08].

Under development: Hybrid K-PIK + ADI, dominant poles as ADI
parameters (with J. Saak, J. Rommes).

Low-rank ADI for descriptor systems:

– [Stykel ’06/’08] for projected generalized Lyapunov equations;
– [Heinkenschloß/Sorensen/Sun ’06/’08] for Oseen-type

systems;
– [Freitas/Martins/Rommes ’08, B. ’07/’08] for different

semi-explicit index-1 systems.
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Application to Large-Scale, Sparse Systems
Recent developments for large-scale AREs

Recall: balancing-related model reduction methods like positive-real balan-
cing ( passivity-preserving) require solution of algebraic Riccati equations
(AREs) of the form

W + ATXE + ETXA + ETXGXE = 0. (1)

Various algorithms for dense matrices; e.g., implementation of PRBT
for E 6= In nonsingular [B./Quintana-Ort́ı×2 ’04] based on sign
function method.

For large, sparse matrices: use Newton’s method  Newton step =
solution of Lyapunov equation  use low-rank ADI, obtain
approximate solution in low-rank format [B./Li/Penzl ’99/’00].
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Application to Large-Scale, Sparse Systems
Recent developments for large-scale AREs

Recall: balancing-related model reduction methods like positive-real balan-
cing ( passivity-preserving) require solution of algebraic Riccati equations
(AREs) of the form

W + ATXE + ETXA + ETXGXE = 0. (1)

Various algorithms for dense matrices; e.g., implementation of PRBT
for E 6= In nonsingular [B./Quintana-Ort́ı×2 ’04] based on sign
function method.

For large, sparse matrices: use Newton’s method  Newton step =
solution of Lyapunov equation  use low-rank ADI, obtain
approximate solution in low-rank format [B./Li/Penzl ’99/’00].
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Application to Large-Scale, Sparse Systems
Recent developments for large-scale AREs

Recall: balancing-related model reduction methods like positive-real balan-
cing ( passivity-preserving) require solution of algebraic Riccati equations
(AREs) of the form

W + ATXE + ETXA + ETXGXE = 0. (1)

Generalization to descriptor systems: Do not use (1)!

Theorem [B./Stykel ’08]

Consider the projected ARE

PT
r QPr + ATXE + ETXA + ETXGXE = 0, X = PT

` XP`. (2)

with G = GT ≥ 0 and Q = QT ≥ 0 and

Pr /P`: projectors onto right/left defl. subspaces of λE − A wrt finite e-values.

If (E ,A,G) is stabilizable and (E ,A,Q) is detectable, then (2) has a
unique stabilizing solution.

Algorithms based on Newton’s method using various Lyapunov solvers for
dense or large-scale problems [B./Stykel ’08].
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Approximate BT

There is no exact BT.

Why?

All computational methods for BT require solution of dual Lyapunov
(or Riccati) equations, for simplicity consider

AX + XAT + BBT = 0, A ∈ Rn×n, B ∈ Rn×m.

There is no direct or numerically backward stable method with
complexity ≤ O(n3) to solve Lyapunov equations!

Current solvers for large-scale, sparse Lyapunov equations (ADI, cyclic
Smith, K-PIK; complexity O(m · nnz)) may or may not compute a
solution that is as accurate as solutions obtained with O(n3) solver.
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Approximate BT

There is no exact BT. Why?

All computational methods for BT require solution of dual Lyapunov
(or Riccati) equations, for simplicity consider

AX + XAT + BBT = 0, A ∈ Rn×n, B ∈ Rn×m.

There is no direct or numerically backward stable method with
complexity ≤ O(n3) to solve Lyapunov equations!
Bartels-Stewart/Hammerling algorithms are considered to be
numerically backward stable.

This is only true for triangular A: otherwise, the QR algorithm is used
to triangularize A, but this algorithm solves an eigenvalue problem
that may be ill-conditioned even if the solution of the Lyapunov
equation is well-conditioned!!

Also note: the QR algorithm is iterative whenever n > 4!

Sign function solvers for Lyapunov equations may be more accurate than

Bartels-Stewart/Hammarling, even though they are not numerically stable!

Current solvers for large-scale, sparse Lyapunov equations (ADI, cyclic
Smith, K-PIK; complexity O(m · nnz)) may or may not compute a
solution that is as accurate as solutions obtained with O(n3) solver.
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All computational methods for BT require solution of dual Lyapunov
(or Riccati) equations, for simplicity consider

AX + XAT + BBT = 0, A ∈ Rn×n, B ∈ Rn×m.

There is no direct or numerically backward stable method with
complexity ≤ O(n3) to solve Lyapunov equations!

Current solvers for large-scale, sparse Lyapunov equations (ADI, cyclic
Smith, K-PIK; complexity O(m · nnz)) may or may not compute a
solution that is as accurate as solutions obtained with O(n3) solver.
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Structure Preservation

RLC network equations

System structure often encountered in circuit simulation, e.g., in
RC(L) networks w/o voltage sources:

E =

[
E1 0

0 E2

]
, A =

[
−A1 −AT

2

A2 0

]
, B =

[
B1

0

]
= CT ,

where A1,E1 ≥ 0, E2 > 0.

Note: G(s) symmetric, multiplication of 2nd block row by −1 yields

E = ET , A = AT

⇒ Gramians coincide, P = Q
⇒ BT needs only one Lyapunov equation, W ≡ V
⇒ BT preserves stability and passivity.
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Structure Preservation

Split-congruence BT (scBT)

[Kerns/Yang ’98]: split-congruence transformations

(Ê , Â, B̂) = (VTEV,VTAV,VTB), where V =

"
V1

V2

#
, (3)

preserve stability, passivity, and reciprocity, i.e., reduced-order transfer
function has the form

Ĝ(s) = B̂T
1 (sÊ1 + Â1 +

1

s
ÂT

2 Ê−1
2 Â2)B̂1,

cf. SPRIM papers [Freund ’04/’06].
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Structure Preservation

Split-congruence BT (scBT)

[Kerns/Yang ’98]: split-congruence transformations

(Ê , Â, B̂) = (VTEV,VTAV,VTB), where V =

"
V1

V2

#
, (3)

preserve stability, passivity, and reciprocity, i.e., reduced-order transfer
function has the form

Ĝ(s) = B̂T
1 (sÊ1 + Â1 +

1

s
ÂT

2 Ê−1
2 Â2)B̂1,

cf. SPRIM papers [Freund ’04/’06].

Reciprocity preserved  reduced-order model can be synthesized as circuit
(e.g., [Reis ’08]).
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Structure Preservation

Split-congruence BT (scBT)

[Kerns/Yang ’98]: split-congruence transformations

(Ê , Â, B̂) = (VTEV,VTAV,VTB), where V =

"
V1

V2

#
, (3)

preserve stability, passivity, and reciprocity, i.e., reduced-order transfer
function has the form

Ĝ(s) = B̂T
1 (sÊ1 + Â1 +

1

s
ÂT

2 Ê−1
2 Â2)B̂1,

cf. SPRIM papers [Freund ’04/’06].

(Very) basic idea: let V =
h

V1
V2

i
∈ Rn×r be projection matrix computed by

BT, then use V1,V2 as in (3).

Note: range (V ) ⊂ range (V).

Note: theoretical properties of scBT not clear yet.
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Structure Preservation
Numerical example

Random system, n = 150,m = 2

reduced-order, tolerance 10−2  r = 34, δ = 8.6 · 10−3.

Note: larger error for ω → 0, error bound does not hold!
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Sparsity of Reduced-Order Systems

BT is often criticized for producing dense reduced-order models.

Note: this is also true for almost all recent moment-matching
methods, e.g. PRIMA, rational interpolation/Krylov, SPRIM.

Mostly, reduced-order models are used when solving linear
systems of equations

(ωÊ − Â)x = b in frequency-domain analysis,
(Ê − hk Â)xk+1 = Ê xk + . . . in implicit integration schemes (e.g.,
transient analysis).

The cost for solving the linear systems may not benefit from
smaller order, if efficient sparse direct solver for full-size sparse
system matrices is available.
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(Ê − hk Â)xk+1 = Ê xk + . . . in implicit integration schemes (e.g.,
transient analysis).

The cost for solving the linear systems may not benefit from
smaller order, if efficient sparse direct solver for full-size sparse
system matrices is available.



BALANCING-
RELATED
MODEL

REDUCTION

Peter Benner

Introduction

Balanced
Truncation

Miscellanea

Approximate BT

Structure
Preservation

Sparsity of
Reduced-Order
Systems

m, p = O(n)

Conclusions

References

Sparsity of Reduced-Order Systems

An easy improvement

Significant reduction can be achieved by transforming (Â, Ê ) to
Hessenberg-triangular form using QZ algorithm, i.e., compute
orthogonal Q,Z such that

Q(λÊ − Â)Z = λ

[
@

@@

]
−
[
@
@

@
@@

]
≡
[
@
@

@
@@

]
.

New reduced-order system: (QÊZ ,QÂZ ,QB̂, ĈZ ), linear systems of
equations

(ωÊ − Â)x = b,

(Ê − hk Â)xk+1 = Ê xk + . . . , etc.

have Hessenberg form and can thus be solved using r − 1 Givens
rotations only! (Needs Hessenberg solver inside simulator.)

For symmetric systems, further reduction can be achieved.
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Systems with a Large Number of Terminals
m, p = O(n)

Efficient BT implementations are based on assumption n� m, p.

For on-chip clock distribution networks, power grids, wide buses, this
assumption is not justified; here, m, p = O(n), e.g., m = p = n

2
, n

4
.

Cure: BT can easily be combined with SVDMOR [Feldmann/Liu ’04]:
for G(s) = C(sE − A)−1B, let

G(s0) = C(s0E − A)−1B =
ˆ

U1 U2

˜ » Σ1

Σ2

– »
V T

1

V T
2

–
≈ U1Σ1V

T
1 (rank-k approximation),

so that ‖G(s0)− U1Σ1V
T
1 ‖2 = σk+1.

Now define B̃ := BV1, C̃ := UT
1 C , then

G(s) ≈ U1B̃(sE − A)−1C̃| {z }
=:G̃(s)

V T
1 ,

and apply BT to G̃(s)  Ĝ(s): G(s) ≈ U1Ĝ(s)V T
1 .
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Systems with a Large Number of Terminals
m, p = O(n)

Efficient BT implementations are based on assumption n� m, p.

For on-chip clock distribution networks, power grids, wide buses, this
assumption is not justified; here, m, p = O(n), e.g., m = p = n

2
, n

4
.

Cure: BT can easily be combined with SVDMOR [Feldmann/Liu ’04]:
for G(s) = C(sE − A)−1B, let

G(s0) = C(s0E − A)−1B =
ˆ

U1 U2
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– »
V T

1

V T
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≈ U1Σ1V

T
1 (rank-k approximation),

so that ‖G(s0)− U1Σ1V
T
1 ‖2 = σk+1.

Now define B̃ := BV1, C̃ := UT
1 C , then
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=:G̃(s)
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1 ,

and apply BT to G̃(s)  Ĝ(s): G(s) ≈ U1Ĝ(s)V T
1 .

Use truncated SVD → cf. Oral CS 1C (A. Schneider), Mon 16:00h.
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Efficient BT implementations are based on assumption n� m, p.

For on-chip clock distribution networks, power grids, wide buses, this
assumption is not justified; here, m, p = O(n), e.g., m = p = n

2
, n

4
.

Cure: BT can easily be combined with SVDMOR [Feldmann/Liu ’04]:
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ˆ
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– »
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≈ U1Σ1V
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1 (rank-k approximation),

so that ‖G(s0)− U1Σ1V
T
1 ‖2 = σk+1.

Now define B̃ := BV1, C̃ := UT
1 C , then

G(s) ≈ U1B̃(sE − A)−1C̃| {z }
=:G̃(s)

V T
1 ,

and apply BT to G̃(s)  Ĝ(s): G(s) ≈ U1Ĝ(s)V T
1 .

Alternative for medium-size m: superposition of reduced-order SIMO models

using Padé-type approximation [Feng/B./Rudnyi ’08].
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Conclusions

BT preferred MOR technique in control theory, so far less popular in
circuit simulation.

Limitations of balancing-related model reduction methods w.r.t.
descriptor systems, large-scale systems, unstable systems fade away
bit by bit.

Viable alternative to moment-matching/Padé approximation/rational
interpolation methods in many situations; computational complexity
is usually higher, but in the same complexity class O(nnz × r).

Modern implementations of BT are essentially of the same
computational complexity as approximations like frequency-domain
POD [Willcox/Peraire ’02] (aka Poor Man’s TBR
[Phillips/Silveira ’04/’05] ∼ rational interpolation [Grimme ’97,. . . ]),
but are closer to satisfy theoretical properties of BT.

Split-congruence BT preserves reciprocity; thus, allows circuit
synthesis approach of [Reis ’08] to derive MNA equations/netlist.

Reduced-order models can be made more sparse to allow faster
simulation (if integrator is adapted).
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Conclusions
Software

Matlab:

Lyapack/M.E.S.S. (Matrix Equations Sparse Solvers),

MORLAB (dense, pre-β . . . )

F77/C:

PLiCMR (dense),

SpaRed (sparse).

Available from

http://www.tu-chemnitz.de/mathematik/industrie_technik/software

More to come . . .

System Reduction for Nanoscale 
IC Design

http://www.tu-chemnitz.de/mathematik/industrie_technik/software
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