Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Peter Benner

Fakultät für Mathematik TU Chemnitz, Germany

DFG research center Berlin mathematics for key technologies

benner@mathematik.tu-chemnitz.de

joint work with

Heike Faßbender (TU Braunschweig) and Hongguo Xu (University of Kansas)

Theoretical and Computational Aspects of Matrix Algorithms Dagstuhl, October 12–17, 2003

Overview

- The Hamiltonian eigenproblem
- Applications
- The symplectic Lanczos method
- Choosing the free parameters
- Numerical examples
- Conclusions

The Hamiltonian Eigenproblem

 $Hx = \lambda x$ $H \in \mathbb{R}^{2n \times 2n}$ is a Hamiltonian matrix, i.e., $(HJ)^T = HJ$, where $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$. Hamiltonian matrices

• have explicit block structure implied by symmetry of HJ,

$$H = \begin{bmatrix} A & B \\ C & -A^T \end{bmatrix}, \qquad B = B^T, \quad C = C^T$$

- are skew-selfadjoint w.r.t. indefinite inner product $\langle x, y \rangle_J := x^T J y$.
- form Lie algebra with corresponding Lie group:

$$S_n := \{ S \in \mathbb{R}^{2n \times 2n} \mid SJS^T = J \} = \text{ symplectic matrices},$$

hence $S^{-1}HS$ is Hamiltonian for all $S \in S_{2n}$.

Spectral Properties

Spectral symmetry with respect to real and imaginary axes:

$$\lambda \in \Lambda \left(H \right) \; \Rightarrow \; -\lambda, \pm \overline{\lambda} \in \Lambda \left(H \right)$$

Hence,

- $\lambda \in \mathbb{R} \Rightarrow \pm \lambda \in \Lambda \left(H \right)$,
- $\lambda = \jmath \omega \in \jmath \mathbb{R} \Rightarrow \pm \jmath \omega \in \Lambda(H)$,
- $\lambda \in \mathbb{C} \setminus j\mathbb{R} \Rightarrow \pm \lambda, \pm \overline{\lambda} \in \Lambda(H)$,

Applications

- Systems and control:
 - Solution methods for algebraic and differential Riccati equations.
 - Design of LQR/LQG/ H_2/H_∞ controllers and filters for continuous-time linear control systems.
 - Stability radii and system norm computations; optimization of system norms.
 - Passivity-preserving model reduction based on balancing.
 - Reduced-order control for infinite-dim. systems based on inertial manifolds.
- Computational physics: exponential inegrators for Hamiltonian dynamics.
- Quantum chemistry: computing excitation energies in many-particle systems using random phase approximation (RPA).
- Quadratic eigenvalue problems...

Quadratic Eigenvalue Problems

Consider

$$\lambda^2 M x + \lambda G x + K x = 0,$$

where $M = M^T$ spd, $K = K^T$, $G = -G^T$.

Motivation:

- linear elasticity: computation of corner singularities in 3D anisotropic elastic structures [Apel/Mehrmann/Watkins '01]
- FE discretization in structural analysis [H.R. SCHWARZ '84]
- acoustic simulation of poro-elastic materials [MEERBERGEN '99]
- gyroscopic systems, rotor systems

[Lancaster '99]

 \diamond

Peter Benner
TU Chemnitz

Spectral Symmetry of QEP

Spectrum of matrix polynomial

Linearization of QEP

Setting $y = \lambda x$ yields linear (generalized) eigenvalue problem

$$\left(\left[\begin{array}{cc} 0 & -K \\ M & 0 \end{array} \right] - \lambda \left[\begin{array}{cc} M & G \\ 0 & M \end{array} \right] \right) \left[\begin{array}{c} y \\ x \end{array} \right] = 0.$$

$$H = \begin{bmatrix} 0 & -K \\ M & 0 \end{bmatrix}$$
 is Hamiltonian: $(HJ)^T = HJ$
$$N = \begin{bmatrix} M & G \\ 0 & M \end{bmatrix}$$
 is skew-Hamiltonian: $(NJ)^T = -NJ$

 \implies $H - \lambda N$ is a Hamiltonian/skew-Hamiltonian pencil [MEHRMANN/WATKINS '00]

Re-formulation of $H - \lambda N$

Note:

$$N = Z_1 Z_2 = \left[\begin{array}{cc} I & \frac{1}{2}G \\ 0 & M \end{array} \right] \left[\begin{array}{cc} M & \frac{1}{2}G \\ 0 & I \end{array} \right].$$

Hence, as M is spd

$$Z_1^{-1}(H - \lambda N)Z_2^{-1} = W - \lambda I,$$

where

$$W = \left[\begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right] \left[\begin{array}{cc} 0 & -K \\ M^{-1} & 0 \end{array} \right] \left[\begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right]$$

W is Hamiltonian!

Structured Lanczos Method for Hamiltonian Matrices Observations:

- Preservation of spectral symmetry requires structured eigensolver.
- Hamiltonian structure is preserved under symplectic similarity transformations.
- For large, sparse problems want Krylov subspace method.

 \implies Need symplectic basis for Krylov subspace

$$\mathcal{K}(H, 2k, v) := \operatorname{span}\{v, Hv, H^2v, \dots, H^{2k-1}\}.$$

H nonsymmetric \leadsto apply Arnoldi method or nonsymmetric Lanczos method.

Arnoldi method can only produce symplectic Krylov basis in very particular instances! [Ammar/Mehrmann '91] \implies Need variant of nonsymmetric Lanczos!

TU Chemnitz

 \diamond

Symplectic Lanczos Transformation

For every Hamiltonian matrix H there exists symplectic similarity transformation

Hamiltonian J-tridiagonal (J-Hessenberg) form

 \implies Need 4n-1 parameters to represent \widetilde{H} .

Relation of Reduced Form and Krylov Subspace

Theorem:

If $\widetilde{H} = S^{-1}HS$ is in Hamiltonian J-tridiagonal form, then

K(H, 2n-1, v) = SR with $s_1 = v$

is an SR decomposition of the Krylov matrix

$$K(H, 2n - 1, v) := [v, Hv, \dots, H^{2n-1}v].$$

Some Notation

Permutation using $P := [e_1, e_3, \ldots, e_{2n-1}, e_2, e_4, \ldots, e_{2n}]$ (perfect shuffle) yields

 $H_P := PHP^T, \quad S_P := PSP^T, \quad J_P := PJP^T = diag(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix})$

	δ_1	eta_1	0	ζ_2						
\widetilde{H}_P := $S_P^{-1}H_PS_P$ =	$ u_1 $	$-\delta_1$	0	0						
	0	ζ_2	δ_2	β_2	0	ζ_3				
	0	0	$ u_2 $	$-\delta_2$	0	0				
			0	ζ_3	194		14.			
			0	0		1.1		1.1		
					144		1.1		0	ζ_n
						1.1		14.	0	0
							0	ζ_n	δ_n	β_n
	L						0	0	$ u_n$	$-\delta_n$ _

Derivation of Symplectic Lanczos Algorithm via *J*-Tridiagonalization

Compute (permuted) J-tridiagonal form of a (permuted) Hamiltonian matrix $H(H_P)$ by column-wise evaluation of $HS = S\widetilde{H}(H_PS_P = S_P\widetilde{H}_P)$, where $S_P = [v_1, w_1, v_2, w_2, \dots, v_n, w_n]$ is a permuted symplectic matrix). \Longrightarrow

$$H_P v_m = \delta_m v_m + \nu_m w_m$$

$$\iff \nu_m w_m = H_P v_m - \delta_m v_m =: \widetilde{w}_m$$

$$H_P w_m = \zeta_m v_{m-1} + \beta_m v_m - \delta_m w_m + \zeta_{m+1} v_{m+1}$$

$$\iff \zeta_{m+1} v_{m+1} = H_P w_m - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m =: \widetilde{v}_{m+1}.$$

 \implies Choose parameters $\delta_m, \beta_m, \nu_m, \zeta_m$ such that resulting algorithm computes J_P -orthogonal basis of Krylov subspace

$$\mathcal{K}(H_P, v_1, \ell) = \operatorname{span}\{v_1, H_P v_1, \dots, H_P^{2\ell-1} v_1\}.$$

Choice of Parameters

Want $S_P^T J_P S_P = J_P \implies$

$$\nu_{m+1} = v_{m+1}^T J_P H_P v_{m+1}, \qquad \beta_m = -w_m^T J_P H_P w_m,$$

 $\zeta_m \neq 0, \delta_m$ are free!

$$\zeta_m = ||\widetilde{v}_m||_2 \implies ||v_m||_2 = 1$$

Possible choices for δ_m :

 $\delta_m = 1$ [B./Faßbender '97]

 $\delta_m = v_m^T H_P v_m \implies v_m \perp w_m \qquad [Lin/Ferng/Wang '97]$

 $\delta_m = 0 \implies$ algorithm is equivalent to HR/HZ tridiagonalization [B./Faßbender/Watkins '97, Watkins '02]

 \diamond

Peter Benner

Generic Symplectic Lanczos Algorithm

Choose initial vector
$$\tilde{v}_1 \in \mathbb{R}^{2n}$$
, $\tilde{v}_1 \neq 0$.
 $m = 1$; $v_0 = 0$; $\zeta_1 = ||\tilde{v}_1||_2$; $\nu_0 = 1$
while $\zeta_m \neq 0$ and $\nu_{m-1} \neq 0$
 $v_m = \tilde{v}_m/\zeta_m$
 $\tilde{w}_m = H_P v_m - \delta_m v_m$
 $\nu_m = v_m^T J_P H_P v_m$
if $\nu_m \neq 0$
then $w_m = \tilde{w}_m/\nu_m$
 $\beta_m = -w_m^T J_P H_P w_m$
 $\tilde{v}_{m+1} = H_P w_m - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$
 $\zeta_{m+1} = ||\tilde{v}_{m+1}||_2$
end if
 $m = m + 1$
end while

 \diamond

TU Chemnitz

16

 \diamond

Lanczos Recursion and Breakdown

Define $S_P^{2k} = [v_1, w_1, v_2, w_2, \dots, v_k, w_k] \in \mathbb{R}^{2n \times 2k}$, let \widetilde{H}_P^{2k} be the leading $2k \times 2k$ principal submatrix of \widetilde{H}_P , then the symplectic Lanczos recursion is

$$H_P S_P^{2k} = S_P^{2k} \widetilde{M}_P^{2k} + \zeta_{k+1} v_{k+1} e_{2k}^T.$$

Breakdown is possible:

 $\widetilde{v}_m = 0 \Rightarrow \zeta_m = 0$, symplectic invariant subspace of H is detected, lucky breakdown!

 $\widetilde{w}_m = 0 \Rightarrow \nu_m = 0$, invariant subspace of H_P of dimension 2m - 1 is detected, lucky breakdown!

$$\nu_m = 0$$
 but $v_m \neq 0$ and $w_m \neq 0$
 \implies serious breakdown!

Uniqueness of Lanczos Vectors

Theorem:

If there are two symplectic Lanczos recurrences with $v_1 = v_1$

$$HV_{k} = V_{k}H_{k} + \zeta_{k+1}\tilde{v}_{k+1}e_{2k}^{T},$$
$$HV_{k} = V_{k}H_{k} + \zeta_{k+1}\tilde{v}_{k+1}e_{2k}^{T},$$

then there exists a trivial symplectic matrix $D_k = \begin{bmatrix} \hat{D}_k & \hat{F}_k \\ & \hat{D}_k^{-1} \end{bmatrix}$, \hat{D}_k, \hat{F}_k diagonal, such that $V_k = V_k D_k$.

Proof:

Consequence of uniqueness of SR decomposition up to trivial symplectic factors and relation of SR decomposition to Krylov subspace.

Condition of Lanczos Basis

Accuracy of computed eigenvalues is affected by condition of Lanczos basis.

 \Rightarrow keep cond₂ (V_n) small (i.e., choose "best" trivial symplectic factor D_k)

$$V_n$$
 symplectic $\implies V_n^{-1} = -JV_n^T J \implies \operatorname{cond}_2(V_n) = \|V_n\|_2^2.$

 $\|V_n\|_2$ can be bounded by

$$\max_{1 \le k \le n} \{ \|v_k\|_2, \|w_k\|_2 \} \le \|V_n\|_2 \le \sqrt{2}n \max_{1 \le k \le n} \{ \|v_k\|_2, \|w_k\|_2 \},\$$

 $\implies \text{Minimize } \tau := \max_{1 \le k \le n} \{ \|v_k\|_2, \|w_k\|_2 \}.$

\diamond	Peter Benner	\diamond	TU Chemnitz	\diamond	19

Optimizing One Free Parameter

Fix ζ_k such that $\|v_k\|_2 = 1$ for all $k \implies$

$$\tau = \max_{1 \le k \le n} \{ \|w_k\|_2 \} = \max_{1 \le k \le n} \{ \frac{1}{|\nu_k|} \|Hv_k - \delta_k v_k\|_2 \}.$$

Requiring symplectic Lanczos basis $\Rightarrow \nu_k$ is fixed.

Choice of δ_k independent of $\delta_1, \ldots, \delta_{k-1} \implies$

$$\delta_k = \operatorname*{argmin}_{\delta \in \mathbb{R}} \{ \| H v_k - \delta v_k \|_2 \}.$$

Minimizing τ

Consider the quadratic form

$$f_k(\delta) = ||Hv_k - \delta v_k||_2^2 = (Hv_k - \delta v_k)^T (Hv_k - \delta v_k)$$
$$= v_k^T H^T Hv_k - 2\delta v_k^T Hv_k + \delta^2 \underbrace{v_k^T v_k}_{=1}.$$

First-order necessary condition for a minimum is

$$f'_k(\delta) = -2v_k^T H v_k + 2\delta = 0.$$

Hence,

 $\delta_k = v_k^T H v_k$, i.e., $v_k \perp w_k$ (local orthogonality condition)

 \Rightarrow Same choice as in [FERNG/LIN/WANG '97].

Numerical Examples I

Control of string of high-speed vehicles: n = 398, v = e, different choices for δ_j

Peter Benner
TU Chemnitz
22

Numerical Examples II

Random stable gyroscopic system: n = 200, different choices for δ_j

Conclusions

- Optimal choice of free parameters in symplectic Lanczos method can improve condition of Lanczos basis and may improve Ritz value accuracy.
- Optimization of two free parameters possible but . . .
- Thorough comparison necessary.
- For practical applications, use implicitly restarted variants [B./FASSBENDER '97, WATKINS '02], but still more details necessary: shift-and-invert, deflation, locking, purging, . . .
- Variants for symplectic eigenproblem available [B./FASSBENDER '00].
- Two-sided symplectic (implicitly restarted) Arnoldi based on symplectic URV decomposition under development [B./KRESSNER/MEHRMANN/XU].

 \diamond

 \diamond