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Linear systems

Linear Systems

Linear autonomous (time-invariant) systems:

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) +Du(t),

• n state-space variables, i.e., x(t) ∈ Rn (n is the degree of the system);

• m inputs, i.e., u(t) ∈ Rm;

• p outputs, i.e., y(t) ∈ Rp;

• A stable, i.e., λ (A) ⊂ C− ⇒ system is stable.

Corresponding transfer function:

G(s) = C(sIn −A)−1B +D ≡
[

A B
C D

]

.
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Linear systems

Realizations

Laplace transform: sx(s)− x(0) = Ax(s) +Bu(s), y(s) = Cx(s) +Du(s).

x(0) = 0 =⇒ y(s) =
(

C(sIn −A)−1B +D
)

u(s) = G(s)u(s).

(A,B,C,D) ≡
[

A B
C D

]

is a realization of the system G.

(Realizations are not unique! m, p are fixed, n is variable!)

Minimal realization: find minimal degree n̂ (= McMillan degree), Â, B̂, Ĉ, D̂ with

G(s) = Ĉ(sIn̂ − Â)−1B̂ + D̂.

Minimal realization is not unique: for any state-space transformation

T : x → Tx, (A,B,C,D) → (TAT−1, TB,CT−1, D)

obtain new realization of the system: D+ (CT−1)(sI − TAT−1)−1(TB) = G(s).
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Linear systems

Balanced Realization

• Controllability and observability Gramians of G solve Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0.

• (A,B,C,D) is a balanced realization of G iff P = Q =





σ1
. . .

σn



.

• σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are the Hankel singular values (HSV) of the system
(invariant under state-space transfromation).

• (A,B,C,D) minimal =⇒ ∃ balancing state-space transformation.

(A,B,C,D) non-minimal =⇒ P1:n̂,1:n̂ = Q1:n̂,1:n̂ =





σ1
. . .

σn̂



,

HSV are {σ1, . . . , σn̂, 0, . . . , 0}.
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Spectral projection methods

Spectral Projection Methods

For Z ∈ Rn×n with λ (Z) = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅, let P be a (skew) projector
onto the right Z-invariant subspace corresponding to Λ1.

1. rank (P) = |Λ1| := k, range (P) = range (AP).

2. Let

P = QRP, R =

[

R11 R12

0 0

]

=









@
@

@
@@









, R11 ∈ Rk×k,

where P is a permutation matrix. Then obtain block-triangular form

Z̃ := QTZQ =

[

Z11 Z12

0 Z22

]

,

where λ (Z11) = Λ1, λ (Z22) = Λ2.
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Sign function method

The Sign Function Method

[Roberts ’71]

For Z ∈ Rn×n with λ (Z) ∩ ıR = ∅ and Jordan canonical form

Z = S−1

[

J+ 0

0 J−

]

S =⇒ sign (Z) := S

[

Ik 0

0 −In−k

]

S−1 .

(J± = Jordan blocks corresponding to λ (Z) ∩ C±)

sign (Z) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z, Zj+1 ←
1

2

(

cjZj +
1

cj
Z−1

j

)

, j = 1, 2, . . .

=⇒ sign (Z) = limj→∞Zj.

(cj > 0 is scaling parameter for convergence acceleration and rounding error minimization.)
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Sign function method

Properties of the Sign Function Method

• 1
2(In − sign (Z)) is skew projector onto stable Z–invariant subspace.

• Sign function undefined if Z has purely imaginary eigenvalues =⇒ problems for
eigenvalues close to imaginary axis.

• Usually, computed invariant subspaces
are as accurate as their conditioning

admits. [Byers/He/Mehrmann 1997]

• Block-triangular form often better

conditioned than computation of Schur

form. =⇒ Sign function often more

accurate than computations based on

QR/QZ algorithms.

• Here: cond (sign (Z)) = 1 as Z

stable or anti-stable, hence computation

of sign (Z) itself is well-conditioned

problem!
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Model reduction

Model Reduction: Idea

Given

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) +Du(t),

find reduced model

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t),

of degree `¿ n with ỹ(t) ∈ Rp and output error

y − ỹ = Gu− G̃u = (G− G̃)u

such that

‖y − ỹ‖ “small” or, respectively, ‖G− G̃‖ “small”.
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Model reduction

Model Reduction: Motivation

Control design

• Real-time control only possible with controllers of low complexity.

Feedback controller (dynamic compensator):

linear system of degree N where

– Input = output of controlled system

– Output = input of controlled system

Modern (H2-/H∞) control design: N ≥ n.

=⇒ reduce order of original system.

G

?

-

˙̃x = Fx̃+ Ey

u = Hx̃+Ky

u y

• “The more complex, the more fragile”.

• Control and optimization of systems governed by PDEs: impossible for
large-scale systems arising from FE discretization.
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Model reduction

Simulation

Repeated simulations with the same model for different force terms (input
signals).

• VLSI chip design: increasing complexity due to
– verification of layouts: complexity of circuits ↗, design cycles ↘
– include interconnect into model
– coupling with thermic effects, etc.

• Micro electro-mechanical systems (MEMS): coupling of ODE/DAE/PDE
models for electronic/mechanical parts.

• Simulation of coupled PDE systems, e.g. manipulation of flow.
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Model reduction by truncation

Back to Model Reduction: Truncation Methods

• For arbitrary state-space transformation T ∈ Rn×n:

TAT−1 =

[

A11 A12

A21 A22

]

, TB =

[

B1

B2

]

, CT−1 =
[

C1 C2

]

.

with A11 ∈ R`×`, . . ..

• Partition T =

[

Tl

Wl

]

, Tl ∈ R`×n, T−1 =
[

Tr Wr

]

, Tr ∈ Rn×`.

• Reduced-order model:

[

Ã B̃

C̃ D̃

]

=

[

A11 B1

C1 D

]

=

[

TlATr TlB
CTr D

]

with projected dynamics: x̃ = TrTlx.

• Choice of T , ` such that ‖y − ỹ‖ is “small”!

Note: limω→∞(G(ıω)− G̃(ıω)) = D −D = 0.
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Model reduction by truncation

Absolute Error Methods

Recall: want reduced-order model

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t),

of degree `¿ n with small absolute error.

Note: for ‖G‖∞ := ess sup
ω∈R

σmax(G(ıω)), we have

‖G(s)− G̃(s)‖∞ = sup
u∈H2

‖(G− G̃)u‖2
‖u‖2

= sup
u∈H2

‖y − ỹ‖2
‖u‖2

Hence, ‖y − ỹ‖2 ≤ ‖G− G̃‖∞‖u‖2.

Consequence of Paley-Wiener Theorem: ‖y − ỹ‖2 ≡ ‖y − ỹ‖H2 ≡ ‖y − ỹ‖L2[0,∞)
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Model reduction by truncation

Balanced Truncation

For balanced realization G(s) ≡
[

A B
C D

]

with P = Q =:

[

Σ̃

Σ2

]

the

reduced-order model

G̃(s) ≡
[

Ã B̃

C̃ D̃

]

≡
[

A11 B1

C1 D

]

is balanced, minimal, stable. The Gramians are P̃ = Q̃ = Σ̃ =

[

σ1
. . .

σ`

]

.

=⇒ Computable global error bound ‖G− G̃‖∞ ≤ 2
n
∑

k=`+1

σk.

=⇒ adaptive choice of `.

Balancing transformation often ill-conditioned. Remedy: compute Tl, Tr , such that G̃ is not

balanced, but error bound holds! [Safonov/Chiang 1989, Varga 1991 ]

Peter Benner ♦ Institut für Mathematik ♦ 14



Model reduction by truncation

Balanced Truncation: SR method

[Heath/Laub/Paige/Ward ’87, Tombs/Postlethwaite ’87]

Gramians are spd =⇒ P = STS, Q = RTR. For better numerical robustness,
use S,R instead of P,Q:

σ (SRT )2 = λ(PQ), cond (SRT ) =
√

cond (PQ).

Note: S−T (PQ)ST = (SRT )(SRT )T = (UΣV T )(V ΣUT ) = UΣ2UT .

Compute balancing transformation using SVD:

SRT = [U1 U2]

[

Σ1 0
0 Σ2

] [

V T
1

V T
2

]

, Σ1 = diag(σ2
1, . . . , σ

2
` )

⇓
Tl = Σ

−1/2
1 V T

1 R, Tr = STU1Σ
−1/2
1 .
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Model reduction by truncation

Computing the Factors S,R

Standard approach:

S,R =
[

@
@

@@

]

∈ Rn×n are Cholesky factors of P,Q.

Use Hammarling’s method: solve Lyapunov equations

A(SS
T
) + (SS

T
)A

T
+ BB

T
= 0, A

T
(R

T
R) + (R

T
R)A+ C

T
C = 0

by reducing A to Schur form (QR algorithm) and solve resulting linear system
for S,R by backsubstitution.

Approach here:

S ∈ Rrank(P )×n, R ∈ Rrank(Q)×n are full rank factors of P,Q.

Advantages:

– more reliable if Cholesky factors are numerically singular;

– more efficient if rank (P ) , rank (Q)¿ n;

– SVD is cheaper, e.g., semi-discretized point control of 1D heat equation with n = 1000:

rank (P ) ≈ rank (Q) ≈ 20⇒ O(105) flops instead of O(1010), i.e., factor 100, 000.
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Model reduction by truncation

Example for Cheaper SVD

Complexity of SVD in standard approach: O(n3).

Often, for large-scale systems Gramians have low numerical rank.

Example:

– Linear 1D heat equation with point control on

[ 0, 1 ],

– FE-discretization with linear B-splines,

– h = 1/1000 (=⇒ n = 1001).

0 200 400 600 800 1000
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Index k

λ k, σ
k

Eigenvalues of Gramians, HSV

Λ (P)
Λ (Q)
Hankel singular values

P ≈ S(s)(S(s))T , S(s) ∈ Rs×n

Q ≈ R(s)(R(s))T , R(r) ∈ Rr×n ⇒ SVD of S
(s)
(R

(s)
)
T
has complexity O(r2

(s+ r)).

Here: s ≈ r ≈ 20 =⇒ O(105) flops instead of O(1010).
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Model reduction by truncation

Solving Lyapunov Equations with the Sign Function Method

Consider Lyapunov equation F TX +XF + E = 0, F stable.

=⇒
[

In

−X∗

]

is stable invariant subspace of Z :=
[

F
E

0
−FT

]

.

Apply sign function Newton iteration Zj+1 ← (Zj + Z−1
j )/2 to Z.

=⇒ sign (Z) = limj→∞Zj =

[ −In 0

2X∗ In

]

.

Newton iteration (with scaling) is equivalent to

F0 ← F, E0 ← E,
for j = 0, 1, 2, . . .

Fj+1 ←
1

2cj

(

Fj + c2jF
−1
j

)

,

Ej+1 ←
1

2cj

(

Ej + c2jF
−T
j EjF

−1
j

)

.

=⇒ X∗ =
1
2 limj→∞Ej
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Model reduction by truncation

Semidefinite Lyapunov Equations

Here: E = BTB or CTC, F = AT or A.

Want factor R of solution of ATQ+QA+ CTC = 0.

For E0 = CT
0 C0 := CTC, C ∈ Rp×n obtain

Ej+1 =
1

2cj

(

Ej + c2jA
−T
j EjA

−1
j

)

=
1

2cj

[

Cj

cjCjA
−1
j

]T [

Cj

cjCjA
−1
j

]

.

=⇒ re-write Ej–iteration:

C0 := C, Cj+1 := 1√
2cj

[

Cj

cjCjA
−1
j

]

.

Problem: Cj ∈ Rpj×n =⇒ Cj+1 ∈ R2pj×n,
i.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space.
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Model reduction by truncation

Compute Cholesky factor Rc of Q

Require pj ≤ n: for j > log2(n/p) compute QR factorization

1
√

2cj

[

Cj

cjCjA
−1
j

]

= Uj

[

Ĉj

0

]

, Ĉj =
[

@
@

@@

]

∈ Rn×n
.

=⇒ Ej = ĈT
j Ĉj, Rc =

1√
2
limj→∞ Ĉj

Compute full-rank factor Rf of Q

In every step compute rank-revealing QR factorization:

1
√

2cj

[

Cj

cjCjA
−1
j

]

= Uj+1

[

Rj+1 Tj+1

0 Sj+1

]

Πj+1,

where Rj+1 ∈ Rpj+1×pj+1, pj+1 = rank

([

Cj

cjCjA
−1
j

])

. Then

Cj+1 := [Rj+1 Tj+1 ]Πj+1, Ej+1 = CT
j+1Cj+1, Rf =

1√
2
limj→∞Cj
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Stochastic truncation

Model Reduction Based on Relative Errors

Compute reduced-order system such that relative error ‖∆rel‖∞ becomes “small”,

G̃(s) = G(s)(I +∆rel).

For p = m, D full-rank: find argmin
degree(G̃)≤`

‖G−1(G− G̃)‖∞.

Balanced stochastic truncation (BST): [Desai/Pal ’84, Green ’88 ]

• Compute balancing transformation for controllability Gramian ofG(s) and observability Gramian
W of right spectral factor Ĉ(sI − Â)−1B̂ + D̂ of power spectrum Φ(s) := G(s)GT (−s).

• W is stabilizing solution of algebraic Riccati equation (ARE): (E := DDT )

0 = C
T
E
−1
C + (A− B̂E

−1
C)

T
W +W (A− B̂E

−1
C) +WB̂E

−1
B̂
T
W.

Numerical solution via Newton’s method with line search [B. ’97, B./Byers ’98 ]

Newton iteration: solve Lyapunov equation using factored sign function iteration Ã factored

solution of ARE. [B./Byers/Quintana-Ort́ı×2 ’00 ]
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Stochastic truncation

Advantages of Stochastic Truncation

• Global relative error bound: ‖∆rel‖∞ ≤
∏n

j=`+1

1+µj
1−µj
− 1, λ (PW ) = {µ2

j} ⊂ [0, 1]

⇒ uniform approximation of transfer function over whole frequency domain.

• Additional system properties are preserved:
– right-half plane zeroesÃ reduced-order model of minimum-phase system is minimum phase;

– ∃ error bounds for phase (for BT, only error bounds for magnitude);
– robust stability [Safonov/Chiang ’88 ].

• Better properties wrt controller design (controller for reduced model stabilizes full-order plant).

Analogous computational techniques for

• LQG balancing (reduce plant and controller at the same time),
• positive real balancing (preserve passivity).

In both cases, both Gramians are solutions to AREs.
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Unstable Systems

Model Reduction of Unstable Systems

Use additive decomposition of transfer function,

G(s) = G−(s) +G+(s), G−(s) stable, G+(s) anti-stable,

and reduce G−(s) using BT etc., keep G+(s) (dominates the dynamics).

Need block-diagonalization of A:

Â := UTAU =

[

A11 0

0 A22

]

⇒ B̂ := UTB =:

[

B1

B2

]

, Ĉ := CU =: [C1 C2 ] ,

Then

G(s) =
[

C1 C2

]

[

(sIk −A11)
−1

(sIn−k −A22)
−1

] [

B1

B2

]

+D

=
{

C1(sIk −A11)
−1B1

}

+
{

C2(sIn−k −A22)
−1B2 +D

}

=: G−(s) +G+(s),
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Unstable Systems

Block-Diagonalization via the Sign Function Method

1. Compute sign (A) and obtain spectral projector P− := 1
2(In − sign (Z)) ⇒

obtain block-triangular form from QR decomposition of P−

P− = QRP, Ã := Q
T
AQ =

[

A11 A12

0 A22

]

.

2. Solve Sylvester equation A11Y − Y A22 +A12 = 0. Then

Â := V
−1
ÃV =

[

A11 0

0 A22

]

, V :=

[

Ik Y

0 In−k

]

.

A11,−A22 stable ⇒ solve Sylvester equation via sign function method:

E0 := A11, Ej+1 := 1
2

(

Ej + E−1
j

)

,

F0 := A22, Fj+1 := 1
2

(

Fj + F−1
j

)

,

W0 := A12, Wj+1 :=
1
2

(

Wj + E−1
j WjF

−1
j

)

,

j = 0, 1, 2, . . . .

⇒ limj→∞Ej = −Ik, limj→∞ Fj = In−k, and Y = 1
2 limj→∞Wj.
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Model Reduction for large-scale systems

Model Reduction for Large-Scale Systems

Large-scale dense problems of size n = O(10k), m, p ¿ n arise, e.g., from
discretization of integral equations via BEM or wavelet techniques.

n = O(103) Ã sign function based methods applicable on current workstations (even in

Matlab).

n = O(104) Ã parallelization on PC or workstation cluster using off-the-shelf computer

technology (standard chips, Fast Ethernet,...) and software (MPI, PBLAS, BLACS,

ScaLAPACK).

Alternative: sparse representation (approximation) of A using hierarchical matrices

[Hackbusch/Khoromskij/Grasedyck, in progress]

3D FEM models, large-scale circuits, etc. Ã large-scale sparse systems.

Ã Use the same ideas (truncation methods, factored Gramians), but need sparse
Lyapunov/Riccati solvers.

• Balanced truncation: [Penzl 1999, Li ’00, Li/White ’01, Antoulas/Sorensen/Zhou]

• Stochastic truncation: [B. ’01 ]
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Model Reduction for large-scale systems

Parallelization

• Newton iteration for sign function easy to parallelize – need basic linear algebra
(systems of linear equations, matrix inverse, matrix addition, matrix product).

• Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical
linear algebra −→ portable code.

• Development of software library PLiCMR.

• Testing on PC Cluster (Linux) with 32 Intel Pentium II-300MHz processors.

– workspace/processor: 128 MBytes.
– Myrinet Switch, bandwidth ≈ 100 Mbit/sec.

• Results on 1 processor: SLICOT codes, based on computation of Cholesky
factors via Hammarling’s method.

SLICOT= Subroutine Library in Control Theory, available from http://www.win.tue.nl/niconet
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Numerical examples

Numerical Examples

Benchmark tests:

1. 1D heat equation with point control

Control of temperature distribution in thin rod with heat source in the middle =⇒ 1D heat

equation with homogeneous Dirichlet boundary. Discretization with FEM, linear elements.

n = dimension of the FE ansatz space.

m = 1: heat source in one point.

p = 1: temperature is measured in one interval.

2. Simulation of catalytic reactor (taken from ABB gPROMS tutorial)

• FE discretization of boundary control problem for coupled PDE system (conservation laws,
reaction-diffusion equations, Robin and Neumann boundary conditions), linearization around

working point.

• Dynamics: oxidation (o-Xylene to phthalic anhydrite).
• Control: external cooling of the reactor.
• n = 1171, m = 6, p = 4.
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Numerical examples

3. “Random” systems with given McMillan degree and given rank of Gramians.

4. Optimal cooling of steel profiles (model by Mannesmann/Demag,
[Tröltzsch/Unger, Penzl 1999])

• Mathematical model: boundary control for

linearized 2D heat equation.

∂

∂t
x =

λ

c · ρ
∆x, ξ ∈ Ω

∂

∂n
x =

1

λ
(uk − x), ξ ∈ Γk, k = 1, . . . , 6,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = p = 6

• FEM Discretization, initial mesh (n = 821).
2 steps of mesh refinement =⇒ n = 3113.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ
1

Γ
2

Γ
3

Γ
4

Γ
5

Γ
6

Γ
7

  

Peter Benner ♦ Institut für Mathematik ♦ 28



Numerical examples Accuracy

Absolute Error for Balanced Truncation

Example 1: rank (P ) = 32, rank (Q) = 38(37), ` = 6.
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Numerical examples Accuracy

Absolute Error for Singular Perturbation Approximation

SPA: minimal realization via BT, compute G̃ such that G(0) = G̃(0) and ‖G−G̃‖∞2 ≤
n
∑

k=`+1

σk.

Example 2: rank (P ) = 124, rank (Q) = 93, ` = 40
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Numerical examples Accuracy

Uniform Approximation of BST/Example 4

• n = 821: rank (P ) = 165, rank (Q) = 210, ` = 40 ⇒ ‖G−G̃‖∞ ≤ 3.2·10−4‖G‖∞
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• n = 3113: rank (P ) = 179, rank (Q) = 204,

— (numerical) stochastic McMillan degree: µn̂ ≤ n · µ1 · u ⇒ n̂ = 135 .

— ` = 40 ⇒ ‖G− G̃‖∞ ≤ 2.8 · 10−4‖G‖∞
— SVD: < 1sec. on 2 processors using full-rank factors, ≈ 25 minutes using Cholesky factors.
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Numerical examples Efficiency

Speed-Up/Efficiency of Parallel Algorithms

Example 3/balanced truncation:
n = 1000,m = p = 100, n̂ = ` = 50
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Example 3/BT, discrete-time:
n = 1000,m = p = 100, n̂ = ` = 50
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Numerical examples Efficiency

Speed-Up/Efficiency of Parallel Algorithms

Example 2/SPA:
n = 1171,m = 6, p = 4, ` = 40
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Example 3/BST:
n = 1000,m = 10, p = 10, ` = 40
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Numerical examples

Remote Computing:
PLiCMR Web Interface

• Upload data on cluster.
• Select MR method.
• Submit job.
• User receives reduced-order
model

– A,B,C,D

– HSV

– infos

via e-mail.
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Conclusions

Conclusions

• Model reduction for discrete-time systems analogous; compute factors of
Gramians using factored Smith-Iteration [B./Quintana-Ort́ı×2 ’00 ]

• Can also compute optimal Hankel norm approximation.

• Parallel implementations are collected in software library PLiCMR and are
integrated into parallel version of SLICOT.

• Model reduction of large-scale systems on Linux cluster in Castellón: E-mail,
web server.

• Implementations of methods for sparse systems based on ADI in progress.

• Circuit simulation:

– Computation of passive reduced systems.
– Application to DAE systems.

• Exploit PDE structures?
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