Model Reduction Algorithms Using Spectral Projection Methods

Peter Benner Institut für Mathematik TU Berlin Germany benner@math.tu-berlin.de http://www.math.tu-berlin.de/~benner

> Householder Symposium XV June 17–21, 2002

Thanks to: Enrique and Gregorio Quintana-Ortí, Rafael Mayo

Outline

- Linear autonomous systems
- Spectral projection methods the sign function method
- Model reduction
- Balanced truncation
- Stochastic truncation
- Model reduction for unstable systems
- Large-scale problems/parallelization
- Numerical examples
- Conclusions

Linear Systems

Linear autonomous (time-invariant) systems:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \qquad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

- n state-space variables, i.e., $x(t) \in \mathbb{R}^n$ (n is the degree of the system);
- m inputs, i.e., $u(t) \in \mathbb{R}^m$;
- p outputs, i.e., $y(t) \in \mathbb{R}^p$;
- A stable, i.e., $\lambda(A) \subset \mathbb{C}^- \Rightarrow$ system is stable.

Corresponding transfer function:

$$G(s) = C(sI_n - A)^{-1}B + D \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}.$$

3

Realizations

Laplace transform: sx(s) - x(0) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).

$$x(0) = 0 \implies y(s) = \left(C(sI_n - A)^{-1}B + D\right)u(s) = G(s)u(s).$$

$$(A, B, C, D) \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 is a realization of the system G.

(Realizations are not unique! m, p are fixed, n is variable!)

Minimal realization: find minimal degree \hat{n} (= McMillan degree), $\hat{A}, \hat{B}, \hat{C}, \hat{D}$ with

$$G(s) = \hat{C}(sI_{\hat{n}} - \hat{A})^{-1}\hat{B} + \hat{D}.$$

Minimal realization is not unique: for any state-space transformation

$$\mathcal{T}: x \rightarrow Tx, (A, B, C, D) \rightarrow (TAT^{-1}, TB, CT^{-1}, D)$$

obtain new realization of the system: $D + (CT^{-1})(sI - TAT^{-1})^{-1}(TB) = G(s)$.

Balanced Realization

• Controllability and observability Gramians of G solve Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0.$$

- (A, B, C, D) is a balanced realization of G iff $P = Q = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}$.
- $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$ are the Hankel singular values (HSV) of the system (invariant under state-space transfromation).
- (A, B, C, D) minimal $\implies \exists$ balancing state-space transformation.

$$(A, B, C, D) \text{ non-minimal} \implies P_{1:\hat{n}, 1:\hat{n}} = Q_{1:\hat{n}, 1:\hat{n}} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_{\hat{n}} \end{bmatrix},$$

HSV are $\{\sigma_1, \dots, \sigma_{\hat{n}}, 0, \dots, 0\}.$

Spectral Projection Methods

For $Z \in \mathbb{R}^{n \times n}$ with $\lambda(Z) = \Lambda_1 \cup \Lambda_2$, $\Lambda_1 \cap \Lambda_2 = \emptyset$, let \mathcal{P} be a (skew) projector onto the right Z-invariant subspace corresponding to Λ_1 .

1. rank $(\mathcal{P}) = |\Lambda_1| := k$, range $(\mathcal{P}) = \text{range}(A\mathcal{P})$.

2. Let

$$\mathcal{P} = QRP, \quad R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

where P is a permutation matrix. Then obtain block-triangular form

$$\tilde{Z} := Q^T Z Q = \begin{bmatrix} Z_{11} & Z_{12} \\ 0 & Z_{22} \end{bmatrix},$$

where $\lambda(Z_{11}) = \Lambda_1$, $\lambda(Z_{22}) = \Lambda_2$.

The Sign Function Method [Roberts '71]

For $Z \in \mathbb{R}^{n \times n}$ with $\lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S^{-1} \begin{bmatrix} J^+ & 0 \\ 0 & J^- \end{bmatrix} S \qquad \Longrightarrow \qquad \operatorname{sign} (Z) := S \begin{bmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{bmatrix} S^{-1} \ .$$

$$(J^{\pm} =$$
Jordan blocks corresponding to $\lambda(Z) \cap \mathbb{C}^{\pm})$

sign (Z) is root of $I_n \Longrightarrow$ use Newton's method to compute it:

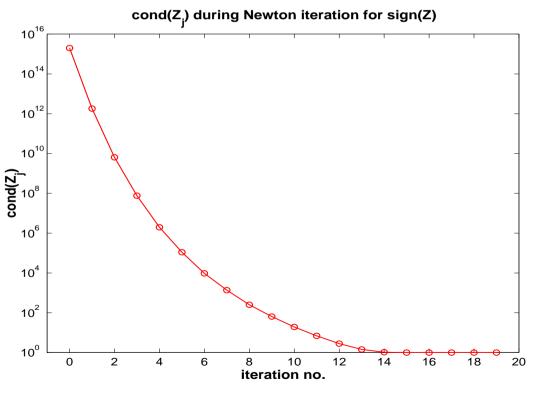
$$Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(c_j Z_j + \frac{1}{c_j} Z_j^{-1} \right), \qquad j = 1, 2, \dots$$

 $\implies \quad \operatorname{sign}\left(Z\right) = \lim_{j \to \infty} Z_j.$

 $(c_j > 0$ is scaling parameter for convergence acceleration and rounding error minimization.)

Properties of the Sign Function Method

- $\frac{1}{2}(I_n \text{sign}(Z))$ is skew projector onto stable Z-invariant subspace.
- Sign function undefined if Z has purely imaginary eigenvalues ⇒ problems for eigenvalues close to imaginary axis.
- Usually, computed invariant subspaces are as accurate as their conditioning admits. [*Byers/He/Mehrmann* 1997]
- Block-triangular form often better conditioned than computation of Schur form. ⇒ Sign function often more accurate than computations based on QR/QZ algorithms.
- Here: cond (sign (Z)) = 1 as Z stable or anti-stable, hence computation of sign (Z) itself is well-conditioned problem!



Model Reduction: Idea

Given

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \qquad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

find reduced model

$$\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{B}u(t), \tilde{y}(t) = \tilde{C}\tilde{x}(t) + \tilde{D}u(t),$$

of degree $\ell \ll n$ with $\tilde{y}(t) \in \mathbb{R}^p$ and output error

$$y - \tilde{y} = Gu - \tilde{G}u = (G - \tilde{G})u$$

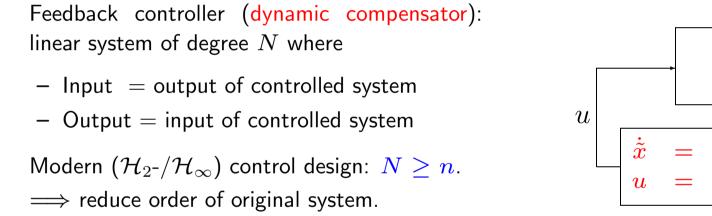
such that

$$\|y - \tilde{y}\|$$
 "small" or, respectively, $\|G - \tilde{G}\|$ "small".

Model Reduction: Motivation

Control design

• Real-time control only possible with controllers of low complexity.



- "The more complex, the more fragile".
- Control and optimization of systems governed by PDEs: impossible for large-scale systems arising from FE discretization.

Model reduction

Simulation

Repeated simulations with the same model for different force terms (input signals).

- VLSI chip design: increasing complexity due to
 - verification of layouts: complexity of circuits \nearrow , design cycles \searrow
 - include interconnect into model
 - coupling with thermic effects, etc.
- Micro electro-mechanical systems (MEMS): coupling of ODE/DAE/PDE models for electronic/mechanical parts.
- Simulation of coupled PDE systems, e.g. manipulation of flow.

Back to Model Reduction: Truncation Methods

• For arbitrary state-space transformation $T \in \mathbb{R}^{n \times n}$:

$$TAT^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad TB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \quad CT^{-1} = \begin{bmatrix} C_1 & C_2 \end{bmatrix}.$$

with $A_{11} \in \mathbb{R}^{\ell \times \ell}, \ldots$

• Partition
$$T = \begin{bmatrix} T_l \\ W_l \end{bmatrix}$$
, $T_l \in \mathbb{R}^{\ell \times n}$, $T^{-1} = \begin{bmatrix} T_r & W_r \end{bmatrix}$, $T_r \in \mathbb{R}^{n \times \ell}$.

• Reduced-order model: $\begin{bmatrix} \tilde{A} & \tilde{B} \\ \hline{\tilde{C}} & D \end{bmatrix} = \begin{bmatrix} A_{11} & B_1 \\ \hline C_1 & D \end{bmatrix} = \begin{bmatrix} T_l A T_r & T_l B \\ \hline C T_r & D \end{bmatrix}$

with projected dynamics: $\tilde{x} = T_r T_l x$.

• Choice of T, ℓ such that $||y - \tilde{y}||$ is "small"! Note: $\lim_{\omega \to \infty} (G(\imath \omega) - \tilde{G}(\imath \omega)) = D - D = 0.$

Absolute Error Methods

Recall: want reduced-order model

$$\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{B}u(t), \tilde{y}(t) = \tilde{C}\tilde{x}(t) + \tilde{D}u(t),$$

of degree $\ell \ll n$ with small absolute error.

Note: for $\|G\|_{\infty} := \operatorname{ess \ sup} \sigma_{\max}(G(\imath \omega))$, we have $\omega \in \mathbb{R}$

$$||G(s) - \tilde{G}(s)||_{\infty} = \sup_{u \in \mathcal{H}_2} \frac{||(G - \tilde{G})u||_2}{||u||_2} = \sup_{u \in \mathcal{H}_2} \frac{||y - \tilde{y}||_2}{||u||_2}$$

Hence, $||y - \tilde{y}||_2 \le ||G - \tilde{G}||_{\infty} ||u||_2$.

Consequence of Paley-Wiener Theorem: $\|y - \tilde{y}\|_2 \equiv \|y - \tilde{y}\|_{\mathcal{H}_2} \equiv \|y - \tilde{y}\|_{\mathcal{L}_2[0,\infty)}$

Balanced Truncation

For balanced realization $G(s) \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ with $P = Q =: \begin{bmatrix} \tilde{\Sigma} & \\ & \Sigma_2 \end{bmatrix}$ the reduced-order model

$$\tilde{G}(s) \equiv \begin{bmatrix} \tilde{A} & \tilde{B} \\ \hline \tilde{C} & \tilde{D} \end{bmatrix} \equiv \begin{bmatrix} A_{11} & B_1 \\ \hline C_1 & D \end{bmatrix}$$

is balanced, minimal, stable. The Gramians are $\tilde{P} = \tilde{Q} = \tilde{\Sigma} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_\ell \end{bmatrix}$.

 \implies Computable global error bound

$$\|G - \tilde{G}\|_{\infty} \le 2\sum_{k=\ell+1}^{n} \sigma_k.$$

 \implies adaptive choice of ℓ .

Balancing transformation often ill-conditioned. Remedy: compute T_l, T_r , such that \tilde{G} is not balanced, but error bound holds! [Safonov/Chiang 1989, Varga 1991]

Balanced Truncation: SR method

[Heath/Laub/Paige/Ward '87, Tombs/Postlethwaite '87]

Gramians are spd $\implies P = S^T S$, $Q = R^T R$. For better numerical robustness, use S, R instead of P, Q:

$$\sigma \, (SR^T)^2 = \lambda(PQ), \quad \mathrm{cond} \, (SR^T) = \sqrt{\mathrm{cond} \, (PQ)}.$$

Note: $S^{-T}(PQ)S^T = (SR^T)(SR^T)^T = (U\Sigma V^T)(V\Sigma U^T) = U\Sigma^2 U^T$.

Compute balancing transformation using SVD:

$$T_l = \Sigma_1^{-1/2} V_1^T R, \qquad T_r = S^T U_1 \Sigma_1^{-1/2}.$$

15

Computing the Factors S, R

Standard approach:

$$S, R = \left[\bigtriangledown \right] \in \mathbb{R}^{n \times n}$$
 are Cholesky factors of P, Q .

Use Hammarling's method: solve Lyapunov equations

$$A(SS^{T}) + (SS^{T})A^{T} + BB^{T} = 0, \qquad A^{T}(R^{T}R) + (R^{T}R)A + C^{T}C = 0$$

by reducing A to Schur form (QR algorithm) and solve resulting linear system for S, R by backsubstitution.

Approach here:

$$S \in \mathbb{R}^{\operatorname{rank}(P) \times n}$$
, $R \in \mathbb{R}^{\operatorname{rank}(Q) \times n}$ are full rank factors of P, Q .

Advantages:

- more reliable if Cholesky factors are numerically singular;
- more efficient if rank (P), rank $(Q) \ll n$;
- SVD is cheaper, e.g., semi-discretized point control of 1D heat equation with n = 1000: rank $(P) \approx \operatorname{rank}(Q) \approx 20 \Rightarrow \mathcal{O}(10^5)$ flops instead of $\mathcal{O}(10^{10})$, i.e., factor 100,000.

Example for Cheaper SVD

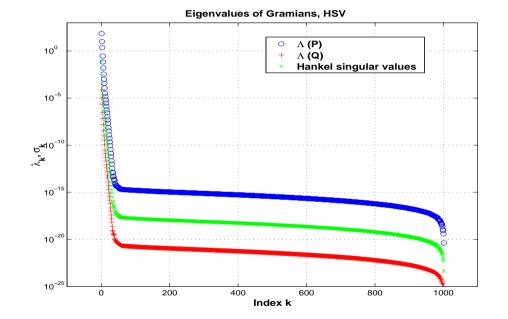
Complexity of SVD in standard approach: $\mathcal{O}(n^3)$.

Often, for large-scale systems Gramians have low numerical rank.

Example:

- Linear 1D heat equation with point control on $[\,0,\,1\,]\text{,}$
- FE-discretization with linear B-splines,

$$- h = 1/1000 \implies n = 1001$$



$$\begin{array}{ll} P &\approx & S^{(s)}(S^{(s)})^T, & S^{(s)} \in \mathbb{R}^{s \times n} \\ Q &\approx & R^{(s)}(R^{(s)})^T, & R^{(r)} \in \mathbb{R}^{r \times n} \end{array} \Rightarrow \quad \mathsf{SVD} \text{ of } S^{(s)}(R^{(s)})^T \text{ has complexity } \mathcal{O}(r^2(s+r)). \end{array}$$

Here: $s \approx r \approx 20 \implies \mathcal{O}(10^5)$ flops instead of $\mathcal{O}(10^{10})$.

Solving Lyapunov Equations with the Sign Function Method

Consider Lyapunov equation $F^T X + XF + E = 0$, F stable.

$$\implies \begin{bmatrix} I_n \\ -X_* \end{bmatrix} \text{ is stable invariant subspace of } Z := \begin{bmatrix} F & 0 \\ E & -F^T \end{bmatrix}.$$

Apply sign function Newton iteration $Z_{j+1} \leftarrow (Z_j + Z_j^{-1})/2$ to Z.

$$\implies \operatorname{sign}(Z) = \lim_{j \to \infty} Z_j = \begin{bmatrix} -I_n & 0\\ 2X_* & I_n \end{bmatrix}.$$

Newton iteration (with scaling) is equivalent to

$$\begin{array}{lll} F_{0} & \leftarrow & F, & E_{0} & \leftarrow & E, \\ \texttt{for } j = 0, 1, 2, \dots & & \\ & F_{j+1} & \leftarrow & \frac{1}{2c_{j}} \left(F_{j} + c_{j}^{2} F_{j}^{-1} \right), \\ & E_{j+1} & \leftarrow & \frac{1}{2c_{j}} \left(E_{j} + c_{j}^{2} F_{j}^{-T} E_{j} F_{j}^{-1} \right). \end{array} \right) \Longrightarrow$$

$$\Rightarrow \qquad X_* = \frac{1}{2} \lim_{j \to \infty} E_j$$

Semidefinite Lyapunov Equations

Here: $E = B^T B$ or $C^T C$, $F = A^T$ or A.

Want factor R of solution of $A^TQ + QA + C^TC = 0$.

For $E_0 = C_0^T C_0 := C^T C$, $C \in \mathbb{R}^{p \times n}$ obtain

$$E_{j+1} = \frac{1}{2c_j} \left(E_j + c_j^2 A_j^{-T} E_j A_j^{-1} \right) = \frac{1}{2c_j} \left[\begin{array}{c} C_j \\ c_j C_j A_j^{-1} \end{array} \right]^T \left[\begin{array}{c} C_j \\ c_j C_j A_j^{-1} \end{array} \right].$$

 \implies re-write E_j -iteration:

$$C_0 := C, \qquad C_{j+1} := \frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix}.$$

Problem: $C_j \in \mathbb{R}^{p_j \times n} \implies C_{j+1} \in \mathbb{R}^{2p_j \times n}$, i.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space.

Compute Cholesky factor R_c of Q

Require $p_j \leq n$: for $j > \log_2(n/p)$ compute QR factorization

$$\frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix} = U_j \begin{bmatrix} \hat{C}_j \\ 0 \end{bmatrix}, \qquad \hat{C}_j = \begin{bmatrix} \\ \\ \\ \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

$$\implies E_j = \hat{C}_j^T \hat{C}_j, \qquad R_c = \frac{1}{\sqrt{2}} \lim_{j \to \infty} \hat{C}_j$$

Compute full-rank factor R_f of Q

In every step compute rank-revealing QR factorization:

$$\frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix} = U_{j+1} \begin{bmatrix} R_{j+1} & T_{j+1} \\ 0 & S_{j+1} \end{bmatrix} \Pi_{j+1},$$

where $R_{j+1} \in \mathbb{R}^{p_{j+1} \times p_{j+1}}$, $p_{j+1} = \operatorname{rank}\left(\begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix}\right)$. Then

$$C_{j+1} := [R_{j+1} T_{j+1}]\Pi_{j+1}, \quad E_{j+1} = C_{j+1}^T C_{j+1},$$

$$R_f = \frac{1}{\sqrt{2}} \lim_{j \to \infty} C_j$$

 \diamond

20

Model Reduction Based on Relative Errors

Compute reduced-order system such that relative error $\|\Delta_{rel}\|_\infty$ becomes "small",

 $\tilde{G}(s) = G(s)(I + \Delta_{\rm rel}).$

For p = m, D full-rank: find $\underset{\text{degree}(\tilde{G}) \leq \ell}{\operatorname{argmin}} \|G^{-1}(G - \tilde{G})\|_{\infty}$.

Balanced stochastic truncation (BST):

[Desai/Pal '84, Green '88]

- Compute balancing transformation for controllability Gramian of G(s) and observability Gramian W of right spectral factor $\hat{C}(sI \hat{A})^{-1}\hat{B} + \hat{D}$ of power spectrum $\Phi(s) := G(s)G^{T}(-s)$.
- W is stabilizing solution of algebraic Riccati equation (ARE): $(E := DD^T)$

$$0 = C^{T}E^{-1}C + (A - \hat{B}E^{-1}C)^{T}W + W(A - \hat{B}E^{-1}C) + W\hat{B}E^{-1}\hat{B}^{T}W.$$

Numerical solution via Newton's method with line search[B. '97, B./Byers '98]Newton iteration: solve Lyapunov equation using factored sign function iteration \rightsquigarrow factored
solution of ARE.[B./Byers/Quintana-Ortí×2 '00]

Advantages of Stochastic Truncation

• Global relative error bound:

$$\|\Delta_{\text{rel}}\|_{\infty} \leq \prod_{j=\ell+1}^{n} \frac{1+\mu_{j}}{1-\mu_{j}} - 1, \ \lambda \left(PW\right) = \{\mu_{j}^{2}\} \subset [0,1]$$

 \Rightarrow uniform approximation of transfer function over whole frequency domain.

- Additional system properties are preserved:
 - right-half plane zeroes ~>>> reduced-order model of minimum-phase system is minimum phase;
 - \exists error bounds for phase (for BT, only error bounds for magnitude);
 - robust stability [Safonov/Chiang '88].
- Better properties wrt controller design (controller for reduced model stabilizes full-order plant).

Analogous computational techniques for

- LQG balancing (reduce plant and controller at the same time),
- positive real balancing (preserve passivity).

In both cases, both Gramians are solutions to AREs.

Model Reduction of Unstable Systems

Use additive decomposition of transfer function,

 $G(s) = G_{-}(s) + G_{+}(s), \qquad G_{-}(s)$ stable, $G_{+}(s)$ anti-stable,

and reduce $G_{-}(s)$ using BT etc., keep $G_{+}(s)$ (dominates the dynamics).

Need block-diagonalization of A:

$$\hat{A} := U^T A U = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} \Rightarrow \hat{B} := U^T B =: \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \ \hat{C} := CU =: \begin{bmatrix} C_1 & C_2 \end{bmatrix},$$

Then

$$G(s) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} (sI_k - A_{11})^{-1} & \\ (sI_{n-k} - A_{22})^{-1} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} + D$$

$$= \{C_1(sI_k - A_{11})^{-1}B_1\} + \{C_2(sI_{n-k} - A_{22})^{-1}B_2 + D\} =: G_-(s) + G_+(s),$$

Block-Diagonalization via the Sign Function Method

1. Compute sign (A) and obtain spectral projector $\mathcal{P}_{-} := \frac{1}{2}(I_n - \operatorname{sign}(Z)) \Rightarrow$ obtain block-triangular form from QR decomposition of \mathcal{P}_{-}

$$\mathcal{P}_{-} = QRP, \qquad \tilde{A} := Q^{T}AQ = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

2. Solve Sylvester equation $A_{11}Y - YA_{22} + A_{12} = 0$. Then

$$\hat{A} := V^{-1}\tilde{A}V = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}, \quad V := \begin{bmatrix} I_k & Y \\ 0 & I_{n-k} \end{bmatrix}$$

 $A_{11}, -A_{22}$ stable \Rightarrow solve Sylvester equation via sign function method:

$$E_{0} := A_{11}, \qquad E_{j+1} := \frac{1}{2} \left(E_{j} + E_{j}^{-1} \right),$$

$$F_{0} := A_{22}, \qquad F_{j+1} := \frac{1}{2} \left(F_{j} + F_{j}^{-1} \right), \qquad j = 0, 1, 2, \dots$$

$$W_{0} := A_{12}, \qquad W_{j+1} := \frac{1}{2} \left(W_{j} + E_{j}^{-1} W_{j} F_{j}^{-1} \right),$$

 $\Rightarrow \lim_{j \to \infty} E_j = -I_k$, $\lim_{j \to \infty} F_j = I_{n-k}$, and $Y = \frac{1}{2} \lim_{j \to \infty} W_j$.

Model Reduction for Large-Scale Systems

Large-scale dense problems of size $n = O(10^k)$, $m, p \ll n$ arise, e.g., from discretization of integral equations via BEM or wavelet techniques.

- $n = \mathcal{O}(10^3) \rightsquigarrow$ sign function based methods applicable on current workstations (even in MATLAB).
- $n = \mathcal{O}(10^4) \rightsquigarrow$ parallelization on PC or workstation cluster using off-the-shelf computer technology (standard chips, Fast Ethernet,...) and software (MPI, PBLAS, BLACS, ScaLAPACK).
- **Alternative:** sparse representation (approximation) of A using hierarchical matrices [Hackbusch/Khoromskij/Grasedyck, in progress]

3D FEM models, large-scale circuits, etc. \rightsquigarrow large-scale sparse systems.

 \rightsquigarrow Use the same ideas (truncation methods, factored Gramians), but need sparse Lyapunov/Riccati solvers.

- Balanced truncation: [Penzl 1999, Li '00, Li/White '01, Antoulas/Sorensen/Zhou]
- Stochastic truncation: [B. '01]

Parallelization

- Newton iteration for sign function easy to parallelize need basic linear algebra (systems of linear equations, matrix inverse, matrix addition, matrix product).
- Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical linear algebra \longrightarrow portable code.
- Development of software library PLiCMR.
- Testing on PC Cluster (Linux) with 32 Intel Pentium II-300MHz processors.
 - workspace/processor: 128 MBytes.
 - Myrinet Switch, bandwidth pprox 100 Mbit/sec.
- Results on 1 processor: SLICOT codes, based on computation of Cholesky factors via Hammarling's method.

SLICOT = Subroutine Library in Control Theory, available from http://www.win.tue.nl/niconet

Numerical Examples

Benchmark tests:

1. 1D heat equation with point control

Control of temperature distribution in thin rod with heat source in the middle \implies 1D heat equation with homogeneous Dirichlet boundary. Discretization with FEM, linear elements.

- n = dimension of the FE ansatz space.
- m = 1: heat source in one point.
- p = 1: temperature is measured in one interval.

2. Simulation of catalytic reactor (taken from ABB gPROMS tutorial)

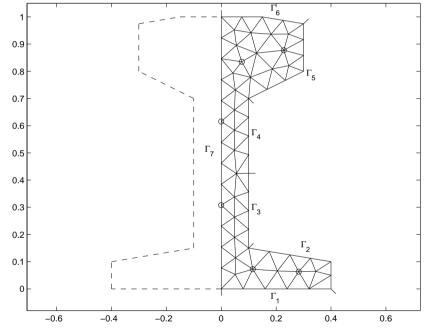
- FE discretization of boundary control problem for coupled PDE system (conservation laws, reaction-diffusion equations, Robin and Neumann boundary conditions), linearization around working point.
- Dynamics: oxidation (*o*-Xylene to phthalic anhydrite).
- Control: external cooling of the reactor.
- n = 1171, m = 6, p = 4.

- 3. "Random" systems with given McMillan degree and given rank of Gramians.
- 4. Optimal cooling of steel profiles (model by Mannesmann/Demag, [*Tröltzsch/Unger, Penzl 1999*])
 - Mathematical model: boundary control for linearized 2D heat equation.

$$\begin{aligned} \frac{\partial}{\partial t}x &= \frac{\lambda}{c \cdot \rho} \Delta x, \quad \xi \in \Omega \\ \frac{\partial}{\partial n}x &= \frac{1}{\lambda} (u_k - x), \quad \xi \in \Gamma_k, \ k = 1, \dots, 6, \\ \frac{\partial}{\partial n}x &= 0, \qquad \xi \in \Gamma_7. \end{aligned}$$

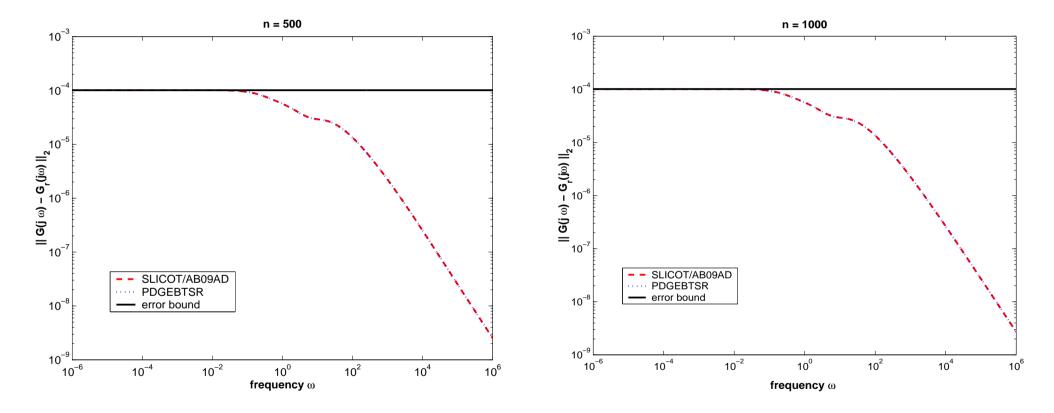
 $\implies m = p = 6$

• FEM Discretization, initial mesh (n = 821). 2 steps of mesh refinement $\implies n = 3113$.



Absolute Error for Balanced Truncation

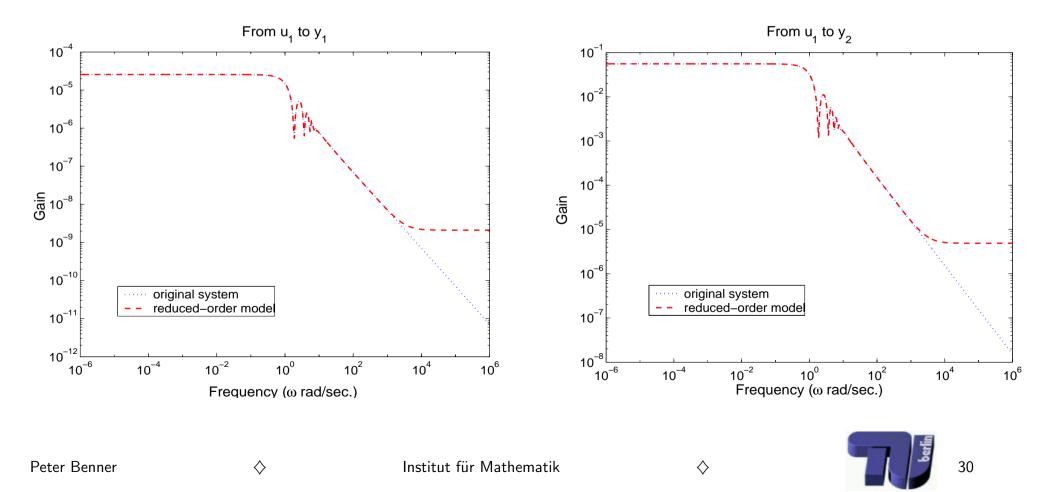
Example 1: rank
$$(P) = 32$$
, rank $(Q) = 38(37)$, $\ell = 6$.



Absolute Error for Singular Perturbation Approximation

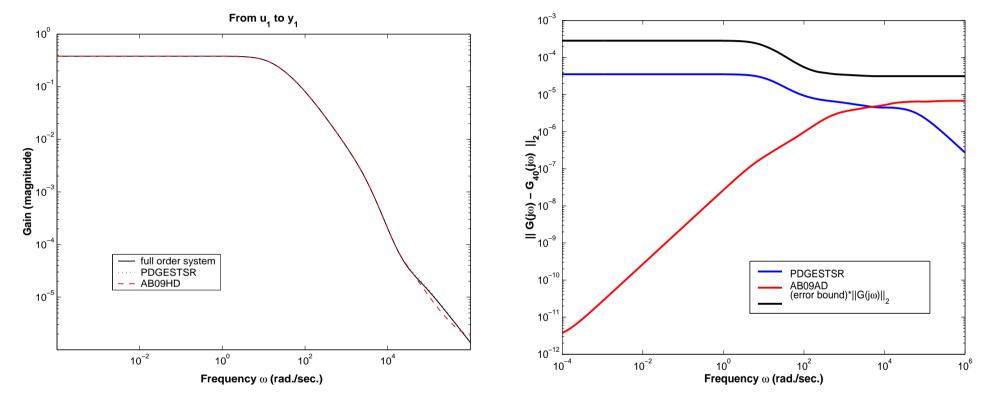
SPA: minimal realization via BT, compute \tilde{G} such that $G(0) = \tilde{G}(0)$ and $\frac{\|G-\tilde{G}\|_{\infty}}{2} \leq \sum_{k=\ell+1}^{n} \sigma_k$.

Example 2: rank (P) = 124, rank (Q) = 93, $\ell = 40$



Uniform Approximation of BST/Example 4

• n = 821: rank (P) = 165, rank (Q) = 210, $\ell = 40 \implies ||G - \tilde{G}||_{\infty} \le 3.2 \cdot 10^{-4} ||G||_{\infty}$



• n = 3113: rank (P) = 179, rank (Q) = 204,

— (numerical) stochastic McMillan degree: $\mu_{\hat{n}} \leq n \cdot \mu_1 \cdot \mathbf{u} \implies \hat{n} = 135$.

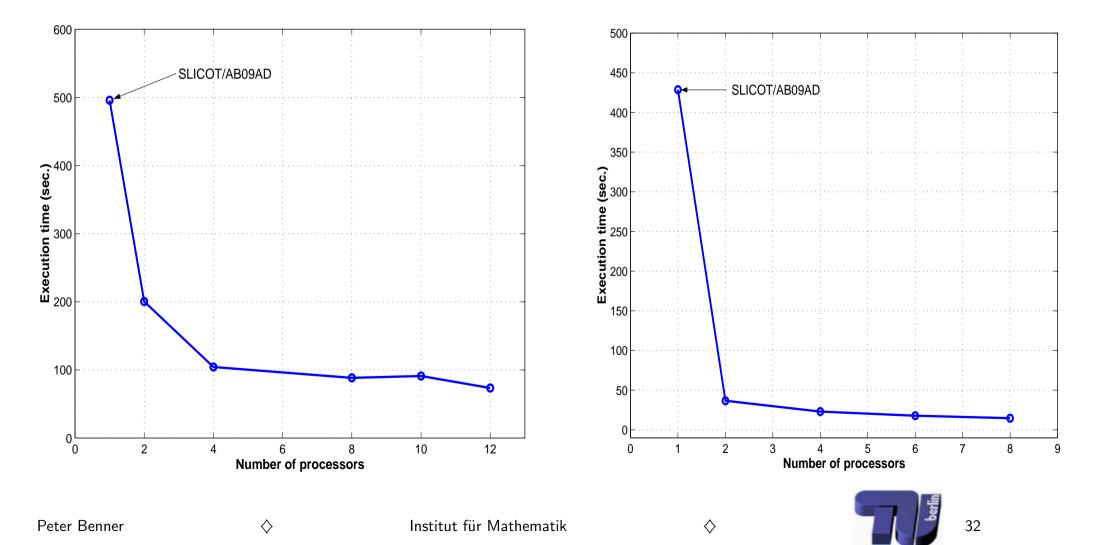
$$- \ell = 40 \implies ||G - \tilde{G}||_{\infty} \le 2.8 \cdot 10^{-4} ||G||_{\infty}$$

— SVD: < 1sec. on 2 processors using full-rank factors, \approx 25 minutes using Cholesky factors.

Speed-Up/Efficiency of Parallel Algorithms

Example 3/balanced truncation: $n = 1000, m = p = 100, \hat{n} = \ell = 50$

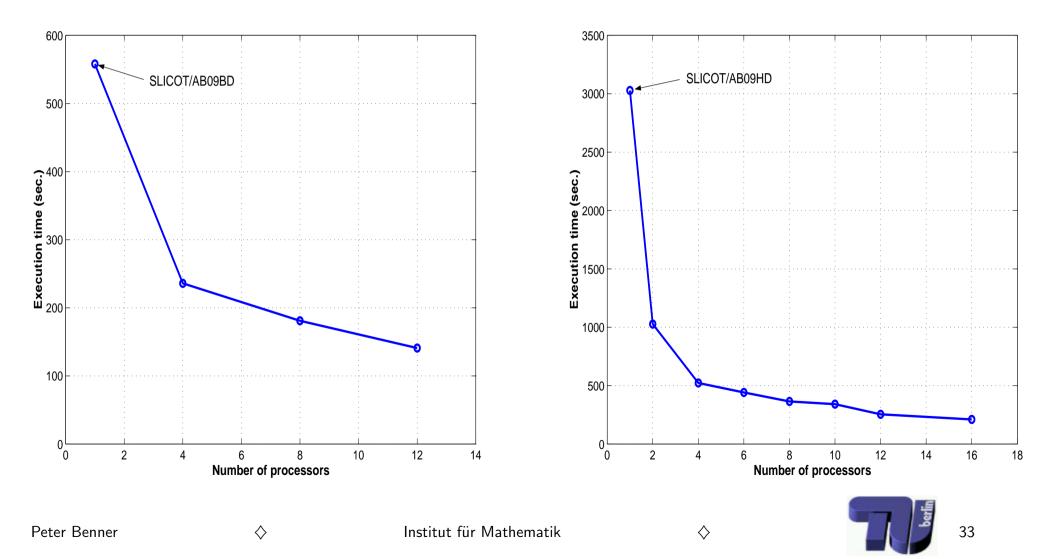
Example 3/BT, discrete-time: $n = 1000, m = p = 100, \hat{n} = \ell = 50$



Speed-Up/Efficiency of Parallel Algorithms

Example 2/SPA: $n = 1171, m = 6, p = 4, \ell = 40$

Example 3/BST: $n = 1000, m = 10, p = 10, \ell = 40$



Remote Computing: PLiCMR Web Interface

- Upload data on cluster.
- Select MR method.
- Submit job.
- User receives reduced-order model
 - A, B, C, D
 - HSV
 - infos

via e-mail.

PLIC:					pmrW ³ : Web form for Job Submissio			
1. <u>User identifier</u>	I			2.	User password			
3. <u>Model reduccion method</u>	Balance and Singular Per Hankel-Nor	turbation Approx	3					
4. Type of the original system	C Discrete sys			5.	Computational approach	CSquare-root Balancing-free sq	Dare-root	
. Prelininary equilibration	Scale Do nat scale			7.	Order selection method	C Fixed	<pre>< Fixed</pre>	
. <u>Number of states</u>	I	-		9.	Number of inputs	Ĩ		
10. <u>Number of outputs</u>	Ĩ.			11	. Order of reduced system	I		
2. <u>Tolerance 1</u>	I			13	. <u>Tolerance 2</u>			
4. <u>Number of processors to use</u>	I			15	Compressor used for matrix fil	es Not compressed	⊄gzip ⊄zip	
6. E-mail for notification	ý oumsil§nsil	SERVER						
ile for A	I		Brows	· File	for B	I	Browse	
ile for C	I		Brows	· File	for C		Browse	
Submit Job								

34

Conclusions

- Model reduction for discrete-time systems analogous; compute factors of Gramians using factored Smith-Iteration [B./Quintana-Ortí×2 '00]
- Can also compute optimal Hankel norm approximation.
- Parallel implementations are collected in software library PLiCMR and are integrated into parallel version of SLICOT.
- Model reduction of large-scale systems on Linux cluster in Castellón: E-mail, web server.
- Implementations of methods for sparse systems based on ADI in progress.
- Circuit simulation:
 - Computation of passive reduced systems.
 - Application to DAE systems.
- Exploit PDE structures?

Linear Algebra and Its Applications

Special Issue on

Order Reduction of Large-Scale Dynamical Systems

Guest editors

Peter BennerRoland W. FreundDanny C. SorensenAndras Varga

Submission deadline: March 31, 2003