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Introduction

Introduction
Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states x € R”",
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Introduction Projection

[ Jelelele]

Application Areas

(Optimal) Control

Feedback Controllers
X=Ax+Bu

A feedback controller (dynamic y=C
compensator) is a linear system of
order N, where

@ input = output of plant,

@ output = input of plant. = By
Modern (LQG_/H2_/HOO') Contr0| u=Hv+Ky
design: N > n.
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[ Jelel

Application Areas

(Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,

@ output = input of plant. e By
Modern (LQG_/H2_/HOO') Contr0| u=Hv+Ky
design: N > n.

Practical controllers require small N (N ~ 10, say) due to
— real-time constraints,
— increasing fragility for larger N.

= reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of
on-chip transistors doubles each 12 (now: 18) months.
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@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Increase in packing density requires modeling of interconncet to ensure
that thermic/electro-magnetic effects do not disturb signal transmission.

@ Linear systems in micro electronics occur through modified nodal analysis
(MNA) for RLC networks, e.g., when

decoupling large linear subcircuits,

modeling transmission lines (interconnect, powergrid), parasitic
effects,

modeling pin packages in VLSI chips,

modeling circuit elements described by Maxwell's equation using
partial element equivalent circuits (PEEC).
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of
on-chip transistors doubles each 12 (now: 18) months.

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Increase in packing density requires modeling of interconncet to ensure
that thermic/electro-magnetic effects do not disturb signal transmission.

@ Linear systems in micro electronics occur through modified nodal analysis
(MNA) for RLC networks, e.g., when

decoupling large linear subcircuits,

modeling transmission lines (interconnect, powergrid), parasitic
effects,

modeling pin packages in VLSI chips,

modeling circuit elements described by Maxwell's equation using
partial element equivalent circuits (PEEC).

Standard MOR techniques in circuit simulation: Krylov subspace / Padé
approximation / rational interpolation methods.
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Application Areas

Structural Mechanics / Finite Element Modeling

s rndet o ey

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.
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Application Areas

Structural Mechanics / Finite Element Modeling

s rndet o ey

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,

combined with Guyan reduction (static condensation) ~~ Craig-Bampton
method.
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Motivation: Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (i, ).

e Memory: 4 - n, - n, bytes.
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o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (i, ).

e Memory: 4 - n, - n, bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

X=X o]
= ojujv;
=1 1517 >

where X = UL VT is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.
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Motivation: Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (i, ).

e Memory: 4 - n, - n, bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™*" w.r.t. spectral norm:

X=X o]
= ojujv;
=1 1517 >

where X = UL VT is the singular value decomposition (SVD) of X.
The approximation error is || X — X||2 = o/41.

4
Idea for dimension reduction

Instead of X save uy,...,u,, o1Vi,...,0.V,.
~+ memory = 4r X (ny, + n,) bytes.

y
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Introduction OR 3 T Rat Examples

Truncate SVvD

320 x 200 pixel
~ =2 256 kb
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OR by Projection

Image Compression by Truncated SVD

Example: Clown

o rank r = 50, ~ 104 kb

Rank-50 approxima

320 x 200 pixel
~ =2 256 kb
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Introduction MOR by Projection Balanced Tru on nt

0O000®00000000000®OO 0000000000000 0000 [e]e]e]e]e}

Example: Image Compression by Truncated SVD

Example- Clo @ rank r =50, ~ 104 kb

Original image

@ rank r =20, ~ 42 kb

Rank-20 approximation

320 x 200 pixel
~ =2 256 kb
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,
Peter Henrici, Fritz L. Bauer.

Original inage

640 x 480 pixel, ~ 1229 kb
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00000 @00« )

Dimension Reduction via SVD

Example: Gatlinburg o rankr :100%448 b

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,
Peter Henrici, Fritz L. Bauer.

Original inage

@ rank r =50, = 224 kb

Rank-50 appraximation

640 x 480 pixel, ~ 1229 kb
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Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay

(exponentially).

Singular Values of the Image Data Matrices
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Model Reductuon for DynamlcaISystems

Dynamical Systems

5. { X f(t,x(t),u(t)), x(to) = xo,
with

g(t,x(t), u(t))
o states x(t) € R”,

o inputs u(t) € R,
o outputs y(t) € RP.

< X
~
~ ~+
NN
[

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 11/52



Introduction

Model Reductuon for DynamlcaISystems

f x(t) = f(t,x(t), u(t)),
o {Y(t) = g(t, x(t), u(t)).

o states x(t) € R,

@ inputs u(t) € R",

@ outputs y(t) € RP.

— I
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Model Reductuon for Dynamlcal Systems

Reduced-Order System

x(t) = f(t,x(t), u(t)), = )’Zt:’f\t,)’?t,ut,
= {510 = s = (500 2 Bestr o
o states x(t) € R, o states X(t) e R", r< n

@ inputs u(t) € R™, @ inputs u(t) € R,

@ outputs y(t) € R”. @ outputs y(t) € R”.

¥
————————»

I
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Model Reduction for Dynamical Systems

Reduced-Order System

 x(t) = f(t,x(t), u(t)), o [ &(t) = F(t,%(b), u(t)),
> {y(t) = g(t, x(t), u(t)). > {?(t) = g(t, x(t), u(t)).

o states x(t) € R, o states X(t) e R", r< n
@ inputs u(t) € R™, @ inputs u(t) € R,
@ outputs y(t) € R”. @ outputs y(t) € R”.

v
|ly = 9|l < tolerance - ||u]| for all admissible input signals. I
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Model Reduction for Dynamical Systems

Reduced-Order System

x(t) = f(t,x(¢t), u(t)), = [ %) = f(t,%(t), u
TR T TR
o states x(t) € R, o states X(t) e R", r< n
@ inputs u(t) € R™, @ inputs u(t) € R,
@ outputs y(t) € R”. @ outputs y(t) € R”.

lly = ¥ < tolerance - ||ul| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR™", B € RM<m
y = g(t,x,u) = Cx+Du, CeRP*" D € RP*™,
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR™", B € R™m
y = g(t,x,u) = Cx+Du, CeRP*" D € RP*™,
Assumptions (for now): to =0, xop = x(0) =0, D = 0.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR™", B € RM<m
y = g(t,x,u) = Cx+Du, CeRP*" D € RP*™,

State-Space Description for |/O-Relation

Variation-of-constants —

t
S:ury, y(t):/ Ce”t=IBu(r) dr for all t € R.

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 13/52



Introduction
[e]e] le]e]e]

Model Reduction for Linear Systems
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t
S:u—y, y(t) :/ Ce”t=IBu(r) dr for all t € R.

@ S:U — Y is a linear operator between (function) spaces.
Recall: A€ R is a ,A:R™ — R"
use SVD approximation as for matrix Al

in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR™", B € R™m
y = g(t,x,u) = Cx+ Du, Ce&RP*", D € RP*™,

4

State-Space Description for |/O-Relation

Variation-of-constants —

t
S:u—y, y(t) :/ Ce”t=IBu(r) dr for all t € R.

@ S:U — Y is a linear operator between (function) spaces.
o Recall: A€ R"™ ™ is a linear operator, A: R™ — R"!
o Basic Idea: use SVD approximation as for matrix Al

@ Problem: in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!

v
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

X = Ax+ By, AeR™" BeR™m,
y = C € RP*",

Alternative to State-Space Operator: Hankel operator

Instead of

t
S:u—y, y(t)= / Ce"t=Bu(r) dr for all t € R.
use Hankel operator

0
Houo—yy,  ye(t) :/ Ce*t=Bu(r) dr for all t > 0.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

X = Ax+ By, AeR™" BeR™m,
y = C € RP*",

|

Alternative to State-Space Operator: Hankel operator

Instead of
S:u—y, y(t)= /t Ce"t=Bu(r) dr for all t € R.
use Hankel operator )
H:u_ =y, yi(t)= /0 Ce*t=Bu(r) dr for all t > 0.
—0

‘H compact = H has discrete SVD
~~ Hankel singular values {0;}°;: 01> 022> ...20.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

X = Ax+ By, AeR™" BeR™m,
y = C € RP*",

Alternative to State-Space Operator: Hankel operator

Instead of
S:u—y, y(t)= /t Ce"t=Bu(r) dr for all t € R.
use Hankel operator )
H:u_ =y, yi(t)= /0 Ce*t=Bu(r) dr for all t > 0.
—0

‘H compact = H has discrete SVD
~» Hankel singular values {oj}j’il o1 >00>...>0.
=—> SVD-type approximation of H possible!

V.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

X = Ax+ By, AeR™" BeR™m,
y = C € RP*",

Alternative to State-Space Operator: Hankel operator

Hankel Singular Values for Atmospheric Storm Model

10?

—o—H8Vs
‘H com pact — machine precision
N \ ‘ | |

‘H has discrete SVD o 107
U

Hankel singular values

0 100 200 300 400 500 600
k
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

X = Ax+ By, AeR™" BeR™m,
y = C € RP*",

Alternative to State-Space Operator: Hankel operator

0
H:u-—yy, yi(t) :/ CeAt=TBu(r)dr for all t > 0.

‘H compact = H has discrete SVD

= Best approximation problem w.r.t. 2-induced operator norm well-posed
> solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.
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Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

s. [ %X = Ax+Bu,  AeR™" BeR™™,
‘\y = Cx+Du,  CeRP*" D eRPX™,

Assumptions: tg =0, xp = x(0) = 0.

Laplace Transform / Frequency Domain

Application of Laplace transform
2 55 = i) = / e=tx(t)dt (= () — 5x(s))
0

with s € C leads to linear system of equations:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).
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Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

s. [ %X = Ax+Bu,  AeR™" BeR™m,
‘\y = Cx+Du, CeRPX", DeRP™

Assumptions: to =0, xp = x(0) = 0.

Laplace Transform / Frequency Domain

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s)

yields |/O-relation in frequency domain:

y(s) = (Clsh = A)*B+ D ) u(s) = G(s)u(s).
=:G(s)

G is the transfer function of X, G : LT — L5 (L2 := L(La(—o0, 00))).
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Model Reduction as Approximation Problem

Approximation Problem

Approximate the dynamical system

P Ax+Bu, AER™"  BeRXm
y = Cx+Du, CeRPX" D cRPXM

by reduced-order system

£ = A%+ Bu, AeR>*, BeR>m
9 = Cx+Du,  CeRP*, DeRPxm

of order r < n, such that

ly =9Il = |6u = Gull < |G — G]l|lu]| < tolerance - |lu].
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Model Reduction as Approximation Problem

Approximation Problem

Approximate the dynamical system

P Ax+Bu, AER™"  BeRXm
y = Cx+Du, CeRPX" D cRPXM

by reduced-order system

x>-

= A%+ Bu, AeR>*, BeR>m
= Cx+Du, CeRP*, DeRpPxm

>

of order r < n, such that

ly =9Il = |6u = Gull < |G — G]l|lu]| < tolerance - |lu].

= Approximation problem: min, ;.. &)<, G — G|
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
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G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Then for all s € CT U IR, ||G(s)| < M < o0 =

/_oo ¥ (gw)y (yw) dw /_OO u*(w)G* (Jw) G (Jw)u(jw) dw
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Then for all s € CT U IR, ||G(s)| < M < o0 =

/_OO Y (w)y(w)dw = /_oo u* (w) G* (Jw) G (Jw)u(jw) dw

=[Gt < [ M u(w) P de

(Here:, || . || denotes the Euclidian vector or spectral matrix norm.)
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Then for all s € CT U IR, ||G(s)| < M < o0 =

/_OO Y (w)y(w)dw = /_oo U™ (3w) G™ (Jw) G (yw)u(yw) dw
= [ ISt P < [ M u(e) P de

oo
= Mz/ u(gw)*u(yw) dw < oo.

(Here:, || .|| denotes the Euclidian vector or spectral matrix norm.)
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000C

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Then for all s € CT U IR, ||G(s)| < M < o0 =

/_oo Y (w)y(w)dw = /_oo u* (w) G* (Jw) G (Jw)u(jw) dw
= [ ISt P < [ M u(e) P de
= M? /oo u(gw)*u(yw) dw < oo.

= y € L5(—00,00) 2 L.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o0
Jolf = 5= [ w (o)t do
Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Consequently, the 2-induced operator norm
[1Gull2

lullo#o lull2

1Glloo =

is well defined. It can be shown that

[Glloc == sup [|G(w)[| = sup Tmax (G(yw))-
weR weR
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L] = LT(—00,00), with the 2-norm
1 o
Jolf = 5= [ w (o)t do

Assume A is (asympotically) stable: A(A) C C~ :={z € C : re(z) < 0}.
Consequently, the 2-induced operator norm

| Gul|2
lullo#o lull2

1Glloo =

is well defined. It can be shown that

[Glloc == sup [|G(w)[| = sup Tmax (G(yw))-
weR weR

Sketch of proof:
G (w)u(a)ll < IG(w)lllu(w)l| = " <"
Construct u with ||Gull2 = sup,,cr ||G(]UJ)||HU|I2
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Introduction
000C

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G(s)=C(sl —A) ' B+D.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic and
bounded in C*.
The Hoo-norm is

[Fllsc := Sup omax (F(s)) = sup omax (F(jw)).
>0 w€eR

res

Stable transfer functions are in the Hardy spaces
@ Hoo in the SISO case (single-input, single-output, m = p = 1);
o HPX™ in the MIMO case (multi-input, multi-output, m > 1, p > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G(s)=C(sl —A) ' B+D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(_OO7 OO) = [Q, L2(0, OO) = Hz

Consequently, 2-norms in time and frequency domains coincide!
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000C

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G(s)=C(sl —A) ' B+D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

Lg(—OO, OO) = £2, L2(0, OO) = Hz

Consequently, 2-norms in time and frequency domains coincide!

| A

'Hso approximation error
Reduced-order model = transfer function G(s) = C(sl, — A)~"'B + D.
ly = 9ll2 = | 6u = Gll2 < |G — &l ul2-

— compute reduced-order model such that ||G — G||o < tol!
Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Introduction
[¢] leJo)

Qualitative and Quantitative Study of the Approximation Error

System Norms

Consider transfer function

G(s)=C(sl—A) "B, ie D=0.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic C*

and bounded w.r.t. the H>-norm

IF 12

Stable transfer functions are in the Hardy spaces
@ H> in the SISO case (single-input, single-output, m = p = 1);
@ HEX™ in the MIMO case (multi-input, multi-output, m > 1,p > 1).
W

p

( su
rec>0

(L.

o0

/muﬂo+%mvmg

— 00

nFomedw)z.
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[¢] leJo)

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G(s)=C(sl—A) "B, ie D=0.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic C*
and bounded w.r.t. the H>-norm

IFl: = (/_ZHF(JW)HFdw)%-

H, approximation error for impulse response (u(t) = ud(t))

Reduced-order model = transfer function G(s) = C(sl, — A)~1B.
ly = 9ll2 = [|Guod — Guodl|2 < |G — G|z o]l
— compute reduced-order model such that |G — G||, < tol!
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Introduction

[e]e] Jo)

Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Hoo-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable Hoo-norm bound.

Ho-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)

Hankel-norm optimal Hankel norm approximation (AAK theory).

[Gll# = omax

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 19/52
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Qualitative and Quantitative Study of the Approximation Error
Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

@ absolute errors || G(jw;) — G(3wy)ll2, [1G(ws) = Gwi)lloe (=1, -, No);
16Gw)=CGwll2  116(w)=E(w)llso

I6Gw)ll2 I6Gwlleo 7
@ "eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:

for SISO system, log-log plot frequency vs. |G(jw)| (or |G(jw) — G(w)])
in decibels, 1 dB ~ 20 log,,(value).

For MIMO systems, p x m array of of plots Gj;.

@ relative errors

Bode Diagram

Bode Diagram
1=348 (fullorder)
1226 (odaly 2 G-

LA

Magnitude (d8)
Magnitude (dB)

EELS 5
10 10

10
Frequency (rad/sec)

10° 10’
Frequency (rad/sec)

y
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MOR by Projection

Model Reduction by Projection

Goals

@ Automatic generation of compact models.

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 21/52



MOR by Projection

Model Reduction by Projection

Goals

@ Automatic generation of compact models.

@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Vu € L(R,R™).

—> Need computable error bound/estimate!
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Goals

@ Automatic generation of compact models.

@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Vu € L(R,R™).

—> Need computable error bound/estimate!
@ Preserve physical properties:

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 21/52



MOR by Projection

Model Reduction by Projection

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Vu € L(R,R™).
—> Need computable error bound/estimate!
o Preserve physical properties:
— stability (poles of G in C™),
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Model Reduction by Projection

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Vu € L(R,R™).
—> Need computable error bound/estimate!
o Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C™),
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MOR by Projection

Model Reduction by Projection

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Vu € L(R,R™).
—> Need computable error bound/estimate!
o Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C7),
— passivity

t
/ u(r)Ty(r)dr >0 VteR, Vue Lr(R,R™).

(“system does not generate energy” ).
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MOR by Projection

Model Reduction by Projection

Linear Algebra Basics

Projector
A projector is a matrix P € R™" with P> = P. Let V = range (P), then

P is projector onto V. On the other hand, if {v4,...,v,} is a basis of V
and V =[wvi,...,v], then P=V(VTV)~1VT is a projector onto V.

22/52
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MOR by Projection

ModeIReductlon by PI‘OjeCtIOI‘I

Linear Algebra Basics

Projector

A projector is a matrix P € R™" with P> = P. Let V = range (P), then
P is projector onto V. On the other hand, if {v4,...,v,} is a basis of V
and V =[vi,...,v.], then P = V(VTV)~1VT is a projector onto V.
Properties:

o If P=PT, then P is an orthogonal projector (aka: Galerkin
projection), otherwise an oblique projector. (aka: Petrov-Galerkin
projection.)

@ P is the identity operator on V, i.e., Pv =v Yv € V.

@ | — P is the complementary projector onto ker P.

o If V is an A-invariant subspace corresponding to a subset of A's
spectrum, then we call P a spectral projector.

o Let W C R” be another r-dimensional subspace and
W =[wa,...,w,] be a basis matrix for W, then
P=V(WTV)~WT is an oblique projector onto V along W.

w
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Methods:
@ Modal Truncation

@ Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)

© Balanced Truncation
@ many more. ..

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along comple-
mentary subspace W: x =~ VW7 x =: %, where

range (V) =V, range(W)=W, W'V =1,
Then, with & = W' x, we obtain x ~ V& so that
lIx — %I = [Ix — VA&,
and the reduced-order model is

A=WTAv, B:=w'B, C:=cv, (

el
Il
S
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along comple-
mentary subspace W: x = VWTx =: %, and the reduced-order model is
o T

x=W"x

A=wTAv, B:=w'B, C:=cv, (D:=D).

Important observations:

@ The state equation residual satisfies X — AX — Bu L W, since

w’ ()? A% — Bu) - w’ (VWTk — AW x — Bu)
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along comple-
mentary subspace W: x = VWTx =: %, and the reduced-order model is
x=WTx

A=wTAv, B:=w'B, C:=cv, (D:=D).
Important observations:

@ The state equation residual satisfies X — AX — Bu L W, since

w’ ()? A% — Bu) - w’ (VWTk — AW x — Bu)

Wix—WTAV W x—W'Bu
—— ——

% =A =X =B
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along comple-
mentary subspace W: x = VWTx =: %, and the reduced-order model is
o T

x=W"x

A=wTAv, B:=w'B, C:=cv, (D:=D).

Important observations:

@ The state equation residual satisfies X — AX — Bu L W, since
w’ ()? — A% — Bu) = w’ (VWTk — AW x — Bu)
= Wix-W AW x-W'Bu
—— ~——

3 =A =X =B

~ N

= %—Ax—Bu=0.
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Projection ~~ Rational Interpolation

Given the ROM
A=wWTAv, B=w'B, C=cv, (bD=D),
the error transfer function can be written as

G(s)— G(s) = (C(s/,, —A)B+ D) - (é(s/n ~A)7'B+ D)
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MOR by Projection
®

Model Reduction by Projection

MOR Methods Based on Projection
Projection ~~ Rational Interpolation
Given the ROM

A=w'av, B=w'B, C=cv, (O

the error transfer function can be written as
G(s) - G(s) = (C(s/ —A'B+ D) ( A

c((s/n—A)*l— V(sl, — A)~ W)B
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MOR by Projection

Model Reduction by Projection

MOR Methods Based on Projection

Projection ~~ Rational Interpolation
Given the ROM

A=wWTAv, B=w'B, C=cv, (b=D),
the error transfer function can be written as
G(s)— G(s) = (C(sl,, —A)'B+ D) - (&(s/,, —A)7'B+ D)
c ((sl,, — A= V(s — A)’IWT) B
= C(la— V(s — A) "W (sl, — A))(sl, — A)"'B.

=:P(s)
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MOR by Projection

Model Reduction by Projection

MOR Methods Based on Projection

Projection ~~ Rational Interpolation

Given the ROM

A=w'av, B=w"B, C=cv, (D=D),
the error transfer function can be written as

G(s)—G(s) =

(C(sl,, —A) B+ D) - (é(s/,, “A B+ L“))
C(lh— V(s — A)*W' (sl, — A))(sl, — A)"'B.

=:P(s)

P(s) is a projector onto V:

range (P(s)) C range (V), all matrices have full rank = "=", and
P(s)> = V(sl—A) "W (sl, — A)\V(sl, — AW (sl, — A)
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MOR by Projection

Model Reduction by Projection

MOR Methods Based on Projection

Projection ~~ Rational Interpolation

Given the ROM

A=wWTAv, B=w'B, C=cv, (b=D),
the error transfer function can be written as
G(s) - G(s)

(C(sl,, —A) B+ D) - (é(s/,, “A B+ L“))
C(lh— V(s — A)*W'(sl, — A))(sl, — A)"'B.

=:P(s)
P(s) is a projector onto V:
range (P(s)) C range (V), all matrices have full rank = "=", and
P(s)? V(sl, — AW (sl, — A)V(sl, — A) W (sl, — A)
V(sl, — A" (sl, — A)(sl, — A) " W (sl, — A) = P(s).
=1,
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MOR by Projection

Model Reduction by Projection

MOR Methods Based on Projection

Projection ~~ Rational Interpolation

Given the ROM

A=w'av, B=w"B, C=cv, (D=D),
the error transfer function can be written as

G(s)—G(s) =

(C(sl,, —A) B+ D) - (é(s/,, “A B+ L“))
C(lh— V(s — A) W' (sl, — A))(sl, — A)"'B.

=:P(s)

P(s) is a projector onto V —

Given s, € C\ (/\ (A)U /\(2\)),

if (sily — A)TIB €V, then (I, — P(s.))(s«ln — A)7'B =0,
hence

G(s:) — G(s:) =0 = G(s.) = G(s.), i.e., G interpolates G in s,!
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MOR by Projection

Model Reduction by Projection

MOR Methods Based on Projection

Projection ~~ Rational Interpolation
Given the ROM

A=wWTAv, B=w'B, C=cv, (b=D),

the error transfer function can be written as

G(s)— G(s) = (C(sln —A)B+ D) - (&(s/n ~ A 7B+ b)
= C(la— V(sl — AW (sl, — A))(sl, — A)"'B.
=:P(s)

Analogously, = C(sl,— A)""(In — (sl — A)V(sl, — A)"*WT)B.

—Q(s)
Q(s)" is a projector onto VW = Given s, € C\ (/\ (A)u A(,Z\))

if (sily — A)"*CT € W, then C(scly — A) (I — Q(s:)) =0,

hence

G(s:) — G(s«) =0 = G(s«) = G(s«), i.e., G interpolates G in s.!
&
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MOR by Projection

Model Reduction by Projection
MOR Methods Based on Projection

Theorem [GRIMME ’97, VILLEMAGNE/SKELTON ’87]
Given the ROM

A=wWTAv, B=wW'B, C=cVv, (D=D),

~

and s, € C\ (A (A) UA(A)), if either
o (sil, — A)71B € range (V), or
o (sily — A)~*CT € range (W),

then the interpolation condition
G(s:) = G(s:).

in s, holds.

Note: extension to Hermite interpolation conditions later!
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MOR by Projection
{ ]}

Modal Truncation

Basic method:

Assume A is diagonalizable, T~1AT = Dj,, project state-space onto A-invariant
subspace V = span(ti, ..., t;), vk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V=TG1:r)=[t,....t,], W=T1(,1:r), W=WWV"W),
reduced-order model is
A= W AV =diag{\i,...,\}, B:=w'B, C=cV

Also computable by truncation:

~

i | A
TAT =

]’ T_IB:[B]’ CT=[C, G], b=D.
2 2
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MOR by Projection
{ ]}

Modal Truncation

Basic method:

Assume A is diagonalizable, T~1AT = Dj,, project state-space onto A-invariant
subspace V = span(ti, ..., t;), vk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V=TG1:r)=[t,....t,], W=T1(,1:r), W=WWV"W),
reduced-order model is
A= W AV =diag{\i,...,\}, B:=w'B, C=cV

Also computable by truncation:

~

TIAT = A TB= B CT=[C,C D=D
- A ) — b ) —[ 5 2]a - °
2

Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace
methods (Lanczos, Arnoldi), Jacobi-Davidson method.
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MOR by Projection
{ ]}

Modal Truncation

A . R
T‘lATz[ p ] T‘le[B ] CT=[C, &], D=D.
2 2

Error bound:

1
minAeA(Az) |Re()\)| ’

IG = Glle < IC|ll|Bell

Proof:

C(sl —A) 1B+ D=CTT (sl — A ITT B+ D
CT(sl — T'AT)'T- 1B+ D
(sl — A)~1

G(s)

n—r @ [ E
(Sl —A ) 2
G(S) CZ(SI"_’ ! ‘2) E2’

= [ G] ]+D
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MOR by Projection
{ ]}

Modal Truncation

A . R
7“MT=[ p } T*B:[B y CT=[C, &], D=D
2 2

Error bound:

1
minAeA(Az) |Re()\)| ’

IG = Glle < IC|ll|B2ll

Proof:
G(S) = C(s) + C2(5/n—r — Az)_le,
observing that |G — G”oo = sup,, e Omax(C2(Jwlh—r — A2)~1By), and
1 . 1 1
CQ(]WIn_r —A2) B, = Cydiag ey B>.
Jw — Arg1 Jw — Ap
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MOR by Projection
{ ]}

Modal Truncation

Basic method:

Assume A is diagonalizable, T~1AT = Dj,, project state-space onto A-invariant
subspace V = span(ti, ..., t;), vk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then reduced-order model is

A=W AV =diag{\1,...,\,}, B=w'B, C=cV

Also computable by truncation:

~

T_lAT:[ ., ] T_IB_[B], CT=1[¢,G], D=Db.
2 2

Difficulties:

o Eigenvalues contain only limited system information.

>
|
T o
A

@ Dominance measures are difficult to compute.
([Lrrz '79] use Jordan canoncial form; otherwise merely heuristic criteria,
e.g., [VARGA '95]. Recent improvement: dominant pole algorithm.)

@ Error bound not computable for really large-scale problems.

4
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MOR by Projection
oe

Modal Truncation

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n =348, m = p = 1, reduced usingA13 dominant complex
conjugate eigenpairs, error bound yields |G — G| < 1.21-103

Bode plots of transfer functions and error function

Bode Diagram Bode Diagram
——n=348 (ful-order) 2 —G-G,
—~=-r=26 (modal)
o
g g
Y 2
3 3
2 2
H £ a0
g g
H H
-60
-80
10” 10 10° 10" 10° 10° 10° 10"
Frequency (rad/sec) Frequency (rad/sec)
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Modal Truncation

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n =348, m = p = 1, reduced usingA13 dominant complex
conjugate eigenpairs, error bound yields |G — G| < 1.21-103

Bode plots of transfer functions and error function

Bode Diagram Bode Diagram

—— =348 (ful-order) 2 —G-G,
~~~r=26 (modal)
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MATLAB® demo.
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Reduction, n =348, m = p = 1, reduced usingA13 dominant complex
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Balanced Truncation
o

Balanced Truncation

Basic principle:
o A system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C =0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 00> ... >0, > 0.
/\(PQ)% ={o1,..., on} are the Hankel singular values (HSVs) of X.
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Balanced Truncation
o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

y(t) = Hu(t) = /_ ’ Cce*t=7)Bu(r) dr
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Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0 0
y(t) = Hu(t) = / CeA(t_T)Bu(T) dn=: CeAt/ e AT Bu(r) dr
—oo —oo
— ———

=z
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Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0 0
y(t) = Hu(t) = / CeMt=7)Bu(r) dr =: CeAt/ e AT Bu(r)dr = Ce’'z.
— o0 — 00
—_—

=z
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Balanced Truncation
o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0
V=)= [ M IBu(r) o = cz.
— 00

Hankel singular values = square roots of eigenvalues of H*H,
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Balanced Truncation
o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
— 00
Hankel singular values = square roots of eigenvalues of H*H,

’H*y(t):/o BTeAT(r=0CTy (1) dr
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o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
— 00
Hankel singular values = square roots of eigenvalues of H*H,

*© T T, [ ,T
Hy(t) = / BTeA =9CTy(r)dr =BTe 2:/ AT CTy(r)dr.
0 0
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Balanced Truncation
o

Balanced Truncation

Basic principle:

AP+ PAT+BBT =0, ATQ+QA+C'C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
— 00
Hankel singular values = square roots of eigenvalues of H*H,
o T ATt [ ATr T
H'y(t)= =B'e e” TCly(r)dr.
0
Hence,

oo
H*Hu(t) = BTe’ATt/ A TCTCeAz dr
0
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Balanced Truncation
o

Balanced Truncation

Basic principle:

AP+ PAT +BBT =0, ATQ+QA+C'C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
—o0
Hankel singular values = square roots of eigenvalues of H*H,
* T ATt [ ATr T
H'y(t)= =B'e e” TCly(r)dr.
0

Hence,

oo
H*Hu(t) BTe’ATt/ A TCTCA zdr
0

T ATt [ AT T Ar
= B'e e C' ' Ce™"dt z
0

=Q

y
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Basic principle:

AP+ PAT +BBT =0, ATQ+QA+C’C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
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Basic principle:

AP+ PAT+BBT =0, ATQ+QA+C'C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
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Balanced Truncation
o

Balanced Truncation

Basic principle:

AP+ PAT+BBT =0, ATQ+QA+C'C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*t=TBu(r) dr = Ce™z.
—o0
Hankel singular values = square roots of eigenvalues of H*H,
- T ATt [ ATr T
H'y(t)= =B'e e” TCly(r)dr.
0

Hence,

H*Hu(t) BTe’ATth = o%u(t).
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Balanced Truncation
o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
T
H*Hu(t) = BTe A tQz = o2u(t).

= u(t) = EIZBTe_ATth
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Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
T
H*Hu(t) = BTe A tQz = o2u(t).

= u(t) = FIZBTe_ATth = (recalling z = wa e~ A"Bu(t) dT)
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Balanced Truncation
o

Balanced Truncation

Basic principle:

o
AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
T
H*Hu(t) = BTe A tQz = o2u(t).

= u(t) = FIZBTe_ATth = (recalling z = fgw e~ A"Bu(t) dT)

O o nl o7 AT
z = e 78—23 e TQzdT
o

—0o0
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Balanced Truncation
o

Balanced Truncation

Basic principle:

AP+ PAT+BBT =0, ATQ+QA+C'C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
T
H*Hu(t) = BTe A tQz = o2u(t).

= u(t) = EIZBTe_ATth = (recalling z = ono e~ A"Bu(t) dT)
0
1
z = / e A" B=BTe A TQzdr
oo 02

1 0
- L e A" BBTe A" dr Qz
02 J_o
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Balanced Truncation

Basic principle:

AP+PAT +BBT =0, ATQ+QA+C'C =0,
o A(PQ)2 = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.
Proof: Hankel singular values = square roots of eigenvalues of H*H,
H Hu(t) = BTe ATtQz = a2u(t).

= u(t) = ﬁBTe_ATth = (recalling z = ono e~ A"Bu(t) dT)

0 Arp L o7 AT
z = / e~ 7'B—QB’ e " TQzdt
—c3 o

1 0
= = [ e*BBTe AT drqz
02 J_o

1 [ AtppT ATt
= = e™"BB' e dt Qz
a2 Jo
—_—
=P

v
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Balanced Truncation
o

Balanced Truncation

Basic principle:

°
AP+ PAT +BBT =0, ATQ+QA+C’C =0,
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,

H Hu(t) = BTe ATtQz = a2u(t).
= u(t) = ﬁBTe_ATth = (recalling z = ono e~ A"Bu(t) dT)

O _arpl 7 AT
z = / e~ 78—25 e " TQzdr
—e9 o

1 (% pppT ATt
= = e'BB'e dt Qz
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Balanced Truncation
o

Balanced Truncation

Basic principle:

AP+PAT +BBT =0, ATQ+QA+C'C =0,
o A(PQ)2 = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.
Proof: Hankel singular values = square roots of eigenvalues of H*H,
HHu(t) = BTeAtQz = o2u(t).
= u(t) = 5BTe A tQz = (recalling z = [°__ e~*"Bu(r) dr)

O _arpl 7 AT
z = / e~ 78—25 e " TQzdr
—e9 o

1 oo
= = eAtBBTeATtdt Qz
o< Jo
—_—
=P
1
= —PQz
02 Q

<= PQz = o2z. 0

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 26/52



Balanced Truncation
o

Balanced Truncation

Basic principle:
o A system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 00> ... >0, > 0.
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ' D)

_ Aun A B
- (& &l[&] e el0)
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Balanced Truncation
o

Balanced Truncation

Basic principle:
o A system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 00> ... >0, > 0.
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ' D)
o Au A By
- ([ & ][5 ]ta @10

@ Truncation ~= (/A4, E, C, LAD) = (A11, By, G, D).
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Balanced Truncation
o

Balanced Truncation

Motivation:

HSVs are system invariants: they are preserved under
T:(AB,C,D)— (TAT Y, TB,CT1,D):

in transformed coordinates, the Gramians satisfy

(TATYY(TPTT) 4+ (TPTT)Y(TAT )" + (TB)(TB)"
(TAT Y)Y (T TQT )+ (T TQT 'W(TAT H)+(cT H(CT™) = 0

I
=

= (TPT'YT QT ) =TPQRT!,

hence A(PQ) = A((TPT™)(T-"QT™1)).
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Balanced Truncation
o

Balanced Truncation

Motivation

HSVs are system invariants: they are preserved under
T:(AB,C,D)— (TAT Y, TB,CT71,D)

HSVs determine the energy transfer given by the Hankel map
H : Ly(—00,0) — L3(0,00) : u_ — yy.

In balanced coordinates . ..energy transfer from u_ to y.:

S y(t)Ty(t)dt
E:= sup 0 o2x2
w0 O o 1l 0||2 Z o
x(0)=xq f U( t) u( t)

|
8
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Balanced Truncation
o

Balanced Truncation

Motivation

HSVs are system invariants: they are preserved under
T:(AB,C,D)— (TAT Y, TB,CT71,D)

HSVs determine the energy transfer given by the Hankel map
H : Ly(—00,0) — L3(0,00) : u_ — yy.

In balanced coordinates . ..energy transfer from u_ to y.:

S y(t)Ty(t) dt
E:= su 0 o%x2
ueLz(—F:x:,O] 0 T || O||2 Z .
x(0)=xq f U( t) u( t)

|
8

= Truncate states corresponding to “small” HSVs
— complete analogy to best approximation via SVD!

y
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Balanced Truncation

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

T 21 vy’
Compute SVD SR" = [ U, Us ] 5, Vi |
ROM is (WTAV, WTB, CV, D), where
W=RTWT 2, V=5Tuz;".
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, Q = R"R.
> T

@ Compute SVD SRT = [ U, U] | [ v ] .

Yo Vs

ROM is (WT AV, WT B, CV, D), where

W=RTWVY,?, V=S"u,%;".
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

21 Vv.T
@ Compute SVD SRT = [ Uy, Uy] [ L ] .
22 V2
Q@ ROMis (WTAV, WTB, CV, D), where

W=RTVT?, V=sTus, .
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, v,
Q@ ROM is (WTAV, WTB, CV, D), where
W=RTVi5;},  v=5TUu3; 2
Note:

viw

(572 U7 S)(RTVAES ?)
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, v,
Q@ ROM is (WTAV, WTB, CV, D), where
W=RTVi5;},  v=5TUu3; 2
Note:

1 _1 _1 _1
Viw = (Z,2U/S)(R"TWiZ, %) = £, 20/ UZVTVix, 2
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, v,
Q@ ROM is (WTAV, WTB, CV, D), where
W=RTVi5;},  v=5TUu3; 2
Note:

(NI

(S PUTSYRTVE ?) = 5,20  UsvT vy,

viw .
-1 2 I, _
¥, 2[1, 0] 5, [ X ]zl

(NI
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Balanced Truncation
o

Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, Q = RTR.

2 T

@ Compute SVD SRT = [ Uy, Uy] ! { V1T ] )
Py V,

Q@ ROMis (WTAV, WTB, CV, D), where
W=RTVis[?, V=5Tux %
Note:

a 4 4 4
(T, 20U S)(R™ Wiz, ?) = ¥, 20/ usvT vz, ?

_1 > I, _1 _1 _1
T, ?[ I, 0] - [O]zlzzzlzzlzlzzl,
2

<
=

S

[

= VWY is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
v

26/52
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Balanced Truncation

Balanced Truncation

@ Reduced-order model is stable with HSVs o7, ..., 0,.

Adaptive choice of r via computable error bound:

ly =5l < (23" o) llull.
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Balanced Truncation
o

Balanced Truncation

o Reduced-order model is stable with HSVs o1, ..., 0,.

@ Adaptive choice of r via computable error bound:

n
ly=9l2< (2327 o) llull
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Balanced Truncation

Balanced Truncation

Properties:

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).
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Balanced Truncation
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Balanced Truncation

Properties:

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

"New" algorithmic ideas from numerical linear algebra:
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Balanced Truncation
o

Balanced Truncation

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

"New" algorithmic ideas from numerical linear algebra:

— Instead of Gramians P, @

Eigenvalues of Gramian in decreasing order

compute S, R € R"™k, k < n, o
such that ” [\
P~ SST, Q~ RRT. 107 .

— Compute S, R with
problem-specific Lyapunov
solvers of “low” complexity K
directly.
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Balanced Truncation
o

Balanced Truncation

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

"New" algorithmic ideas from numerical linear algebra:

Sparse Balanced Truncation:

— Sparse implementation using sparse Lyapunov solver
(—ADI+MUMPS/SuperLU).

— Complexity O(n(k? + r?)).
— Software:

+ MATLAB toolbox LyaPack (PenzL 1999),
+ Software library M.E.S.S.? in C/MATLAB [B./SaAAK/KOHLER].

?Matrix Equation Sparse Solvers
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Balanced Truncation

®0000000

ADI Methods for Lyapunov Equations

Background

Recall Peaceman Rachford ADI:
Consider Au = s where A € R"*" spd, s € R". ADI lteration Idea:
Decompose A= H + V with H, V € R"™" such that

(H+phv=r
(V+phw=t

can be solved easily/efficiently.
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Balanced Truncation

®0000000

ADI Methods for Lyapunov Equations

Background

Recall Peaceman Rachford ADI:
Consider Au = s where A € R"*" spd, s € R". ADI lteration Idea:
Decompose A= H + V with H, V € R"™" such that

(H+phv=r
(V+phw=t

can be solved easily/efficiently.

ADI Iteration
If H,V spd = dpx, k =1,2,... such that

u =
(H—l—pk/)uk_% = ( Wl — V)Uk 1+s
(V+pue = (pel — )Uk—§ +s

converges to u € R” solving Au = s.
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ADI Methods for Lyapunov Equations

The Lyapunov operator
L: P w— AX+XAT
can be decomposed into the linear operators

Ly X — AX, Ly:X— XAT.

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [WACHSPRESS '88]
Xo = 0
(A+PkI)Xk_%_ = W —=Xa(AT = pul)
(A+p)X] = —W—XkT_%(AT—ka).
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Balanced Truncation

0O0®00000

ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider  AX + XAT = —BBT for stable A, B € R"™™ with
m < n.

ADI iteration for the Lyapunov equation [WACHSPRESS '95]

Xo = 0
(A+ka)Xk_% = —BBT—Xk_l(AT—ka)
(A+p)X] = —BBT =X, (AT~ pil)
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Balanced Truncation

0O0®00000

ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider  AX + XAT = —BBT for stable A, B € R"™™ with
m < n.

ADI iteration for the Lyapunov equation [WACHSPRESS '95]

Xo = 0
(A+ka)Xk_% = —BBT—Xk_l(AT—ka)
(A+p)X] = —BBT =X (AT — pl)
2
Rewrite as one step iteration and factorize X, = ZkaT, k=0,..., knax
ZOZOT =0
2.Z] = —2p(A+pil) BB (A+pil)™T

HA+ pel)THA = pkl) Zkr Z (A= pid) T (A+ picd )T
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Balanced Truncation

0O0®00000

ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider  AX + XAT = —BBT for stable A, B € R"™™ with
m < n.

ADI iteration for the Lyapunov equation [WACHSPRESS '95]
For k=1,..., kmax

Xo = 0
(A+ka)Xk_% = —BBT—Xk_l(AT—ka)
(A+p)X] = —BBT —XT (AT —pl)
2
Rewrite as one step iteration and factorize X, = ZkaT, k=0,..., knax
ZOZOT =0
2.Z] = —2p(A+pil) BB (A+pil)™T

HA+ pel)THA = pkl) Zkr Z (A= pid) T (A+ picd )T

...~ low-rank Cholesky factor ADI
[PENZL ’97/°00, L1/WHITE '99/°02, B./L1/PENZL ‘99/°08, GUGERCIN/SORENSEN/ANTOULAS '03]
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Balanced Truncation
ADI Methods for Lyapunov Equations

Z = [V=2pk(A+ pil) "B, (A+ picl) " (A = picl) Zi—1]

[PENZL *00]
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Balanced Truncation
ADI Methods for Lyapunov Equations

Zi = [V=2pc(A+ pil) 1B, (A+ pil) "1 (A — pul) Zk-1]

[PENZL *00]
Observing that (A — p;l), (A+ pxl)~! commute, we rewrite Zj__, as

Zhnax = [Zkna> Phimax—1Zknar> Phinax—2(Phimax—1Zkmax )+« 5 PLP2 * ** Py =12k )],

[L1/WHhITE "02]
where

Zhirse = 2Pk (A + Prr ) 7' B

\/—2p,' 1
,D’. (SR S — i + pi A+ ’-/ .
2011 [ (pi + pi+1)( pil) ]

and

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 30/52
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ADI Methods for Lyapunov Equations

Lyapunov equation 0 = AX + XAT + BB'.

Algorithm [PenzL '97/°00, Li/Wn B. 04, B./L1/PENzL '99/°08]
Vi « —2repi(A+pil)7'B, Zi — Wi
FOR k =2,3,...
Vi — % (Vk—l — (P +Pe=1)(A+ pil) Vk—l)
Zc — [ Zier Vi |
Zi — rrlq(Zk, T) column compression

Note: Implementation in real arithmetic possible by combining two steps
[B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive
complex factors [B./Kiirschner/Saak '11].
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ADI Methods for Lyapunov Equations

Lyapunov equation 0 = AX + XAT + BB'.

Algorithm [PenzL '97/°00, Li/Wn B. 04, B./L1/PENzL '99/°08]
Vi « —2repi(A+pil)7'B, Zi — Wi
FOR k = 2,3,...
Vi — % (Vk—l — (P +Pe=1)(A+ pil) Vk—l)
Zc — [ Zier Vi |
Zi — rrlq(Zk, T) column compression

T ~ . .
At convergence, Zi  Z, =~ X, where (without column compression)

VAN [ Vioooo Vi ] . Vi :He cnxm.

Note: Implementation in real arithmetic possible by combining two steps
[B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive
complex factors [B./Kiirschner/Saak '11].
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

@ Mathematical model: boundary control for
linearized 2D heat equation.

c~p%x = Mx, £eq

0

)\%x Kluk —x), €Ty, 1<k<T, !
9,
on

= m=7,p=06. 3

= 0, Eely.

@ FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement =
n = 1357,5177,20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: TROLTZSCH/UNGER 1999/2001, PENZL 1999, SaAK 2003.
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Optimal Cooling of Steel Profiles

@ Solve dual Lyapunov equations needed for balanced truncation, i.e.,
APMT + MPAT + BBT = 0, ATQM+M' QA+ C'C = 0,
for 79,841.
@ 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.
@ New version in M.E.S.S. requires no factorization of mass matrix!

@ Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-MATLAB.

AXM” + MXAT + BB =0

AXM+MXA+CC=0

normalized residual nom

normalized residual norm

60 70 80 0 10 20

0 10 20

0 50 60 70 8
number of iterations

30 40 50
number of iterations

CPU times: 626 / 356 sec.
Peter Benner, MOR for Linear Dynamical Systems 33/52
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Numerical Results for ADI
Scaling / Mesh Independence

Computations by Martin Kohler "10
@ A€ R™" = FDM matrix for 2D heat equation on [0, 1]* (LyAPACK
benchmark demo_11, m = 1).

@ 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

@ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Max Planck Institute Magdeburg

Peter Benner, MOR for Linear Dynamical Systems 34/52



Intr OR by Projection Balanced Truncation

Numerical Results for ADI
Scaling / Mesh Independence Computations by Martin Kohler "10

@ A€ R™" = FDM matrix for 2D heat equation on [0, 1]* (LyAPACK
benchmark demo_11, m = 1).

@ 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

@ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

CPU Times

n | M.ES.S. (C) LyaPack M.E.S.S. (MATLAB)
100 0.023 0.124 0.158
625 0.042 0.104 0.227
2,500 0.159 0.702 0.989
10,000 0.965 6.22 5.644
40,000 11.09 71.48 34.55
90,000 34.67 418.5 90.49
160,000 109.3 out of memory 219.9
250,000 193.7 out of memory 403.8
562,500 930.1 out of memory 1216.7
1,000,000 2220.0 out of memory 2428.6

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 34/52



Scaling / Mesh Independence Computations by Martin Kohler "10

@ A€ R™" = FDM matrix for 2D heat equation on [0, 1]* (LyAPACK
benchmark demo_11, m = 1).

@ 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

@ Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

>

IS
S
3

2 2000 1 350 ——CMESS
» —~ -a—MESS
~ 8 300 ——LYAPACK
2 1500 2o
= £
= 200
2 1000 o
% 3 150
—-CMESS
100
s -#-MESS
==L YAPACK 50
2 ALY 8 10 12 00" %2000 40000 60000 80000 100000
Dimension n w10° Dimension n

Note: for n = 1,000, 000, first sparse LU needs ~ 1,100 sec., using
UMFPACK this reduces to 30 sec.
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Factored Galerkin-ADI lteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
@ Compute orthonormal basis range (Z), Z € R™*", for subspace Z C R”,
dmZ =r.
Q SetA:=7Z"AZ, B:=Z7"B.
@ Solve small-size Lyapunov equation AX + XAT + BB = 0.
Q Use X ~ZXZ7.
Examples:

@ Krylov subspace methods, i.e., for m = 1:
Z =K(A,B,r) =span{B,AB,A’B,... A" 1B}

[SaAD ’90, JAIMOUKHA/KASENALLY '94, JBILOU '02—08].

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 35/52
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Factored Galerkin-ADI lteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
@ Compute orthonormal basis range (Z), Z € R™*", for subspace Z C R”,
dmZ =r.
Q SetA:=7Z"AZ, B:=Z7"B.
@ Solve small-size Lyapunov equation AX + XAT + BB = 0.
Q Use X ~ZXZ7.
Examples:

@ Krylov subspace methods, i.e., for m = 1:
Z =K(A,B,r) =span{B,AB,A’B,... A" 1B}

[SaAD ’90, JAIMOUKHA/KASENALLY '94, JBILOU '02—08].

o K-PIK [Smvoncint 07],

Z=K(A B, r)UK(A™,B,r).
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Factored Galerkin-ADI lteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
@ Compute orthonormal basis range (Z), Z € R™*", for subspace Z C R”,
dmZ =r.
Q SetA:=7"AZ, B:=Z7"B.
@ Solve small-size Lyapunov equation AX + XAT + BB = 0.
Q Use X ~ZXZ7.

Examples:
o ADI subspace [B./R.-C. Li/TRUHAR 08]:
Z =colspan| Vi, ..., V, ].

Note:

@ ADI subspace is rational Krylov subspace [J.-R. Li/WHITE '02].
© Similar approach: ADI-preconditioned global Arnoldi method
[JBILOU "08].

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 35/52
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Factored Galerkin-ADI lteration

Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:
@ optimal cooling of rail profiles,
o n=20,209, m=7, p=26.

Good ADI shifts

Iteration history for contrellability gramian Iteration history for observability gramian
o
10
—no projection —no projection
o —every step —every step
= 10 —every 5 steps = 107 —every 5 steps
3 3
2 B 10
N N
w10 s
£ £
< 5t 2 10°
s s
10 10
10 20 30 40 0 10 20 30 40
iteration number iteration number

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak '10.
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Factored Galerkin-ADI lteration

Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:
@ optimal cooling of rail profiles,
o n=20,209, m=7, p=26.

Bad ADI shifts

Iteration history for contrellability gramian 5 Iteration history for observability gramian
10 10
—no projection

—every step
——every 5 steps

—no projection
—every step
—every 5 steps

normalized residual
normalized residual
3

0 50 100 150 200 250 0 50 100 150 200 250
iteration number iteration number

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak '10.
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Factored Galerkin-ADI lteration

Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79, 841.

MESS w/o Galerkin projection and column compression

10

AT+ MXAT + 887 =0 . ATXM+ WXA+CTC=0
W
107
10"
ém"
gm‘
Em“
N W T ) T T )
o —--) [ -

Rank of solution factors: 532 / 426

MESS with Galerkin projection and column compression

AN+ XA+ BB =0 AXMeMxA+CC=0

20 30 W E) e T S I N R R
e o ersiors o of teators

Rank of solution factors: 269 / 205

o

Max Planck Institute Magdeburg

Peter Benner, MOR for Linear Dynamical Systems
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Numerical example for BT: Optimal Cooling of Steel Profiles

13

7, Absolute Error

5 Absolute Error
10
BT error bound
107 f=m e modal truncation
= balanced truncation
~ R
2 10 =
< s
o -8 S %
O 10 =
S e Mg
3 e Sy S
2 ~. ~
510 - -
= i
£ 107 g
[ ~
10" &=
10"
10° 10° 108 10 10°
Frequency(w)

— BT model computed with sign
function method,

— MT w/o static condensation,
same order as BT model.

Max Planck Institute Magdeburg

Peter Benner, MOR for Linear Dynamical Systems 38/52
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Balanced Truncation

Numerical example for BT: Optimal Cooling of Steel Profiles

n = 1357, Absolute Error n = 79841, Absolute Error

5 Absolute Error . absolute madel reduction error
10 10
BT error bound -
107 fme e dal truncation 10°
S lanced truncation

A e 10*
’§ 10 \\‘ .
£ . 3w
o 10° e o
RS ~ ‘\\\\ g o
& " R £ For
240" g, ° -
o \v\>\

10 ECW 10

10" o 7 7 s "o W I T s

10 10 10 10 10 ®
Frequency(w»)
— BT model computed with sign — BT model computed using
function method, M.ESS. in MATLAB,
— MT w/o static condensation, - dualcor_e, computation time:
same order as BT model. <10 min.
.
v
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Balanced Truncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ Vibrating micro-mechanical
gyroscope for inertial navigation.

@ Rotational position sensor.

@ By applying AC voltage to =
electrodes, wings are forced to
vibrate in anti-phase in wafer
plane.
@ Coriolis forces induce motion of
>

wings out of wafer plane yielding Corits ace. Gortolis ace.
sensor data.

Source: The Oberwolfach Benchmark Collection nttp://uww. intek.de/simlation/benchmark
Courtesy of D. Billger (Imego Institute, Goteborg), Saab Bofors Dynamics AB.

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 39/52
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Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.
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Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis

Bode Diagram

Wagnitude (§2)

-200
10 10° 10 10 10

Frequency (rad/sec)
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Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis Hankel Singular Values

Hankel singular values

Bode Diagram

Wagnitude (§2)

»
; io ;
200 e 0 1 10 0 10 20 30 2 50

Frequency (rad/sec) k
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.
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o0

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

Classical Balanced Truncation (BT) [MULLIS/ROBERTS ’76, MOORE ’81]

o P = controllability Gramian of system given by (A, B, C, D).
@ Q = observability Gramian of system given by (A, B, C, D).

@ P, Q solve dual Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C = 0.
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Balanced Truncation
o0

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

LQG Balanced Truncation (LQGBT) [JONCKHEERE/SILVERMAN ’'83]

e P/Q = controllability/observability Gramian of closed-loop system
based on LQG compensator.

e P, @ solve dual algebraic Riccati equations (AREs)

— AP+ PAT —PCTCP+ BB,
0 = ATQ+QA-QBB'Q+C'C.
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Balanced Truncation
o0

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

Balanced Stochastic Truncation (BST) [Desar/Par '84, Greex '88]

@ P = controllability Gramian of system given by (A, B, C, D), i.e.,
solution of Lyapunov equation AP 4+ PAT + BB = 0.

@ @ = observability Gramian of right spectral factor of power
spectrum of system given by (A, B, C, D), i.e., solution of ARE

ATQ+ QA+ QBw(DD") 'By,Q+ C"(DD")IC =0,

where A:= A — Byw/(DD")7'C, Bw := BD" 4 PC".
v
Peter Benner, MOR for Linear Dynamical Systems 41/52




Balanced Truncation
o0

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

Positive-Real Balanced Truncation (PRBT) [GREEN '88]
o Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.
e P, Q solve dual AREs
0 = AP+PA" +PC"R'CP+BR'BT,
0 = ATQ+QA+QBR'B"Q+C'R'C,

where R=D+ D7, A= A— BR™!C.

v
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o0

Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q = RT R, compute
balancing state-space transformation so that

P = Q = diag(o1,...,0,) =X, o01>...>0,>0,

and truncate corresponding realization at size r with o, > 0,41.

| A\

Other Balancing-Based Methods

@ Bounded-real balanced truncation (BRBT) — based on bounded real
lemma [OPDENACKER/JONCKHEERE '88];

o H.. balanced truncation (HinfBT) — closed-loop balancing based on
Hs compensator [MusTara/GLOVER *91].

Both approaches require solution of dual AREs.
o Frequency-weighted versions of the above approaches.
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Balanced Truncation

Balancing-Related Model Reduction

Properties

o Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).

o Computable error bounds, e.g.,

BT: ||G—Gilloa <2 of’,

j=r+1

LQGBT: |G -Gl < 2 )

G}_Loc
\/1H(ote0)2
j=r+1 o)

n 140 B5T
BST: [|G — Gl < Tlesr — 1| Gl

1—o0;
j=rt1 '
o Can be combined with singular perturbation approximation for
steady-state performance.
@ Computations can be modularized.

Max Planck Institute Magdeburg Peter Benner, MOR for Linear Dynamical Systems 42/52
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Padé Approximation

o Consider
x=Ax+ Bu, y=Cx

with transfer function G(s) = C(sl, — A)~!B.
For so & A (A):
C(I=(s—s0)(s0ln = A1) (s0hn — A)'B

= mo+m1(5750)+m2(5750)2+.‘.
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Padé Approximation

o Consider
x=Ax+ Bu, y=Cx

with transfer function G(s) = C(sl, — A)~!B.
o For s5 & A(A):
G(s) = C((solr—A) + (s —s0)ln)"'B
= C(I—(s—s0)(s0ln— A)™Y) " (sohn — A) B
= mo+m(s—s)+m(s—s)’+...
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Padé Approximation

o Consider
x=Ax+ Bu, y=Cx

with transfer function G(s) = C(sl, — A)~!B.
o For s5 & A(A):
G(s) = Cl(soln—A)+(s—s0)ln)"'B
= C(I—(s—s0)(s0ln— A)™Y) " (sohn — A) B
= mo+m(s—s)+m(s—s)’+...
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Padé Approximation

o Consider
x=Ax+ Bu, y=Cx

with transfer function G(s) = C(sl, — A)~!B.
o For s5 & A(A):
G(s) = C(I—(s—s0)(soh—A) )" (ol — A)B
= mo+ mi(s — s0) + ma(s — 50)* + ...

— For 55 =0: m; := C(A_l)jB = moments.
— For sp = co: mj := CA~'B = Markov parameters.
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Padé Approximation

o Consider

x=Ax+ Bu, y=Cx
with transfer function G(s) = C(sl, — A)~!B.
o For s5 & A(A):
G(s) = C(I—(s—s0)(soh—A) )" (ol — A)B
= mo+ mi(s — s0) + ma(s — 5)* + ...
o As reduced-order model use rth Padé approximant G to G:
G(s) = G(s) + O((s — 50)*"),

i.e., mj=mjforj=0,...,2r—1

~~ moment matching if sp < oo,

~~ partial realization if sp = co.

—
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Padé Approximation

Padé-via-Lanczos Method (PVL)

@ Moments need not be computed explicitly; moment matching is
equivalent to projecting state-space onto

V =span(B,AB,...,A"'B) =: K(A, B, r)
(where A = (sol, — A)™Y, B = (sol, — A)"!B) along
W =span(CT,A*CT ... (A")'CT) = K(A",C",r).

Computation via unsymmetric Lanczos method, yields system
matrices of reduced-order model as by-product.
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@ Moments need not be computed explicitly; moment matching is
equivalent to projecting state-space onto

V =span(B,AB,..., A" 'B) =: K(A, B, r)
(where A = (sol, — A)™Y, B = (sol, — A)"!B) along
W =span(CT,A*CT ... (A")'CT) = K(A",C",r).

o Computation via unsymmetric Lanczos method, yields system
matrices of reduced-order model as by-product.
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Padé Approximation

Padé-via-Lanczos Method (PVL)

o Moments need not be computed explicitly; moment matching is
equivalent to projecting state-space onto

V =span(B,AB,...,A"'B) =: K(A, B, r)
(where A = (sol, — A)™Y, B = (sol, — A)"!B) along
W =span(CT,AC",... (A*)'CT) = K(A*,C",r).

o Computation via unsymmetric Lanczos method, yields system
matrices of reduced-order model as by-product.

Remark: Arnoldi (PRIMA) yields only G(s) = G(s) + O((s — s0)").
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Padé Approximation

Padé-via-Lanczos Method (PVL)

Difficulties:

o Computable error estimates/bounds for ||y — y||2 often very
pessimistic or expensive to evaluate.

Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional/Rayleigh
damping (BEATTIE/GUGERCIN '05).

Good approximation quality only locally.

Preservation of physical properties only in special cases; usually
requires post processing which (partially) destroys moment matching
properties.
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Padé Approximation

Padé-via-Lanczos Method (PVL)

Difficulties:
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Interpolatory Model Reduction

Short Introduction

Computation of reduced-order model by projection

Given an LTl system X = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sl, — A)™*B, a reduced-order model is obtained using projection
approach with V, W € R™" and W'V = I, by computing

A=w'av, B=w'B, C=cCV.

Petrov-Galerkin-type (two-sided) projection: W # V/,

Galerkin-type (one-sided) projection: W = V.
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Interpolatory Model Reduction

Short Introduction

Computation of reduced-order model by projection

Given an LTl system X = Ax+ Bu, y = Cx  with transfer function
G(s) = C(sl, — A)™*B, a reduced-order model is obtained using projection
approach with V, W € R™" and W'V = I, by computing

A=w'av, B=w'B, C=cCV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

1
| A

Rational Interpolation/Moment-Matching
Choose V, W such that

G(s)=G(s), j=1,....k
and

G(s,)—d G(s), i=1,....K, j=1,... k
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (sclh — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sklh—A)"TCT} C Ran(W),

then

~

" d d .
G(s5) = G(s), 5Gls) = Gs), forj=1,.. k
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (sclh — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sklh—A)"TCT} C Ran(W),

then

" d d » .
G(s5) = G(s), 5Gls) = Gs), forj=1,.. k

Remarks:

using Galerkin /one-sided projection yields G(s;) = G(s;), but in general

d d »
EG(SJ) # EG(SJ)-
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (sclh — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sklh—A)"TCT} C Ran(W),

then

~

" d d .
G(s5) = G(s), 5Gls) = Gs), forj=1,.. k

Remarks:

k =1, standard Krylov subspace(s) of dimension K ~» moment-matching meth-
ods/Padé approximation,

L

d . .
o G(s1) = EG(sl), i=0,...,K—1(+K).
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (sclh — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sklh—A)"TCT} C Ran(W),

then

" d d » .
G(s5) = G(s), 5Gls) = Gs), forj=1,.. k

Remarks:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME '97],

— lterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN '07].
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‘H>-Optimal Model Reduction

Best H»-norm approximation problem

Find argming sy, of order Sr”G — G2
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‘H>-Optimal Model Reduction

Best H»-norm approximation problem

Find argming sy, of order Sr”G — G2

~ First-order necessary Hy-optimality conditions:

For SISO systems

where p; are the poles of the reduced transfer function G.
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‘H>-Optimal Model Reduction

Best H»-norm approximation problem

Find argming sy, of order Sr“G — G2

~ First-order necessary Hy-optimality conditions:
For MIMO systems

G(—pi)Bi = G(—ui)B;, fori=1,....,r,
CTG(—pi) = G G(—p), fori=1,...,r,
G 6'( ’.)B:(":TG( ,u) fori=1,...,r,

where T71AT = diag {1, - .., 1t} = spectral decomposition and
B=B"T"T, C=CT.
~> tangential interpolation conditions.
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT, ie.

G(s)=CV (sl —WTAV) ' W'B,
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

G(s)=CV (sl —WTAV) ' W'B,
where V' and W are given as the rational Krylov subspaces
V= [(—ml—A)'B,....(—pu! — A)'B],
W= [(—pl —AT)ICT, ... (=l — AT)7ICT]

Then ) )

G(—pi) = G(—pi) and G'(—pi) = G'(—mi),
fori=1,...,r as desired.
~~ iterative algorithms (IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. ’06], [BUNSE-GERSTNER ET AL. '07],
[VAN DOOREN ET AL. '08]
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The basic IRKA Algorithm

Algorithm 1 IRKA

Input: A stable, B, C, A stable, B, C, § > 0.
Output: APt BoPt (ort
old‘

1. while (maxj_y, .., {M} > 4) do

1]
2. dia g{Au ...,u,} = T-LAT = spectral decomposition,
B=B*T* C=CT.
3 V= [ —l — A)BBy, . (—pd —A)*lBB,}
s W= [(— = ATYICTE, L (—pd —AT)*lcTé,]
5.V =orth(V), W = orth(W)
6: A=W*V)'WrAV, B=(W*V) 'w*B, C = CV

7: end while
8 A% =A B¥ =B, CP=C
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Numerical Comparlson of MOR Approaches

Microthruster

o Co-integration of solid fuel with silicon
micromachined system.

o Goal: Ignition of solid fuel cells by
electric impulse.

@ Application: nano satellites.

o Thermo-dynamical model, ignition via
heating an electric resistance by

applying voltage source. Polysi o0
o Design problem: reach ignition SiNx
temperature of fuel cell w/o firing SIiG2

neighbouring cells.

@ Spatial FEM discretization of
thermo-dynamical model ~~ linear
system, m=1, p=17.

Fuel Si-substrate

Source: The Oberwolfach Benchmark Collection nttp://www. intek.de/simulation/benchnark
Courtesy of C. Rossi, LAAS-CNRS/EU project “Micropyros”.
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Numerical Comparison of MOR Approaches

Microthruster

@ axial-symmetric 2D model

o FEM discretisation using linear (quadratic) elements ~» n = 4,257
(11,445) m=1,p=T7.

@ Reduced model computed using SPARED. modal truncation using
ARPACK, and Z. Bai's PVL implementation.
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Numerical Comparison of MOR Approaches

Microthruster

@ axial-symmetric 2D model

@ FEM discretization using quadratic elements ~ n = 11,445 m =1,
p=T.

© Reduced model computed with LyaPack [Penz/ '99].

@ Order of reduced model: r = 28.
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Frequency Repsonse Analysis

- %n

Magnitude
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Numerical Comparison of MOR Approaches

Microthruster

@ axial-symmetric 2D model

@ FEM discretization using quadratic elements ~ n = 11,445 m =1,
p=T.

Reduced model computed with LyaPack [Penz/ '99].

Order of reduced model: r = 28.
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Topics Not Covered

o Balanced residualization (singular perturbation approximation),

PN

yields G(0) = G(0).

Special methods for second-order (mechanical) systems.
Extensions to bilinear and stochastic systems.

Rational interpolation methods for nonlinear systems.

Other MOR techniques like POD, RB.

MOR methods for discrete-time systems.

Extensions to descriptor systems Ex = Ax + Bu, E singular.

Parametric model reduction:

x = A(p)x + B(p)u, y = C(p)x,

where p € R? is a free parameter vector; parameters should be
preserved in the reduced-order model.
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