Summer School on Numerical Linear Algebra for Dynamical and High-Dimensional Problems Trogir, October 10–15, 2011

# Model Reduction for Linear Dynamical Systems

#### Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

http://www.mpi-magdeburg.mpg.de/mpcsc/benner/talks/lecture-MOR.pdf

| Outling |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |

## Outime

- Introduction
- Application Areas
- Motivation
- Model Reduction for Dynamical Systems
- Qualitative and Quantitative Study of the Approximation Error
- Model Reduction by Projection
  - Projection Basics
  - Modal Truncation

#### **Balanced** Truncation

- The basic method
- ADI Methods for Lyapunov Equations
- Factored Galerkin-ADI Iteration
- Balancing-Related Model Reduction

#### Interpolatory Model Reduction

- Padé Approximation
- Short Introduction
- H<sub>2</sub>-Optimal Model Reduction

Numerical Comparison of MOR Approaches

Microthruster



**Final Remarks** 

#### Introduction Model Reduction — Abstract Definition

## Problem

Given a physical problem with dynamics described by the states  $x \in \mathbb{R}^n$ , where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

#### Introduction Model Reduction — Abstract Definition

## Problem

Given a physical problem with dynamics described by the states  $x \in \mathbb{R}^n$ , where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

#### Introduction Model Reduction — Abstract Definition

## Problem

Given a physical problem with dynamics described by the states  $x \in \mathbb{R}^n$ , where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).





A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

 $\begin{array}{l} \mbox{Modern (LQG-}/\mathcal{H}_{2^{-}}/\mathcal{H}_{\infty}\text{-}) \mbox{ control} \\ \mbox{design: } N \geq n. \end{array}$ 



Practical controllers require small N ( $N \sim 10$ , say) due to

- real-time constraints,
- increasing fragility for larger N.

 $\implies$  reduce order of plant (*n*) and/or controller (*N*).



## Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

 $\begin{array}{l} \mbox{Modern (LQG-}/\mathcal{H}_{2^{-}}/\mathcal{H}_{\infty^{-}}) \mbox{ control} \\ \mbox{design: } N \geq n. \end{array}$ 



Practical controllers require small N (N  $\sim$  10, say) due to

- real-time constraints,
- increasing fragility for larger N.

 $\implies$  reduce order of plant (*n*) and/or controller (*N*).



## Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

 $\begin{array}{l} \mbox{Modern (LQG-}/\mathcal{H}_{2^{-}}/\mathcal{H}_{\infty^{-}}) \mbox{ control} \\ \mbox{design: } N \geq n. \end{array}$ 



Practical controllers require small N (N  $\sim$  10, say) due to

- real-time constraints,
- increasing fragility for larger N.

 $\implies$  reduce order of plant (*n*) and/or controller (*N*).



## Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

 $\begin{array}{l} \mbox{Modern (LQG-}/\mathcal{H}_{2^{-}}/\mathcal{H}_{\infty}\text{-}) \mbox{ control} \\ \mbox{design: } N \geq n. \end{array}$ 



Practical controllers require small N ( $N \sim 10$ , say) due to

- real-time constraints,
- increasing fragility for larger N.
- $\implies$  reduce order of plant (*n*) and/or controller (*N*).

| Applicatio                              | n Aroas |  |  |
|-----------------------------------------|---------|--|--|
| 000000000000000000000000000000000000000 |         |  |  |
|                                         |         |  |  |

#### Application Areas Micro Electronics/Circuit Simulation

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
  - decoupling large linear subcircuits,
  - modeling transmission lines (interconnect, powergrid), parasitic effects,
  - modeling pin packages in VLSI chips,
  - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

| 000000000000000000000000000000000000000 |                          |  |  |
|-----------------------------------------|--------------------------|--|--|
| Applica                                 | ation Areas              |  |  |
| Micro Electr                            | onics/Circuit Simulation |  |  |

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
  - decoupling large linear subcircuits,
  - modeling transmission lines (interconnect, powergrid), parasitic effects,
  - modeling pin packages in VLSI chips,
  - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

| 0000000000   |                          |  |  |
|--------------|--------------------------|--|--|
| Applica      | ation Areas              |  |  |
| Micro Electr | onics/Circuit Simulation |  |  |

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
  - decoupling large linear subcircuits,
  - modeling transmission lines (interconnect, powergrid), parasitic effects,
  - modeling pin packages in VLSI chips,
  - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

| 0000000000   |                          |  |  |
|--------------|--------------------------|--|--|
| Applica      | ation Areas              |  |  |
| Micro Electr | onics/Circuit Simulation |  |  |

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
  - decoupling large linear subcircuits,
  - modeling transmission lines (interconnect, powergrid), parasitic effects,
  - modeling pin packages in VLSI chips,
  - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

| 0000000000   |                          |  |  |
|--------------|--------------------------|--|--|
| Applica      | ation Areas              |  |  |
| Micro Electr | onics/Circuit Simulation |  |  |

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
  - decoupling large linear subcircuits,
  - modeling transmission lines (interconnect, powergrid), parasitic effects,
  - modeling pin packages in VLSI chips,
  - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

#### Application Areas Structural Mechanics / Finite Element Modeling



- Resolving complex 3D geometries  $\Rightarrow$  millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation)  $\rightsquigarrow$  Craig-Bampton method.

#### Application Areas Structural Mechanics / Finite Element Modeling



- Resolving complex 3D geometries  $\Rightarrow$  millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation)  $\rightsquigarrow$  Craig-Bampton method.

| 000000000000000000000000000000000000000 | 0000 |  |  |
|-----------------------------------------|------|--|--|
|                                         |      |  |  |

# Motivation: Image Compression by Truncated SVD

- A digital image with  $n_x \times n_y$  pixels can be represented as matrix  $X \in \mathbb{R}^{n_x \times n_y}$ , where  $x_{ij}$  contains color information of pixel (i, j).
- Memory:  $4 \cdot n_x \cdot n_y$  bytes.

## Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to  $X \in \mathbb{R}^{n_x \times n_y}$  w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^{T},$$

where  $X = U\Sigma V^{T}$  is the singular value decomposition (SVD) of X. The approximation error is  $||X - \hat{X}||_2 = \sigma_{r+1}$ .

#### Idea for dimension reduction

Instead of X save  $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$ .  $\rightsquigarrow$  memory =  $4r \times (n_x + n_y)$  bytes.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|
|                                         |      |                                         |       |     |  |

# Motivation: Image Compression by Truncated SVD

- A digital image with  $n_x \times n_y$  pixels can be represented as matrix  $X \in \mathbb{R}^{n_x \times n_y}$ , where  $x_{ij}$  contains color information of pixel (i, j).
- Memory:  $4 \cdot n_x \cdot n_y$  bytes.

## Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to  $X \in \mathbb{R}^{n_x \times n_y}$  w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^{T},$$

where  $X = U\Sigma V^{T}$  is the singular value decomposition (SVD) of X. The approximation error is  $||X - \hat{X}||_2 = \sigma_{r+1}$ .

#### Idea for dimension reduction

Instead of X save  $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$ .  $\rightsquigarrow$  memory =  $4r \times (n_x + n_y)$  bytes.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|
|                                         |      |                                         |       |     |  |

# Motivation: Image Compression by Truncated SVD

- A digital image with  $n_x \times n_y$  pixels can be represented as matrix  $X \in \mathbb{R}^{n_x \times n_y}$ , where  $x_{ij}$  contains color information of pixel (i, j).
- Memory:  $4 \cdot n_x \cdot n_y$  bytes.

## Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to  $X \in \mathbb{R}^{n_x \times n_y}$  w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^{T},$$

where  $X = U\Sigma V^{T}$  is the singular value decomposition (SVD) of X. The approximation error is  $||X - \hat{X}||_2 = \sigma_{r+1}$ .

## Idea for dimension reduction

Instead of X save  $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$ .  $\rightsquigarrow$  memory =  $4r \times (n_x + n_y)$  bytes.

# Example: Image Compression by Truncated SVD



Max Planck Institute Magdeburg

# Example: Image Compression by Truncated SVD



• rank r = 50,  $\approx 104$  kb



# Example: Image Compression by Truncated SVD



• rank r = 50,  $\approx 104$  kb



• rank r = 20,  $\approx 42$  kb

Rank-20 approximation



| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

# **Dimension Reduction via SVD**

## Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.





9/52

100

| 000000000000000000000000000000000000000 | 0000 | 0000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|------------------|-------|-----|--|
|                                         |      |                  |       |     |  |

# **Background: Singular Value Decay**

Image data compression via SVD works, if the singular values decay (exponentially).



| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

# Model Reduction for Dynamical Systems

## Dynamical Systems

$$\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) = g(t, x(t), u(t)) \end{cases}$$

#### with

• states 
$$x(t) \in \mathbb{R}^n$$

• inputs 
$$u(t) \in \mathbb{R}^m$$

• outputs 
$$y(t) \in \mathbb{R}^p$$





#### Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$  for all admissible input signals



U.

<u>u</u> <u>y</u>



# Goal: $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.



### Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$  for all admissible input signals. Secondary goal: reconstruct approximation of x from  $\hat{x}$ .

| 000000000000000000000000000000000000000 | 0000 |  |  |
|-----------------------------------------|------|--|--|
|                                         |      |  |  |



| 000000000000000000000000000000000000000 |  |  |  |
|-----------------------------------------|--|--|--|
|                                         |  |  |  |



| 000000000000000000000000000000000000000 | 0000 |  |  |
|-----------------------------------------|------|--|--|
|                                         |      |  |  |



| ż | = | f(t, x, u) | = | Ax + Bu, | $A \in \mathbb{R}^{n \times n}$ , |
|---|---|------------|---|----------|-----------------------------------|
| y | = | g(t, x, u) | = | Cx + Du, | $C \in \mathbb{R}^{p \times n}$ , |

## State-Space Description for I/O-Relation

 $\mathsf{Variation}\text{-}\mathsf{of}\text{-}\mathsf{constants}\Longrightarrow$ 

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{\mathcal{A}(t- au)} \mathcal{B}u( au) \, d au \quad ext{for all } t \in \mathbb{R}$$

 $B \in \mathbb{R}^{n \times m}, \\ D \in \mathbb{R}^{p \times m}.$ 

| 000000000000000000000000000000000000000 |  | 000000000000000000000000000000000000000 | 000 |  |
|-----------------------------------------|--|-----------------------------------------|-----|--|
|                                         |  |                                         |     |  |



| ż | = | f(t, x, u) | = | Ax + Bu, | $A \in \mathbb{R}^{n \times n}$ , |
|---|---|------------|---|----------|-----------------------------------|
| y | = | g(t, x, u) | = | Cx + Du, | $C \in \mathbb{R}^{p \times n}$ , |

## State-Space Description for I/O-Relation

 $\mathsf{Variation}\text{-}\mathsf{of}\text{-}\mathsf{constants}\Longrightarrow$ 

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.$$

- $S : U \to Y$  is a linear operator between (function) spaces.
- Recall:  $A \in \mathbb{R}^{n \times m}$  is a linear operator,  $A : \mathbb{R}^m \to \mathbb{R}^n!$
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

 $B \in \mathbb{R}^{n \times m}$  $D \in \mathbb{R}^{p \times m}$ 

| 000000000000000000000000000000000000000 |  | 000000000000000000000000000000000000000 | 000 |  |
|-----------------------------------------|--|-----------------------------------------|-----|--|
|                                         |  |                                         |     |  |



| ż | = | f(t, x, u) | = | Ax + Bu, | $A \in \mathbb{R}^{n \times n}$ , |
|---|---|------------|---|----------|-----------------------------------|
| y | = | g(t, x, u) | = | Cx + Du, | $C \in \mathbb{R}^{p \times n}$ , |

## State-Space Description for I/O-Relation

 $\mathsf{Variation}\text{-}\mathsf{of}\text{-}\mathsf{constants}\Longrightarrow$ 

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}$$

- $S : U \to Y$  is a linear operator between (function) spaces.
- Recall:  $A \in \mathbb{R}^{n \times m}$  is a linear operator,  $A : \mathbb{R}^m \to \mathbb{R}^n!$
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

 $B \in \mathbb{R}^{n \times m}$  $D \in \mathbb{R}^{p \times m}$ 

| 000000000000000000000000000000000000000 |  | 000000000000000000000000000000000000000 | 000 |  |
|-----------------------------------------|--|-----------------------------------------|-----|--|
|                                         |  |                                         |     |  |



| ż | = | f(t, x, u) | = | Ax + Bu, | $A \in \mathbb{R}^{n \times n}$ , |
|---|---|------------|---|----------|-----------------------------------|
| y | = | g(t, x, u) | = | Cx + Du, | $C \in \mathbb{R}^{p \times n}$ , |

## State-Space Description for I/O-Relation

 $\mathsf{Variation}\text{-}\mathsf{of}\text{-}\mathsf{constants} \Longrightarrow$ 

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.$$

- $S : U \to Y$  is a linear operator between (function) spaces.
- Recall:  $A \in \mathbb{R}^{n \times m}$  is a linear operator,  $A : \mathbb{R}^m \to \mathbb{R}^n!$
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

 $B \in \mathbb{R}^{n \times m}$  $D \in \mathbb{R}^{p \times m}$
| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|
|                                         |      |                                         |       |     |  |



| ż | = | f(t, x, u) | = | Ax + Bu, | $A \in \mathbb{R}^{n \times n}$ , |
|---|---|------------|---|----------|-----------------------------------|
| y | = | g(t, x, u) | = | Cx + Du, | $C \in \mathbb{R}^{p \times n}$ , |

### State-Space Description for I/O-Relation

 $\mathsf{Variation}\text{-of-constants} \Longrightarrow$ 

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.$$

- $S : U \to Y$  is a linear operator between (function) spaces.
- Recall:  $A \in \mathbb{R}^{n \times m}$  is a linear operator,  $A : \mathbb{R}^m \to \mathbb{R}^n!$
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

 $B \in \mathbb{R}^{n \times m}$  $D \in \mathbb{R}^{p \times m}$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, \qquad \qquad C \in \mathbb{R}^{p \times n}. \end{array}$$

### Alternative to State-Space Operator: Hankel operator

Instead of

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{\mathcal{A}(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}$$

use Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{\mathcal{A}(t-\tau)} B u(\tau) \, d au \quad ext{for all } t > 0.$$

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, \qquad \qquad C \in \mathbb{R}^{p \times n}. \end{array}$$

### Alternative to State-Space Operator: Hankel operator

Instead of

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{\mathcal{A}(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}$$

use Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d au \quad ext{for all } t > 0.$$

 $\mathcal{H} \text{ compact} \Rightarrow \mathcal{H} \text{ has discrete SVD}$  $\rightsquigarrow \textit{Hankel singular values} \quad \{\sigma_j\}_{j=1}^{\infty}: \ \sigma_1 \ge \sigma_2 \ge \ldots \ge 0.$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, \qquad \qquad C \in \mathbb{R}^{p \times n}. \end{array}$$

### Alternative to State-Space Operator: Hankel operator

Instead of

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}$$

use Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{\mathcal{A}(t-\tau)} B u(\tau) \, d au \quad ext{for all } t > 0.$$

 $\begin{array}{l} \mathcal{H} \text{ compact} \Rightarrow \mathcal{H} \text{ has discrete SVD} \\ \rightsquigarrow \textit{Hankel singular values} \quad \{\sigma_j\}_{j=1}^\infty: \ \sigma_1 \geq \sigma_2 \geq \ldots \geq 0. \\ \Longrightarrow \text{SVD-type approximation of } \mathcal{H} \text{ possible!} \end{array}$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|



$$\begin{aligned} \dot{x} &= Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y &= Cx, \qquad C \in \mathbb{R}^{p \times n}. \end{aligned}$$

### Alternative to State-Space Operator: Hankel operator

 $\mathcal{H} \operatorname{compact} \ \downarrow \ \mathcal{H}$  has discrete SVD  $\downarrow \ \downarrow$  Hankel singular values



| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{aligned} \dot{x} &= Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y &= Cx, \qquad C \in \mathbb{R}^{p \times n}. \end{aligned}$$

Alternative to State-Space Operator: Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t > 0.$$

 $\mathcal H \mbox{ compact} \Rightarrow \mathcal H \mbox{ has discrete SVD}$ 

 $\Rightarrow$  Best approximation problem w.r.t. 2-induced operator norm well-posed

 $\Rightarrow$  solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{aligned} \dot{x} &= Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y &= Cx, \qquad C \in \mathbb{R}^{p \times n}. \end{aligned}$$

Alternative to State-Space Operator: Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t > 0.$$

 $\mathcal H \mbox{ compact} \Rightarrow \mathcal H \mbox{ has discrete SVD}$ 

- $\Rightarrow$  Best approximation problem w.r.t. 2-induced operator norm well-posed
- $\Rightarrow$  solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, \qquad \qquad C \in \mathbb{R}^{p \times n}. \end{array}$$

Alternative to State-Space Operator: Hankel operator

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t > 0.$$

 $\mathcal H \mbox{ compact} \Rightarrow \mathcal H \mbox{ has discrete SVD}$ 

- $\Rightarrow$  Best approximation problem w.r.t. 2-induced operator norm well-posed
- $\Rightarrow$  solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

### Linear Systems in Frequency Domain

$$\Sigma: \begin{cases} \dot{x} = Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y = Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{cases}$$

Assumptions:  $t_0 = 0$ ,  $x_0 = x(0) = 0$ .

### Laplace Transform / Frequency Domain

Application of Laplace transform

$$\mathcal{L}: x(t) \mapsto x(s) = \int_0^\infty e^{-st} x(t) dt \quad (\Rightarrow \dot{x}(t) \mapsto sx(s))$$

with  $s \in \mathbb{C}$  leads to linear system of equations:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s).$$

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

### Linear Systems in Frequency Domain

$$\Sigma: \left\{ \begin{array}{rcl} \dot{x} &=& Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y &=& Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \end{array} \right.$$

Assumptions:  $t_0 = 0$ ,  $x_0 = x(0) = 0$ .

### Laplace Transform / Frequency Domain

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s)$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}_{=:G(s)}\right)u(s) = G(s)u(s).$$

 $G \text{ is the transfer function of } \Sigma, \ G: \mathcal{L}_2^m \to \mathcal{L}_2^p \quad (\mathcal{L}_2:=\mathcal{L}(L_2(-\infty,\infty))).$ 

#### Max Planck Institute Magdeburg

| 000000000000000000000000000000000000000 | 000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|-----|-----------------------------------------|-------|-----|--|

## Model Reduction as Approximation Problem

### Approximation Problem

Approximate the dynamical system

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

### by reduced-order system

$$\begin{aligned} \dot{\hat{x}} &= \hat{A}\hat{x} + \hat{B}u, \qquad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\ \dot{\hat{y}} &= \hat{C}\hat{x} + \hat{D}u, \qquad \hat{C} \in \mathbb{R}^{p \times r}, \quad \hat{D} \in \mathbb{R}^{p \times m}. \end{aligned}$$

of order  $r \ll n$ , such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\|\|u\| \le ext{tolerance} \cdot \|u\|.$$

 $\implies$  Approximation problem:  $\min_{\text{order}(\hat{G}) \leq r} \|G - \hat{G}\|.$ 

| 000000000000000000000000000000000000000 | 000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|-----|-----------------------------------------|-------|-----|--|

## Model Reduction as Approximation Problem

### Approximation Problem

Approximate the dynamical system

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

#### by reduced-order system

$$\begin{aligned} \dot{\hat{x}} &= \hat{A}\hat{x} + \hat{B}u, \qquad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\ \dot{\hat{y}} &= \hat{C}\hat{x} + \hat{D}u, \qquad \hat{C} \in \mathbb{R}^{p \times r}, \quad \hat{D} \in \mathbb{R}^{p \times m}. \end{aligned}$$

of order  $r \ll n$ , such that

$$\|y - \hat{y}\| = \|\mathsf{G}u - \hat{\mathsf{G}}u\| \le \|\mathsf{G} - \hat{\mathsf{G}}\|\|u\| \le \mathsf{tolerance} \cdot \|u\|.$$

 $\implies$  Approximation problem:  $\min_{\text{order}(\hat{G}) \leq r} \|G - \hat{G}\|$ .

|          | ● <b>○○</b> ◎○○ |                  |       |  |
|----------|-----------------|------------------|-------|--|
| <u> </u> |                 | <b>•</b> • • • • | <br>_ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) \, d\omega.$$

Assume A is (asympotically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : re(z) < 0\}.$ 

|          | ○ <b>●○○</b> ◎○○ |                  |       |  |
|----------|------------------|------------------|-------|--|
| <u> </u> |                  | <b>•</b> • • • • | <br>_ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) d\omega.$$

Assume A is (asymptoically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re}(z) < 0\}$ . Then for all  $s \in \mathbb{C}^+ \cup j\mathbb{R}$ ,  $\|G(s)\| \leq M \leq \infty \Rightarrow$ 

$$\int_{-\infty}^{\infty} y^*(j\omega) y(j\omega) \, d\omega \quad = \quad \int_{-\infty}^{\infty} u^*(j\omega) G^*(j\omega) G(j\omega) u(j\omega) \, d\omega$$

| • <b>•••••</b> |      |   |  |
|----------------|------|---|--|
| <br>           | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) d\omega.$$

Assume A is (asymptoically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re}(z) < 0\}$ . Then for all  $s \in \mathbb{C}^+ \cup j\mathbb{R}$ ,  $\|G(s)\| \leq M \leq \infty \Rightarrow$ 

$$\int_{-\infty}^{\infty} y^*(j\omega) y(j\omega) \, d\omega = \int_{-\infty}^{\infty} u^*(j\omega) G^*(j\omega) G(j\omega) u(j\omega) \, d\omega$$
$$= \int_{-\infty}^{\infty} \|G(j\omega) u(j\omega)\|^2 \, d\omega \le \int_{-\infty}^{\infty} M^2 \|u(j\omega)\|^2 \, d\omega$$

(Here:, ||. || denotes the Euclidian vector or spectral matrix norm.)

| 000000 |      |   |  |
|--------|------|---|--|
| <br>   | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) d\omega.$$

Assume A is (asymptoically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re}(z) < 0\}$ . Then for all  $s \in \mathbb{C}^+ \cup j\mathbb{R}$ ,  $\|G(s)\| \leq M \leq \infty \Rightarrow$ 

$$\begin{split} \int_{-\infty}^{\infty} y^*(j\omega) y(j\omega) \, d\omega &= \int_{-\infty}^{\infty} u^*(j\omega) G^*(j\omega) G(j\omega) u(j\omega) \, d\omega \\ &= \int_{-\infty}^{\infty} \|G(j\omega) u(j\omega)\|^2 \, d\omega \le \int_{-\infty}^{\infty} M^2 \|u(j\omega)\|^2 \, d\omega \\ &= M^2 \int_{-\infty}^{\infty} u(j\omega)^* u(j\omega) \, d\omega < \infty. \end{split}$$

(Here:,  $\|.\|$  denotes the Euclidian vector or spectral matrix norm.)

| ● <b>○○</b> ◎○○ |      |   |  |
|-----------------|------|---|--|
| <br>            | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) d\omega.$$

Assume A is (asympotically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re}(z) < 0\}$ . Then for all  $s \in \mathbb{C}^+ \cup j\mathbb{R}$ ,  $\|G(s)\| \leq M \leq \infty \Rightarrow$ 

$$\int_{-\infty}^{\infty} y^*(j\omega)y(j\omega) \, d\omega = \int_{-\infty}^{\infty} u^*(j\omega)G^*(j\omega)G(j\omega)u(j\omega) \, d\omega$$
$$= \int_{-\infty}^{\infty} \|G(j\omega)u(j\omega)\|^2 \, d\omega \le \int_{-\infty}^{\infty} M^2 \|u(j\omega)\|^2 \, d\omega$$
$$= M^2 \int_{-\infty}^{\infty} u(j\omega)^* u(j\omega) \, d\omega < \infty.$$

 $\implies y \in L^p_2(-\infty,\infty) \cong \mathcal{L}^p_2.$ 

| • <b>•••••</b> |      |   |  |
|----------------|------|---|--|
| <br>           | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u\in \mathcal{L}_2^m\cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) \, d\omega.$$

Assume A is (asympotically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : re(z) < 0\}$ . Consequently, the 2-induced operator norm

$$\|G\|_{\infty} := \sup_{\|u\|_{2} \neq 0} \frac{\|Gu\|_{2}}{\|u\|_{2}}$$

is well defined. It can be shown that

$$\|G\|_{\infty} := \sup_{\omega \in \mathbb{R}} \|G(\jmath \omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{max} \left(G(\jmath \omega)\right).$$

| 000000 |      |   |  |
|--------|------|---|--|
| <br>   | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D$$

and input functions  $u \in \mathcal{L}_2^m \cong \mathcal{L}_2^m(-\infty,\infty)$ , with the 2-norm

$$\|u\|_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u^*(j\omega) u(j\omega) d\omega.$$

Assume A is (asympotically) stable:  $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : re(z) < 0\}$ . Consequently, the 2-induced operator norm

$$\|G\|_{\infty} := \sup_{\|u\|_{2} \neq 0} \frac{\|Gu\|_{2}}{\|u\|_{2}}$$

is well defined. It can be shown that

$$\|G\|_{\infty} := \sup_{\omega \in \mathbb{R}} \|G(\jmath \omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{max} \left(G(\jmath \omega)\right).$$

Sketch of proof:  $\|G(\jmath\omega)u(\jmath\omega)\| \le \|G(\jmath\omega)\| \|u(\jmath\omega)\| \Rightarrow "\le ".$ Construct u with  $\|Gu\|_2 = \sup_{\omega \in \mathbb{R}} \|G(\jmath\omega)\| \|u\|_2.$ 

|          | 000000 |      |   |  |
|----------|--------|------|---|--|
| <u> </u> |        | <br> | _ |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D.$$

### Hardy space $\mathcal{H}_{\infty}$

Function space of matrix-/scalar-valued functions that are analytic and bounded in  $\mathbb{C}^+.$ 

The  $\mathcal{H}_{\infty}$ -norm is

$$\|F\|_{\infty} := \sup_{\mathsf{re}\,s>0} \sigma_{\mathsf{max}}\left(F(s)\right) = \sup_{\omega\in\mathbb{R}} \sigma_{\mathit{max}}\left(F(\jmath\omega)\right).$$

Stable transfer functions are in the Hardy spaces

- $\mathcal{H}_{\infty}$  in the SISO case (single-input, single-output, m = p = 1);
- $\mathcal{H}^{p imes m}_{\infty}$  in the MIMO case (multi-input, multi-output, m > 1, p > 1).

|      | 0000000 |                                   |       |  |
|------|---------|-----------------------------------|-------|--|
| 0 11 |         | <b>O</b> . 1 <b>C</b> .1 <b>A</b> | <br>- |  |

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong \mathcal{L}_2, \quad L_2(0,\infty)\cong \mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

| 0 11 | 1.0 | <b>O</b> . 1 <b>C</b> .1 <b>A</b> | <br>_ |  |
|------|-----|-----------------------------------|-------|--|

Consider transfer function

$$G(s) = C \left( sI - A \right)^{-1} B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong \mathcal{L}_2, \quad L_2(0,\infty)\cong \mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

### $\mathcal{H}_{\infty}$ approximation error

Reduced-order model  $\Rightarrow$  transfer function  $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}$ .  $\|y - \hat{y}\|_2 = \|Gu - \hat{G}\hat{u}\|_2 \le \|G - \hat{G}\|_{\infty} \|u\|_2$ .

 $\implies$  compute reduced-order model such that  $\|G - \hat{G}\|_{\infty} < to!$ Note: error bound holds in time- and frequency domain due to Paley-Wiener!

|          | 000000 |          |       |  |
|----------|--------|----------|-------|--|
| 0 11: 11 | 1.0    | <b>O</b> | <br>- |  |

Consider transfer function

$$G(s) = C (sI - A)^{-1} B$$
, i.e.  $D = 0$ .

### Hardy space $\mathcal{H}_2$

Function space of matrix-/scalar-valued functions that are analytic  $\mathbb{C}^+$  and bounded w.r.t. the  $\mathcal{H}_2\text{-norm}$ 

$$\|F\|_{2} := \left(\sup_{\operatorname{re}\sigma>0}\int_{-\infty}^{\infty}\|F(\sigma+j\omega)\|_{F} d\omega\right)^{\frac{1}{2}}$$
$$= \left(\int_{-\infty}^{\infty}\|F(j\omega)\|_{F} d\omega\right)^{\frac{1}{2}}.$$

Stable transfer functions are in the Hardy spaces

- $\mathcal{H}_2$  in the SISO case (single-input, single-output, m = p = 1);
- $\mathcal{H}_2^{p \times m}$  in the MIMO case (multi-input, multi-output, m > 1, p > 1).

|          | 000000 |          |       |  |
|----------|--------|----------|-------|--|
| 0 11: 11 | 1.0    | <b>O</b> | <br>- |  |

Consider transfer function

$$G(s) = C (sI - A)^{-1} B$$
, i.e.  $D = 0$ .

### Hardy space $\mathcal{H}_2$

Function space of matrix-/scalar-valued functions that are analytic  $\mathbb{C}^+$  and bounded w.r.t. the  $\mathcal{H}_2\text{-norm}$ 

$$\|F\|_2 = \left(\int_{-\infty}^{\infty} \|F(j\omega)\|_F \, d\omega\right)^{\frac{1}{2}}$$

 $\mathcal{H}_2$  approximation error for impulse response  $(u(t) = u_0 \delta(t))$ 

Reduced-order model  $\Rightarrow$  transfer function  $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$ .

$$\|y - \hat{y}\|_2 = \|Gu_0\delta - \hat{G}u_0\delta\|_2 \le \|G - \hat{G}\|_2\|u_0\|.$$

 $\implies$  compute reduced-order model such that  $\|G - \hat{G}\|_2 < to!!$ 

| 0 | 10   | <br><b>C</b> · | C . I | • | <br>- |  |
|---|------|----------------|-------|---|-------|--|
|   | 0000 |                |       |   |       |  |
|   |      |                |       |   |       |  |

#### Qualitative and Quantitative Study of the Approximation Error Approximation Problems

| $\mathcal{H}_{\infty}$ -norm | best approximation problem for given reduced order $r$ in  |
|------------------------------|------------------------------------------------------------|
|                              | general open; balanced truncation yields suboptimal solu-  |
|                              | tion with computable $\mathcal{H}_\infty$ -norm bound.     |
| $\mathcal{H}_2$ -norm        | necessary conditions for best approximation known; (local) |
|                              | optimizer computable with iterative rational Krylov algo-  |
|                              | rithm (IRKA)                                               |
| Hankel-norm                  | optimal Hankel norm approximation (AAK theory).            |
| $\ G\ _H := \sigma_{\max}$   |                                                            |

| 0000000 |      |   |  |
|---------|------|---|--|
| <br>    | <br> | _ |  |

#### Qualitative and Quantitative Study of the Approximation Error Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

### Other measures

- absolute errors  $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_2$ ,  $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_\infty$   $(j = 1, ..., N_\omega)$ ; • relative errors  $\frac{\|G(\jmath\omega_j) - \hat{G}(\jmath\omega_j)\|_2}{\|G(\jmath\omega_j)\|_2}$ ,  $\frac{\|G(\jmath\omega_j) - \hat{G}(\jmath\omega_j)\|_\infty}{\|G(\jmath\omega_j)\|_\infty}$ ;
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs.  $|G(j\omega)|$  (or  $|G(j\omega) - \hat{G}(j\omega)|$ ) in decibels, 1 dB  $\simeq 20 \log_{10}(\text{value})$ .

For MIMO systems,  $p \times m$  array of of plots  $G_{ij}$ .



|                           | MOR by Projection |              |  |  |
|---------------------------|-------------------|--------------|--|--|
| Model<br><sub>Goals</sub> | Reduction b       | y Projection |  |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ ),
  - passivity

 $\int_{-\infty}^{t} u(\tau)^{\mathsf{T}} y(\tau) \, d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$ 

|       | MOR by Projection |              |       |     |  |
|-------|-------------------|--------------|-------|-----|--|
|       |                   |              | 00000 | 000 |  |
| Model | Reduction by      | y Projection |       |     |  |
| Goals | •                 | · •          |       |     |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ ).
  - passivity

|         | MOR by Projection |              |  |  |
|---------|-------------------|--------------|--|--|
|         |                   |              |  |  |
| Model I | Reduction by      | y Projection |  |  |
| Goals   |                   |              |  |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ )
  - passivity

 $\int_{-\infty}^{t} u(\tau)^{\mathsf{T}} y(\tau) \, d\tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$ 

|         | MOR by Projection |              |  |  |
|---------|-------------------|--------------|--|--|
| Model I | Reduction by      | y Projection |  |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ ),
  - passivity

$$\int_{-\infty}^{t} u(\tau)^{\mathsf{T}} y(\tau) \, d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

|         | MOR by Projection |              |  |  |
|---------|-------------------|--------------|--|--|
| Model I | Reduction by      | y Projection |  |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ ),
  - passivity

 $\int_{-\infty}^{t} u(\tau)^{\mathsf{T}} y(\tau) \, d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$ 

|         | MOR by Projection |              |  |  |
|---------|-------------------|--------------|--|--|
| Model I | Reduction by      | y Projection |  |  |

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\implies$  Need computable error bound/estimate!

- Preserve physical properties:
  - stability (poles of G in  $\mathbb{C}^-$ ),
  - minimum phase (zeroes of G in  $\mathbb{C}^-$ ),
  - passivity

 $\int_{-\infty}^t u(\tau)^T y(\tau) \, d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$ 

Linear Algebra Basics

### Projector

A projector is a matrix  $P \in \mathbb{R}^{n \times n}$  with  $P^2 = P$ . Let  $\mathcal{V} = \operatorname{range}(P)$ , then P is projector onto  $\mathcal{V}$ . On the other hand, if  $\{v_1, \ldots, v_r\}$  is a basis of  $\mathcal{V}$  and  $V = [v_1, \ldots, v_r]$ , then  $P = V(V^T V)^{-1}V^T$  is a projector onto  $\mathcal{V}$ .

| 000000000000000000000000000000000000000 |             | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|-------------|-----------------------------------------|-------|-----|--|
| Model                                   | Reduction b | v Projection                            |       |     |  |

#### **Nodel Reduction by Projection** Linear Algebra Basics

### Projector

A projector is a matrix  $P \in \mathbb{R}^{n \times n}$  with  $P^2 = P$ . Let  $\mathcal{V} = \operatorname{range}(P)$ , then P is projector onto  $\mathcal{V}$ . On the other hand, if  $\{v_1, \ldots, v_r\}$  is a basis of  $\mathcal{V}$  and  $V = [v_1, \ldots, v_r]$ , then  $P = V(V^T V)^{-1}V^T$  is a projector onto  $\mathcal{V}$ . **Properties:** 

- If  $P = P^T$ , then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
- *P* is the identity operator on  $\mathcal{V}$ , i.e.,  $Pv = v \ \forall v \in \mathcal{V}$ .
- I P is the complementary projector onto ker P.
- If V is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let  $\mathcal{W} \subset \mathbb{R}^n$  be another *r*-dimensional subspace and  $W = [w_1, \ldots, w_r]$  be a basis matrix for  $\mathcal{W}$ , then  $P = V(W^T V)^{-1}W^T$  is an oblique projector onto  $\mathcal{V}$  along  $\mathcal{W}$ .

|         | 000000      |              |  |  |
|---------|-------------|--------------|--|--|
| Model F | Reduction b | v Projection |  |  |

## MOR Methods Based on Projection

### Methods:

- Modal Truncation
- Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
- Balanced Truncation
- many more...

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

# Model Reduction by Projection

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace  $\mathcal{V}$ . Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto  $\mathcal{V}$  along complementary subspace  $\mathcal{W}$ :  $x \approx V W^T x =: \tilde{x}$ , where

range 
$$(V) = \mathcal{V}$$
, range  $(W) = \mathcal{W}$ ,  $W^T V = I_r$ .

Then, with  $\hat{x} = W^T x$ , we obtain  $x \approx V \hat{x}$  so that

$$\|x-\tilde{x}\|=\|x-V\hat{x}\|,$$

and the reduced-order model is

 $\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$
Introduction MOR by Projection Balanced Truncation RatInt Examples Fin.

# Model Reduction by Projection

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace  $\mathcal{V}$ . Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto  $\mathcal{V}$  along complementary subspace  $\mathcal{W}$ :  $x \approx V W^T x =: \tilde{x}$ , and the reduced-order model is  $\hat{x} = W^T x$ 

 $\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$ 

Important observations:

• The state equation residual satisfies  $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$ , since

$$W^{T}\left(\dot{\tilde{x}} - A\tilde{x} - Bu\right) = W^{T}\left(VW^{T}\dot{x} - AVW^{T}x - Bu\right)$$

# Model Reduction by Projection

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace  $\mathcal{V}$ . Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto  $\mathcal{V}$  along complementary subspace  $\mathcal{W}$ :  $x \approx V W^T x =: \tilde{x}$ , and the reduced-order model is  $\hat{x} = W^T x$ 

 $\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$ 

Important observations:

• The state equation residual satisfies  $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$ , since

$$W^{T}\left(\dot{\tilde{x}} - A\tilde{x} - Bu\right) = W^{T}\left(VW^{T}\dot{x} - AVW^{T}x - Bu\right)$$
$$= \underbrace{W^{T}\dot{x}}_{\dot{\tilde{x}}} - \underbrace{W^{T}AV}_{=\hat{A}}\underbrace{W^{T}x}_{=\hat{x}} - \underbrace{W^{T}B}_{=\hat{B}}u$$

# Model Reduction by Projection

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace  $\mathcal{V}$ . Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto  $\mathcal{V}$  along complementary subspace  $\mathcal{W}$ :  $x \approx V W^T x =: \tilde{x}$ , and the reduced-order model is  $\hat{x} = W^T x$ 

 $\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$ 

Important observations:

• The state equation residual satisfies  $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$ , since

$$W^{T}\left(\dot{\tilde{x}} - A\tilde{x} - Bu\right) = W^{T}\left(VW^{T}\dot{x} - AVW^{T}x - Bu\right)$$
$$= \underbrace{W^{T}\dot{x}}_{\dot{x}} - \underbrace{W^{T}AV}_{=\hat{\lambda}}\underbrace{W^{T}x}_{=\hat{x}} - \underbrace{W^{T}B}_{=\hat{B}}u$$
$$= \dot{\hat{x}} - \hat{A}\hat{x} - \hat{B}u = 0.$$

| Madal D | aduction | by Drojection |  |  |
|---------|----------|---------------|--|--|
|         | 00000    |               |  |  |
|         |          |               |  |  |

**IVIOAEI REDUCTION DY Projection** MOR Methods Based on Projection

### Projection ~ Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_n - \hat{A})^{-1}\hat{B} + \hat{D})$$

| Madal | Deduction | by Drainstian |  |  |
|-------|-----------|---------------|--|--|
|       | 0000000   |               |  |  |
|       |           |               |  |  |

**IVIOAEI REDUCTION DY Projection** MOR Methods Based on Projection

### Projection ~ Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_n - \hat{A})^{-1}\hat{B} + \hat{D})$$
  
=  $C((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T)B$ 

| Madal | Doduction | by Drojection |  |  |
|-------|-----------|---------------|--|--|
|       | 0000000   |               |  |  |
|       |           |               |  |  |

# Model Reduction by Projection

### Projection ~ Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_n - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$
  
=  $C\left((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T\right)B$   
=  $C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B.$ 

| Madal | Deducation | by Ductosticu |  |  |
|-------|------------|---------------|--|--|
|       | 0000000    |               |  |  |
|       |            |               |  |  |

**IVIOAEI REDUCTION DY Projection** MOR Methods Based on Projection

### Projection ~> Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sl_n - A)^{-1}B + D\right) - \left(\hat{C}(sl_n - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$
  
=  $C\left(l_n - \underbrace{V(sl_r - \hat{A})^{-1}W^T(sl_n - A)}_{=:P(s)}\right)(sl_n - A)^{-1}B$ 

P(s) is a projector onto  $\mathcal{V}$ :

range  $(P(s)) \subset$  range (V), all matrices have full rank  $\Rightarrow$  "=", and  $P(s)^2 = V(sI_r - \hat{A})^{-1}W^T(sI_n - A)V(sI_r - \hat{A})^{-1}W^T(sI_n - A)$ 

| Madal D | <b>I </b> |  |  |
|---------|-----------|--|--|
|         | 0000      |  |  |
|         |           |  |  |

# Model Reduction by Projection

#### Projection ~> Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_n - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$
  
=  $C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^{T}(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B$ 

P(s) is a projector onto  $\mathcal{V}$ :

range  $(P(s)) \subset$  range (V), all matrices have full rank  $\Rightarrow$  "=", and  $P(s)^{2} = V(sl_{r} - \hat{A})^{-1}W^{T}(sl_{n} - A)V(sl_{r} - \hat{A})^{-1}W^{T}(sl_{n} - A)$   $= V(sl_{r} - \hat{A})^{-1}\underbrace{(sl_{r} - \hat{A})(sl_{r} - \hat{A})^{-1}}_{=l_{r}}W^{T}(sl_{n} - A) = P(s).$ 

| Madal | Deduction | Ducientien |  |  |
|-------|-----------|------------|--|--|
|       | 00000000  |            |  |  |
|       |           |            |  |  |

# Model Reduction by Projection

### Projection ~> Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sl_n - A)^{-1}B + D\right) - \left(\hat{C}(sl_n - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$
  
=  $C\left(l_n - \underbrace{V(sl_r - \hat{A})^{-1}W^T(sl_n - A)}_{=:P(s)}\right)(sl_n - A)^{-1}B$ 

 $P(s) \text{ is a projector onto } \mathcal{V} \Longrightarrow$ Given  $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A})),$ if  $(s_*I_n - A)^{-1}B \in \mathcal{V}$ , then  $(I_n - P(s_*))(s_*I_n - A)^{-1}B = 0,$ 

hence

$$G(s_*) - \hat{G}(s_*) = 0 \implies G(s_*) = \hat{G}(s_*), \text{ i.e., } \hat{G} \text{ interpolates } G \text{ in } s_*!$$

|       | 0000000     |              |  |  |
|-------|-------------|--------------|--|--|
| Model | Reduction b | y Projection |  |  |
|       |             |              |  |  |

MOR Methods Based on Projection

### Projection ~> Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_n - \hat{A})^{-1}\hat{B} + \hat{D}\right) \\ = C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^{T}(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B$$

Analogously, =  $C(sI_n - A)^{-1} (I_n - \underbrace{(sI_n - A)V(sI_r - \hat{A})^{-1}W^{\mathsf{T}}}_{=:Q(s)})B.$ 

 $Q(s)^*$  is a projector onto  $\mathcal{W} \Longrightarrow$  Given  $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$ ,

if 
$$(s_*I_n - A)^{-*}C^T \in W$$
, then  $C(s_*I_n - A)^{-1}(I_n - Q(s_*)) = 0$ ,

hence

$$G(s_*) - \hat{G}(s_*) = 0 \Rightarrow G(s_*) = \hat{G}(s_*), \text{ i.e., } \hat{G} \text{ interpolates } G \text{ in } s_*!$$

Max Planck Institute Magdeburg

#### Model Reduction by Projection MOR Methods Based on Projection

Theorem

[Grimme '97, Villemagne/Skelton '87]

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

and  $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$ , if either

• 
$$(s_*I_n - A)^{-1}B \in \operatorname{range}(V)$$
, or

• 
$$(s_*I_n - A)^{-*}C^T \in \operatorname{range}(W)$$

then the interpolation condition

$$G(s_*)=\hat{G}(s_*).$$

in s\* holds.

Note: extension to Hermite interpolation conditions later!

| 0000 |  |  |
|------|--|--|

#### Basic method:

Assume A is diagonalizable,  $T^{-1}AT = D_A$ , project state-space onto A-invariant subspace  $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$ ,  $v_k = \operatorname{eigenvectors}$  corresp. to "dominant" modes / eigenvalues of A. Then with

 $V = T(:, 1:r) = [t_1, ..., t_r], \quad \tilde{W} = T^{-1}(:, 1:r), \quad W = \tilde{W}(V^*\tilde{W})^{-1},$ 

reduced-order model is

 $\hat{A} := W^* A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^* B, \quad \hat{C} = C V$ 

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

| 0000 |  |  |
|------|--|--|

#### Basic method:

Assume A is diagonalizable,  $T^{-1}AT = D_A$ , project state-space onto A-invariant subspace  $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$ ,  $v_k = \operatorname{eigenvectors}$  corresp. to "dominant" modes / eigenvalues of A. Then with

 $V = T(:, 1:r) = [t_1, ..., t_r], \quad \tilde{W} = T^{-1}(:, 1:r), \quad W = \tilde{W}(V^*\tilde{W})^{-1},$ 

reduced-order model is

 $\hat{A} := W^* A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^* B, \quad \hat{C} = C V$ 

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

#### Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

| 0@00 |  |  |
|------|--|--|

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

### Properties:

Error bound:

$$\|G - \hat{G}\|_{\infty} \leq \|C_2\| \|B_2\| \frac{1}{\min_{\lambda \in \Lambda(A_2)} |\operatorname{Re}(\lambda)|}$$

Proof:

$$G(s) = C(sI - A)^{-1}B + D = CTT^{-1}(sI - A)^{-1}TT^{-1}B + D$$
  
=  $CT(sI - T^{-1}AT)^{-1}T^{-1}B + D$   
=  $[\hat{C}, C_2] \begin{bmatrix} (sI_r - \hat{A})^{-1} \\ (sI_{n-r} - A_2)^{-1} \end{bmatrix} \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix} + D$   
=  $\hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2,$ 

| 0@●0 |  |  |
|------|--|--|

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

### Properties:

Error bound:

$$\|G - \hat{G}\|_{\infty} \leq \|C_2\| \|B_2\| \frac{1}{\min_{\lambda \in \Lambda(A_2)} |\operatorname{Re}(\lambda)|}$$

Proof:

$$G(s) = \hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2,$$

observing that  $\|G - \hat{G}\|_{\infty} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(C_2(\jmath \omega I_{n-r} - A_2)^{-1}B_2)$ , and

$$C_2(\jmath\omega I_{n-r}-A_2)^{-1}B_2=C_2 {
m diag}\left(rac{1}{\jmath\omega-\lambda_{r+1}},\ldots,rac{1}{\jmath\omega-\lambda_n}
ight)B_2.$$

| 000000000000000000000000000000000000000 | ⊘●●○ | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

#### Basic method:

Assume A is diagonalizable,  $T^{-1}AT = D_A$ , project state-space onto A-invariant subspace  $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$ ,  $v_k = \operatorname{eigenvectors}$  corresp. to "dominant" modes / eigenvalues of A. Then reduced-order model is

 $\hat{A} := W^* A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^* B, \quad \hat{C} = C V$ 

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

#### Difficulties:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute. ([LITZ '79] use Jordan canoncial form; otherwise merely heuristic criteria, e.g., [VARGA '95]. Recent improvement: dominant pole algorithm.)
- Error bound not computable for really large-scale problems.

| Madel T |      |  |  |
|---------|------|--|--|
|         | 0000 |  |  |
|         |      |  |  |

#### **Modal Truncation** Example

**BEAM**, SISO system from SLICOT Benchmark Collection for Model Reduction, n = 348, m = p = 1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields  $\|G - \hat{G}\|_{\infty} \le 1.21 \cdot 10^3$ 



MATLAB<sup>®</sup> demo.

#### Coffee break!

| Madel T |      |  |  |
|---------|------|--|--|
|         | 0000 |  |  |
|         |      |  |  |

**Modal Truncation** Example

> **BEAM**, SISO system from SLICOT Benchmark Collection for Model Reduction, n = 348, m = p = 1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields  $||G - \hat{G}||_{\infty} \le 1.21 \cdot 10^3$



Coffee break!

| Madel T |      |  |  |
|---------|------|--|--|
|         | 0000 |  |  |
|         |      |  |  |

**Modal Truncation** Example

> **BEAM**, SISO system from SLICOT Benchmark Collection for Model Reduction, n = 348, m = p = 1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields  $||G - \hat{G}||_{\infty} \le 1.21 \cdot 10^3$



Coffee break!

| 0000 | •00000000000000000 |  |  |
|------|--------------------|--|--|

#### Basic principle:

 A system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{\mathsf{T}} + BB^{\mathsf{T}} = 0, \qquad A^{\mathsf{T}}Q + QA + C^{\mathsf{T}}C = 0,$$

satisfy:  $P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$  with  $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$ .

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ .

|  | •0000000000000000 |  |  |
|--|-------------------|--|--|

### Basic principle:

 A system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{\mathsf{T}} + BB^{\mathsf{T}} = 0, \qquad A^{\mathsf{T}}Q + QA + C^{\mathsf{T}}C = 0,$$

satisfy:  $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$  with  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$ .

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ .

|  | ●00000000000000000 |  |  |
|--|--------------------|--|--|

Basic principle:

#### 0

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau$$

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau =: Ce^{At} \underbrace{\int_{-\infty}^{0} e^{-A\tau} Bu(\tau) d\tau}_{=:z}$$

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۰

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau =: Ce^{At} \underbrace{\int_{-\infty}^{0} e^{-A\tau} Bu(\tau) d\tau}_{=:z} = Ce^{At} z.$$

|  | ●00000000000000000 |  |  |
|--|--------------------|--|--|

Basic principle:

#### ۰

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

Λ(PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۹

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . **Proof:** Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = \int_0^\infty B^T e^{A^T(\tau-t)} C^T y(\tau) \, d\tau$$

|  | ●00000000000000000 |  |  |
|--|--------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = \int_0^\infty B^T e^{A^T(\tau-t)} C^T y(\tau) \, d\tau = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

| 0000 | •00000000000000000 |  |  |
|------|--------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} z \, d\tau$$

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

$$\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} z \, d\tau$$
$$= B^T e^{-A^T t} \underbrace{\int_0^\infty e^{A^T \tau} C^T C e^{A\tau} \, d\tau}_{\equiv Q} z$$

|  | •0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

$$\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} z \, d\tau$$
$$= B^T e^{-A^T t} Q z$$

|  | •0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Q z$$

|  | •0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

Λ (PQ)<sup>1/2</sup> = {σ<sub>1</sub>,...,σ<sub>n</sub>} are the Hankel singular values (HSVs) of Σ.
 Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At}z.$$

Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* y(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u(t).$$

| 000000000000000000000000000000000000000 | 0000 | ●00000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|--------------------|-------|-----|--|

Basic principle:

#### ۰

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Q z \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Q z$$

|  | 00000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$

|  | 00000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Q z \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$
$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

|  | 00000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Q z \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$
$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

$$= \frac{1}{\sigma^2} \int_{-\infty}^0 e^{-A\tau} B B^T e^{-A^T \tau} d\tau Q z$$
|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . **Proof:** Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} Q z \doteq \sigma^2 u(t).$$
  

$$\Rightarrow u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Q z \Longrightarrow (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$
  

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Q z d\tau$$
  

$$\frac{1}{\sigma^2} \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Q z d\tau$$

$$= \frac{1}{\sigma^2} \int_{-\infty}^{\infty} e^{At} BB^T e^{A^T t} dt Qz$$
$$= \frac{1}{\sigma^2} \underbrace{\int_{0}^{\infty} e^{At} BB^T e^{A^T t} dt}_{=0} Qz$$

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . **Proof:** Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$

z

$$= \int_{-\infty}^{0} e^{-A\tau} B \frac{1}{\sigma^2} B^{T} e^{-A^{T}\tau} Qz d\tau$$
$$= \frac{1}{\sigma^2} \underbrace{\int_{0}^{\infty} e^{At} BB^{T} e^{A^{T}t} dt}_{0} Qz$$

$$\equiv P$$

$$= \frac{1}{\sigma^2} PQz$$

| 000000000000000000000000000000000000000 | 00000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|-------|-----------------------------------------|-------|-----|--|

Basic principle:

#### ۲

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

•  $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ . **Proof:** Hankel singular values = square roots of eigenvalues of  $\mathcal{H}^*\mathcal{H}$ ,

$$\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} Q z \doteq \sigma^2 u(t).$$

$$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u(\tau) d\tau)$$

=  $\frac{1}{\sigma^2}PQz$ 

$$= \int_{-\infty}^{0} e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$
$$= \frac{1}{\sigma^2} \int_{-\infty}^{\infty} e^{At} B B^T e^{A^T t} dt Qz$$

$$= \frac{1}{\sigma^2} \underbrace{\int_0^{\sigma^2} e^{i x BB + e^{i x - dt}}}_{\equiv P} Qz$$

$$\iff PQz = \sigma^2 z.$$

z

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

### Basic principle:

 A system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{\mathsf{T}} + BB^{\mathsf{T}} = 0, \qquad A^{\mathsf{T}}Q + QA + C^{\mathsf{T}}C = 0,$$

satisfy:  $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$  with  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$ .

- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left( \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$
Fruncation  $\rightsquigarrow (\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D).$ 

|  | ●0000000000000000 |  |  |
|--|-------------------|--|--|

### Basic principle:

 A system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

satisfy:  $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$  with  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$ .

- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$  are the Hankel singular values (HSVs) of  $\Sigma$ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$
$$= \left( \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

• Truncation  $\rightsquigarrow (\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D).$ 

| 0000 | •00000000000000000 |  |  |
|------|--------------------|--|--|

#### Motivation:

HSVs are system invariants: they are preserved under  $\mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$ :

in transformed coordinates, the Gramians satisfy

$$(TAT^{-1})(TPT^{T}) + (TPT^{T})(TAT^{-1})^{T} + (TB)(TB)^{T} = 0$$

 $(TAT^{-1})^{T}(T^{-T}QT^{-1}) + (T^{-T}QT^{-1})(TAT^{-1}) + (CT^{-1})^{T}(CT^{-1}) = 0$ 

 $\Rightarrow (TPT^{T})(T^{-T}QT^{-1}) = TPQT^{-1},$ 

hence  $\Lambda(PQ) = \Lambda((TPT^{T})(T^{-T}QT^{-1})).$ 

|  | •000000000000000 |  |  |
|--|------------------|--|--|

#### Motivation:

HSVs are system invariants: they are preserved under  $\mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$ 

HSVs determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty, 0) \mapsto L_2(0, \infty): u_- \mapsto y_+.$$

In balanced coordinates ... energy transfer from  $u_{-}$  to  $y_{+}$ :

$$E := \sup_{u \in L_2(-\infty,0] \atop x(0)=x_0} \frac{\int_{0}^{\infty} y(t)^T y(t) dt}{\int_{-\infty}^{0} u(t)^T u(t) dt} = \frac{1}{\|x_0\|_2} \sum_{j=1}^{n} \sigma_j^2 x_{0,j}^2$$

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|

#### Motivation:

HSVs are system invariants: they are preserved under  $\mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$ 

HSVs determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty, 0) \mapsto L_2(0, \infty): u_- \mapsto y_+.$$

In balanced coordinates ... energy transfer from  $u_{-}$  to  $y_{+}$ :

$$E := \sup_{\substack{u \in L_2(-\infty,0] \\ x(0)=x_0}} \frac{\int_{0}^{\infty} y(t)^T y(t) dt}{\int_{-\infty}^{0} u(t)^T u(t) dt} = \frac{1}{\|x_0\|_2} \sum_{j=1}^{n} \sigma_j^2 x_{0,j}^2$$

 $\implies$  Truncate states corresponding to "small" HSVs  $\implies$  complete analogy to best approximation via SVD!







### Implementation: SR Method

• Compute (Cholesky) factors of the Gramians,  $P = S^T S$ ,  $Q = R^T R$ .

• Compute SVD  $SR^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}.$ 

Solution ROM is  $(W^T AV, W^T B, CV, D)$ , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}$$

|  | 00000000000000000 |  |  |
|--|-------------------|--|--|

## Implementation: SR Method

• Compute (Cholesky) factors of the Gramians,  $P = S^T S$ ,  $Q = R^T R$ .

• Compute SVD  $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}.$ 

Solution ROM is  $(W^T AV, W^T B, CV, D)$ , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}})$$

## Implementation: SR Method

• Compute (Cholesky) factors of the Gramians,  $P = S^T S$ ,  $Q = R^T R$ .

• Compute SVD  $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}.$ 

Solution ROM is  $(W^T AV, W^T B, CV, D)$ , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$

## Implementation: SR Method

• Compute (Cholesky) factors of the Gramians,  $P = S^T S$ ,  $Q = R^T R$ .

• Compute SVD  $SR^T = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}.$ 

Solution ROM is  $(W^T AV, W^T B, CV, D)$ , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$
$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0] \begin{bmatrix} \Sigma_{1} \\ \Sigma_{2} \end{bmatrix} \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} \Sigma_{1}^{-\frac{1}{2}}$$

## Implementation: SR Method

• Compute (Cholesky) factors of the Gramians,  $P = S^T S$ ,  $Q = R^T R$ .

• Compute SVD  $SR^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}.$ 

Solution ROM is  $(W^T AV, W^T B, CV, D)$ , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$
$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0] \begin{bmatrix} \Sigma_{1} \\ \Sigma_{2} \end{bmatrix} \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} \Sigma_{1}^{-\frac{1}{2}} = \Sigma_{1}^{-\frac{1}{2}}\Sigma_{1}\Sigma_{1}^{-\frac{1}{2}} = I_{r}$$

 $\implies VW^{T}$  is an oblique projector, hence balanced truncation is a Petrov-Galerkin projection method.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

### Properties:

- Reduced-order model is stable with HSVs  $\sigma_1, \ldots, \sigma_r$ .
- Adaptive choice of *r* via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_2.$$

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

### Properties:

- Reduced-order model is stable with HSVs  $\sigma_1, \ldots, \sigma_r$ .
- Adaptive choice of *r* via computable error bound:

$$\|y - \hat{y}\|_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) \|u\|_2.$$

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

#### **Properties**:

General misconception: complexity  $O(n^3)$  – true for several implementations! (e.g., MATLAB, SLICOT).

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

### **Properties**:

General misconception: complexity  $O(n^3)$  – true for several implementations! (e.g., MATLAB, SLICOT).

"New" algorithmic ideas from numerical linear algebra:

| 000000000000000000000000000000000000000 | 0000 | •0000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-------------------|-------|-----|--|

### Properties:

General misconception: complexity  $O(n^3)$  – true for several implementations! (e.g., MATLAB, SLICOT).

- "New" algorithmic ideas from numerical linear algebra:
- Instead of Gramians P, Qcompute  $S, R \in \mathbb{R}^{n \times k}$ ,  $k \ll n$ , such that

$$P \approx SS^T$$
,  $Q \approx RR^T$ .

 Compute S, R with problem-specific Lyapunov solvers of "low" complexity directly.



| 000000000000000000000000000000000000000 | 0000 | •0000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-------------------|-------|-----|--|

### Properties:

General misconception: complexity  $O(n^3)$  – true for several implementations! (e.g., MATLAB, SLICOT).

"New" algorithmic ideas from numerical linear algebra:

#### Sparse Balanced Truncation:

- − Sparse implementation using sparse Lyapunov solver (→ADI+MUMPS/SuperLU).
- Complexity  $\mathcal{O}(n(k^2 + r^2))$ .
- Software:
  - + MATLAB toolbox LyaPack (PENZL 1999),
  - + Software library M.E.S.S.<sup>a</sup> in C/MATLAB [B./SAAK/KÖHLER].

<sup>a</sup>Matrix Equation Sparse Solvers

|  |                                               | • |  |
|--|-----------------------------------------------|---|--|
|  | 0 <b>0000000</b> 0000000000000000000000000000 |   |  |
|  |                                               |   |  |

#### ADI Methods for Lyapunov Equations Background

Recall Peaceman Rachford ADI:

Consider Au = s where  $A \in \mathbb{R}^{n \times n}$  spd,  $s \in \mathbb{R}^n$ . ADI Iteration Idea: Decompose A = H + V with  $H, V \in \mathbb{R}^{n \times n}$  such that

(H + pI)v = r(V + pI)w = t

can be solved easily/efficiently.

#### ADI Iteration

If  $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots$  such that

$$u_{0} = 0$$
  
(H + p\_{k}l)u\_{k-\frac{1}{2}} = (p\_{k}l - V)u\_{k-1} + s  
(V + p\_{k}l)u\_{k} = (p\_{k}l - H)u\_{k-\frac{1}{2}} + s

converges to  $u \in \mathbb{R}^n$  solving Au = s.

|  |                                               | • |  |
|--|-----------------------------------------------|---|--|
|  | 0 <b>0000000</b> 0000000000000000000000000000 |   |  |
|  |                                               |   |  |

#### ADI Methods for Lyapunov Equations Background

Recall Peaceman Rachford ADI:

Consider Au = s where  $A \in \mathbb{R}^{n \times n}$  spd,  $s \in \mathbb{R}^n$ . ADI Iteration Idea: Decompose A = H + V with  $H, V \in \mathbb{R}^{n \times n}$  such that

(H + pI)v = r(V + pI)w = t

can be solved easily/efficiently.

### ADI Iteration

If  $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots$  such that

$$u_{0} = 0$$
  
(H+p\_{k}I)u\_{k-\frac{1}{2}} = (p\_{k}I - V)u\_{k-1} + s  
(V+p\_{k}I)u\_{k} = (p\_{k}I - H)u\_{k-\frac{1}{2}} + s

converges to  $u \in \mathbb{R}^n$  solving Au = s.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|-------|-----|--|

## **ADI** Methods for Lyapunov Equations

The Lyapunov operator

$$\mathcal{L}: P \mapsto AX + XA^T$$

can be decomposed into the linear operators

 $\mathcal{L}_H: X \mapsto AX, \qquad \mathcal{L}_V: X \mapsto XA^T.$ 

In analogy to the standard ADI method we find the



|       |                      | Balanced Truncation |      |  |
|-------|----------------------|---------------------|------|--|
| ADI N | <b>Methods</b> for I | _yapunov Equat      | ions |  |

Low-Rank ADI

Consider 
$$AX + XA^T = -BB^T$$
 for stable  $A, B \in \mathbb{R}^{n \times m}$  with  $m \ll n$ .

ADI iteration for the Lyapunov equation

[Wachspress '95]

For  $k = 1, \ldots, k_{\max}$ 

$$\begin{array}{rcl} X_0 &= & 0 \\ (A+p_k I) X_{k-\frac{1}{2}} &= & -BB^T - X_{k-1} (A^T - p_k I) \\ (A+p_k I) X_k^T &= & -BB^T - X_{k-\frac{1}{2}}^T (A^T - p_k I) \end{array}$$

Rewrite as one step iteration and factorize  $X_k = Z_k Z_k^T$ ,  $k = 0, \ldots, k_{max}$ 

$$Z_{0}Z_{0}^{T} = 0$$
  

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

... ~> low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03

| 0000000000000000 | 00000000   | 000000000000000000000000000000000000000 | 00000  | 000 |  |
|------------------|------------|-----------------------------------------|--------|-----|--|
|                  | othods for | I vanunov Equat                         | ions   |     |  |
|                  | ethous ior | εγαρύπον εγμαί                          | .10115 |     |  |

Low-Rank ADI

Consider 
$$AX + XA^T = -BB^T$$
 for stable  $A, B \in \mathbb{R}^{n \times m}$  with  $m \ll n$ .

ADI iteration for the Lyapunov equation

[Wachspress '95]

For  $k = 1, \ldots, k_{\max}$ 

$$\begin{array}{rcl} X_0 &= & 0 \\ (A+p_k I) X_{k-\frac{1}{2}} &= & -BB^T - X_{k-1} (A^T - p_k I) \\ (A+p_k I) X_k^T &= & -BB^T - X_{k-\frac{1}{2}}^T (A^T - p_k I) \end{array}$$

Rewrite as one step iteration and factorize  $X_k = Z_k Z_k^T$ ,  $k = 0, \ldots, k_{max}$ 

$$Z_{0}Z_{0}^{T} = 0$$
  

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

 $\ldots \rightsquigarrow$  low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03

|              | MOR by Projection | Balanced Truncation | RatInt<br>00000 | Examples<br>000 | Fin |
|--------------|-------------------|---------------------|-----------------|-----------------|-----|
| <b>ADI M</b> | ethods for        | Lyapunov Equat      | ions            |                 |     |

Low-Rank ADI

Consider 
$$AX + XA^T = -BB^T$$
 for stable  $A, B \in \mathbb{R}^{n \times m}$  with  $m \ll n$ .

ADI iteration for the Lyapunov equation

[Wachspress '95]

For  $k = 1, \ldots, k_{\max}$ 

$$\begin{array}{rcl} X_0 &= & 0 \\ (A+p_k I) X_{k-\frac{1}{2}} &= & -BB^T - X_{k-1} (A^T - p_k I) \\ (A+p_k I) X_k^T &= & -BB^T - X_{k-\frac{1}{2}}^T (A^T - p_k I) \end{array}$$

Rewrite as one step iteration and factorize  $X_k = Z_k Z_k^T$ ,  $k = 0, \ldots, k_{max}$ 

$$Z_{0}Z_{0}^{T} = 0$$
  

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

#### ... ~> low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03]

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|

#### Balanced Truncation ADI Methods for Lyapunov Equations

$$Z_{k} = [\sqrt{-2p_{k}}(A + p_{k}I)^{-1}B, \ (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}]$$

[PENZL '00]

Observing that  $(A - p_i I)$ ,  $(A + p_k I)^{-1}$  commute, we rewrite  $Z_{k_{max}}$  as

$$Z_{k_{\max}} = [z_{k_{\max}}, P_{k_{\max}-1}z_{k_{\max}}, P_{k_{\max}-2}(P_{k_{\max}-1}z_{k_{\max}}), \dots, P_1(P_2 \cdots P_{k_{\max}-1}z_{k_{\max}})],$$

where

$$z_{k_{\max}} = \sqrt{-2p_{k_{\max}}}(A + p_{k_{\max}}I)^{-1}B$$

and

$$P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[ I - (p_i + p_{i+1})(A + p_i I)^{-1} \right].$$

|  | 0 <b>000000000</b> 00000000000000000000000000 |  |  |
|--|-----------------------------------------------|--|--|

#### Balanced Truncation ADI Methods for Lyapunov Equations

$$Z_{k} = \left[\sqrt{-2p_{k}}(A + p_{k}I)^{-1}B, \ (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}\right]$$

[PENZL '00]

Observing that 
$$(A - p_i I)$$
,  $(A + p_k I)^{-1}$  commute, we rewrite  $Z_{k_{\max}}$  as

$$Z_{k_{\max}} = [z_{k_{\max}}, P_{k_{\max}-1} z_{k_{\max}}, P_{k_{\max}-2}(P_{k_{\max}-1} z_{k_{\max}}), \dots, P_1(P_2 \cdots P_{k_{\max}-1} z_{k_{\max}})],$$
[LI/WHITE '02

where

$$z_{k_{\max}} = \sqrt{-2p_{k_{\max}}}(A + p_{k_{\max}}I)^{-1}B$$

and

$$P_i := rac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[ I - (p_i + p_{i+1})(A + p_i I)^{-1} 
ight].$$

#### **ADI Methods for Lyapunov Equations** Lyapunov equation $0 = AX + XA^T + BB^T$ .

Algorithm [Penzl '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'08]

$$V_{1} \leftarrow \sqrt{-2 \operatorname{re} p_{1}} (A + p_{1}I)^{-1}B, \quad Z_{1} \leftarrow V_{1}$$
  
FOR  $k = 2, 3, ...$ 
$$V_{k} \leftarrow \sqrt{\frac{\operatorname{re} p_{k}}{\operatorname{re} p_{k-1}}} (V_{k-1} - (p_{k} + \overline{p_{k-1}})(A + p_{k}I)^{-1}V_{k-1})$$
$$Z_{k} \leftarrow [Z_{k-1} \quad V_{k}]$$
$$Z_{k} \leftarrow \operatorname{rrlq}(Z_{k}, \tau) \quad \text{column compression}$$

At convergence,  $Z_{k_{\text{max}}} Z_{k_{\text{max}}}^{T} \approx X$ , where (without column compression)

$$Z_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$$

**Note:** Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Max Planck Institute Magdeburg

#### **ADI Methods for Lyapunov Equations** Lyapunov equation $0 = AX + XA^T + BB^T$ .

Algorithm [PENZL '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'08]

$$V_{1} \leftarrow \sqrt{-2 \operatorname{re} p_{1}} (A + p_{1}I)^{-1}B, \quad Z_{1} \leftarrow V_{1}$$
  
FOR  $k = 2, 3, ...$ 
$$V_{k} \leftarrow \sqrt{\frac{\operatorname{re} p_{k}}{\operatorname{re} p_{k-1}}} (V_{k-1} - (p_{k} + \overline{p_{k-1}})(A + p_{k}I)^{-1}V_{k-1})$$
$$Z_{k} \leftarrow [Z_{k-1} \quad V_{k}]$$
$$Z_{k} \leftarrow \operatorname{rrlq}(Z_{k}, \tau) \quad \text{column compression}$$

At convergence,  $Z_{k_{\text{max}}} Z_{k_{\text{max}}}^T \approx X$ , where (without column compression)

$$Z_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$$

**Note:** Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Max Planck Institute Magdeburg

#### Numerical Results for ADI Optimal Cooling of Steel Profiles

 Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$
  
$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7$$
  
$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_7.$$

$$\implies m = 7, p = 6.$$

- FEM Discretization, different models for initial mesh (n = 371),
   1, 2, 3, 4 steps of mesh refinement ⇒
  - n = 1357, 5177, 20209, 79841.



Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: TRÖLTZSCH/UNGER 1999/2001, PENZL 1999, SAAK 2003.

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 00000 | 000 |
|-----------------------------------------|------|-----------------------------------------|-------|-----|

#### Numerical Results for ADI Optimal Cooling of Steel Profiles

• Solve dual Lyapunov equations needed for balanced truncation, i.e.,

 $APM^{T} + MPA^{T} + BB^{T} = 0, \quad A^{T}QM + M^{T}QA + C^{T}C = 0,$ 

for 79,841.

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- New version in M.E.S.S. requires no factorization of mass matrix!
- Computations done on Core2Duo at 2.8GHz with 3GB RAM and 32Bit-MATLAB.



|                |               | 0 <b>00000000</b> 000000000000000000000000000 |              |               |         |
|----------------|---------------|-----------------------------------------------|--------------|---------------|---------|
| Numerica       | al Results fo | or ADI                                        |              |               |         |
| Scaling / Mesh | Independence  |                                               | Computations | by Martin Köh | ler '10 |

- A ∈ ℝ<sup>n×n</sup> ≡ FDM matrix for 2D heat equation on [0, 1]<sup>2</sup> (LYAPACK benchmark demo\_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

|          |              | 0 <b>00000000</b> 000000000000000000000000000 |  |  |
|----------|--------------|-----------------------------------------------|--|--|
| Numerica | I Results fo | r ADI                                         |  |  |

Scaling / Mesh Independence

Computations by Martin Köhler '10

- A ∈ ℝ<sup>n×n</sup> ≡ FDM matrix for 2D heat equation on [0, 1]<sup>2</sup> (LYAPACK benchmark demo\_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

| n         | M.E.S.S. (C) | LyaPack       | M.E.S.S. (MATLAB) |  |  |
|-----------|--------------|---------------|-------------------|--|--|
| 100       | 0.023        | 0.124         | 0.158             |  |  |
| 625       | 0.042        | 0.104         | 0.227             |  |  |
| 2,500     | 0.159        | 0.702         | 0.989             |  |  |
| 10,000    | 0.965        | 6.22          | 5.644             |  |  |
| 40,000    | 11.09        | 71.48         | 34.55             |  |  |
| 90,000    | 34.67        | 418.5         | 90.49             |  |  |
| 160,000   | 109.3        | out of memory | 219.9             |  |  |
| 250,000   | 193.7        | out of memory | 403.8             |  |  |
| 562,500   | 930.1        | out of memory | 1216.7            |  |  |
| 1,000,000 | 2220.0       | out of memory | 2428.6            |  |  |

**CPU Times** 



- A ∈ ℝ<sup>n×n</sup> ≡ FDM matrix for 2D heat equation on [0, 1]<sup>2</sup> (LYAPACK benchmark demo\_l1, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.


|  | 000000000000000000000000000000000000000 |  |
|--|-----------------------------------------|--|

#### **Factored Galerkin-ADI Iteration** Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with  $A + A^T < 0$ :

Ocmpute orthonormal basis range (Z), Z ∈ ℝ<sup>n×r</sup>, for subspace Z ⊂ ℝ<sup>n</sup>, dim Z = r.

**2** Set 
$$\hat{A} := Z^T A Z$$
,  $\hat{B} := Z^T B$ 

- **③** Solve small-size Lyapunov equation  $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$ .
- Use  $X \approx Z \hat{X} Z^T$ .

#### Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

|  | 000000000000000000000000000000000000000 |  |
|--|-----------------------------------------|--|

#### **Factored Galerkin-ADI Iteration** Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with  $A + A^T < 0$ :

Ocmpute orthonormal basis range (Z), Z ∈ ℝ<sup>n×r</sup>, for subspace Z ⊂ ℝ<sup>n</sup>, dim Z = r.

**2** Set 
$$\hat{A} := Z^T A Z$$
,  $\hat{B} := Z^T B$ 

- **③** Solve small-size Lyapunov equation  $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$ .
- Use  $X \approx Z \hat{X} Z^T$ .

#### Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

|  | 000000000000000000000000000000000000000 |  |
|--|-----------------------------------------|--|

#### **Factored Galerkin-ADI Iteration** Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with  $A + A^T < 0$ :

- Compute orthonormal basis range (Z), Z ∈ ℝ<sup>n×r</sup>, for subspace Z ⊂ ℝ<sup>n</sup>, dim Z = r.
- **③** Solve small-size Lyapunov equation  $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$ .
- Use  $X \approx Z \hat{X} Z^T$ .

#### Examples:

• ADI subspace [B./R.-C. LI/TRUHAR '08]:

$$\mathcal{Z} = \operatorname{colspan} \left[ \begin{array}{cc} V_1, & \dots, & V_r \end{array} \right].$$

#### Note:

- ADI subspace is rational Krylov subspace [J.-R. LI/WHITE '02].
- Similar approach: ADI-preconditioned global Arnoldi method [JBILOU '08].



# Factored Galerkin-ADI Iteration

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20, 209, m = 7, p = 6.



CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).



# Factored Galerkin-ADI Iteration

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20, 209, m = 7, p = 6.



CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).



#### **Factored Galerkin-ADI Iteration** Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79,841.

MESS w/o Galerkin projection and column compression



### MESS with Galerkin projection and column compression



|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|

#### Balanced Truncation Numerical example for BT: Optimal Cooling of Steel Profiles



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

### Balanced Truncation Numerical example for BT: Optimal Cooling of Steel Profiles



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.



#### Balanced Truncation Numerical example for BT: Microgyroscope (Butterfly Gyro)



- By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.
- Coriolis forces induce motion of wings out of wafer plane yielding sensor data.

- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.



Source: The Oberwolfach Benchmark Collection http://www.intek.de/simulation/benchmark Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.

|                                                                   | 000000000000000000000000000000000000000 | 0000000 | 000000000000000000000000000000000000000 | 00000 | 000 | _ |
|-------------------------------------------------------------------|-----------------------------------------|---------|-----------------------------------------|-------|-----|---|
| THE VERY AND THE PARTICE THE PARTICE THE PARTICE THE PARTICES THE |                                         |         |                                         |       |     |   |

### Balanced Iruncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
  - → n = 34,722, m = 1, p = 12.
- Reduced model computed using SPARED, r = 30.

| Deleven | J. T |                            |  |  |
|---------|------|----------------------------|--|--|
|         |      | 000000000 <b>00000</b> 000 |  |  |
|         |      |                            |  |  |

### Balanced Iruncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
  - $\rightsquigarrow$  n = 34,722, m = 1, p = 12.
- Reduced model computed using SPARED, r = 30.



|      | 00000000 <b>00000</b> 000 |  |  |
|------|---------------------------|--|--|
| <br> |                           |  |  |

### Balanced Truncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
  - $\rightsquigarrow$  n = 34,722, m = 1, p = 12.
- Reduced model computed using SPARED, r = 30.



|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|
|  |                                         |  |  |

### **Basic Principle**

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|
|  |                                         |  |  |

### **Basic Principle**

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

#### Classical Balanced Truncation (BT)

#### Mullis/Roberts '76, Moore '81

- P =controllability Gramian of system given by (A, B, C, D).
- Q = observability Gramian of system given by (A, B, C, D).
- P, Q solve dual Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$$

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|
|  |                                         |  |  |

### Basic Principle

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

### LQG Balanced Truncation (LQGBT) [JONCKHEERE/SILVERMAN '83]

- P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$
  

$$0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$$

| 0000 | 000000000000000000000000000000000000000 |  |  |
|------|-----------------------------------------|--|--|
|      |                                         |  |  |

### **Basic Principle**

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

### Balanced Stochastic Truncation (BST) [Desai/Pal '84, Green '88]

- P = controllability Gramian of system given by (A, B, C, D), i.e., solution of Lyapunov equation  $AP + PA^T + BB^T = 0$ .
- Q = observability Gramian of right spectral factor of power spectrum of system given by (A, B, C, D), i.e., solution of ARE

$$\hat{A}^{\mathsf{T}}Q + Q\hat{A} + QB_{W}(DD^{\mathsf{T}})^{-1}B_{W}^{\mathsf{T}}Q + C^{\mathsf{T}}(DD^{\mathsf{T}})^{-1}C = 0,$$

where  $\hat{A} := A - B_W (DD^T)^{-1} C$ ,  $B_W := BD^T + PC^T$ .

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|
|  |                                         |  |  |

### **Basic Principle**

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

### Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- P, Q solve dual AREs

$$0 = \overline{A}P + P\overline{A}^{T} + PC^{T}\overline{R}^{-1}CP + B\overline{R}^{-1}B^{T},$$
  
$$0 = \overline{A}^{T}Q + Q\overline{A} + QB\overline{R}^{-1}B^{T}Q + C^{T}\overline{R}^{-1}C,$$

where  $\bar{R} = D + D^T$ ,  $\bar{A} = A - B\bar{R}^{-1}C$ .

|  | 000000000000000000000000000000000000000 |  |  |
|--|-----------------------------------------|--|--|
|  |                                         |  |  |

### **Basic Principle**

Given positive semidefinite matrices  $P = S^T S$ ,  $Q = R^T R$ , compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with  $\sigma_r > \sigma_{r+1}$ .

### Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) based on bounded real lemma [OPDENACKER/JONCKHEERE '88];
- $H_{\infty}$  balanced truncation (HinfBT) closed-loop balancing based on  $H_{\infty}$  compensator [MUSTAFA/GLOVER '91].

Both approaches require solution of dual AREs.

• Frequency-weighted versions of the above approaches.

| 000000000000000000000000000000000000000 | 0000000      | 000000000000000000000 | 00000       | 000 |  |
|-----------------------------------------|--------------|-----------------------|-------------|-----|--|
| Palanci                                 | ng Dolatod I | Model Deducti         | <b>0</b> 10 |     |  |

#### Balancing-Related Model Reduction Properties

- Guaranteed preservation of physical properties like
  - stability (all),
  - passivity (PRBT),
  - minimum phase (BST).
- Computable error bounds, e.g.,

$$\begin{split} \mathsf{BT:} & \|G - G_r\|_{\infty} &\leq 2 \; \sum_{j=r+1}^{n} \sigma_j^{BT}, \\ \mathsf{LQGBT:} & \|G - G_r\|_{\infty} &\leq \; 2 \sum_{j=r+1}^{n} \frac{\sigma_j^{LQG}}{\sqrt{1 + (\sigma_j^{LQG})^2}} \\ \mathsf{BST:} & \|G - G_r\|_{\infty} &\leq \left(\prod_{j=r+1}^{n} \frac{1 + \sigma_j^{BST}}{1 - \sigma_j^{BST}} - 1\right) \|G\|_{\infty}, \end{split}$$

- Can be combined with singular perturbation approximation for steady-state performance.
- Computations can be modularized.

| 000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 000 |  |
|--------------------|------|-----------------------------------------|------|-----|--|

### Idea:

Consider

$$\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function  $G(s) = C(sI_n - A)^{-1}B$ .

• For  $s_0 \notin \Lambda(A)$ :

$$G(s) = C \left( I - (s - s_0)(s_0 I_n - A)^{-1} \right)^{-1} (s_0 I_n - A)^{-1} B$$
  
=  $m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|------|-----|--|

### Idea:

Consider

$$\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function  $G(s) = C(sI_n - A)^{-1}B$ . • For  $s_0 \notin \Lambda(A)$ :

$$G(s) = C((s_0I_n - A) + (s - s_0)I_n)^{-1}B$$
  
=  $C(I - (s - s_0)(s_0I_n - A)^{-1})^{-1}(s_0I_n - A)^{-1}B$   
=  $m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|------|-----|--|

### Idea:

Consider

$$\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function  $G(s) = C(sI_n - A)^{-1}B$ . • For  $s_0 \notin \Lambda(A)$ :

$$G(s) = C((s_0I_n - A) + (s - s_0)I_n)^{-1}B$$
  
=  $C(I - (s - s_0)(s_0I_n - A)^{-1})^{-1}(s_0I_n - A)^{-1}B$   
=  $m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$ 

| 000000000000000000000000000000000000000 | 0000 | 000000000000000000000000000000000000000 | 0000 | 000 |  |
|-----------------------------------------|------|-----------------------------------------|------|-----|--|

### Idea:

Consider

$$\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function  $G(s) = C(sI_n - A)^{-1}B$ .

• For  $s_0 \notin \Lambda(A)$ :

$$G(s) = C (I - (s - s_0)(s_0I_n - A)^{-1})^{-1} (s_0I_n - A)^{-1}B$$
  
=  $m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$ 

- For 
$$s_0 = 0$$
:  $m_j := C(A^{-1})^j B$  = moments.  
- For  $s_0 = \infty$ :  $m_j := CA^{j-1}B$  = Markov parameters.

|  | 0000 |  |
|--|------|--|

#### Idea:

Consider

$$\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function  $G(s) = C(sI_n - A)^{-1}B$ . • For  $s_0 \notin \Lambda(A)$ :

$$G(s) = C (I - (s - s_0)(s_0I_n - A)^{-1})^{-1} (s_0I_n - A)^{-1}B$$
  
=  $m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$ 

• As reduced-order model use *r*th Padé approximant  $\hat{G}$  to *G*:

$$G(s) = \hat{G}(s) + \mathcal{O}((s-s_0)^{2r}),$$

i.e.,  $m_j = \widehat{m}_j$  for  $j = 0, \ldots, 2r - 1$ 

 $\rightsquigarrow$  moment matching if  $s_0 < \infty$ ,

 $\rightsquigarrow$  partial realization if  $s_0 = \infty$ .

# Padé-via-Lanczos Method (PVL)

• Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

 $\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}\tilde{B}) =: \mathcal{K}(\tilde{A}, \tilde{B}, r)$ 

(where  $\tilde{A} = (s_0 I_n - A)^{-1}$ ,  $\tilde{B} = (s_0 I_n - A)^{-1}B$ ) along

$$\mathcal{W} = \operatorname{span}(\mathcal{C}^{\mathsf{T}}, \tilde{\mathcal{A}}^* \mathcal{C}^{\mathsf{T}}, \dots, (\tilde{\mathcal{A}}^*)^{r-1} \mathcal{C}^{\mathsf{T}}) =: \mathcal{K}(\tilde{\mathcal{A}}^*, \mathcal{C}^{\mathsf{T}}, r).$$

• Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.

# Padé-via-Lanczos Method (PVL)

• Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}\tilde{B}) =: \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

(where  $\tilde{A} = (s_0 I_n - A)^{-1}, \ \tilde{B} = (s_0 I_n - A)^{-1}B)$  along

$$\mathcal{W} = \operatorname{span}(\mathcal{C}^{\mathsf{T}}, \tilde{\mathcal{A}}^* \mathcal{C}^{\mathsf{T}}, \dots, (\tilde{\mathcal{A}}^*)^{r-1} \mathcal{C}^{\mathsf{T}}) =: \mathcal{K}(\tilde{\mathcal{A}}^*, \mathcal{C}^{\mathsf{T}}, r).$$

• Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.

# Padé-via-Lanczos Method (PVL)

• Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}\tilde{B}) =: \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

(where  $\tilde{A} = (s_0 I_n - A)^{-1}, \ \tilde{B} = (s_0 I_n - A)^{-1}B$ ) along

$$\mathcal{W} = \operatorname{span}(C^{\mathsf{T}}, \tilde{A}^*C^{\mathsf{T}}, \dots, (\tilde{A}^*)^{r-1}C^{\mathsf{T}}) =: \mathcal{K}(\tilde{A}^*, C^{\mathsf{T}}, r).$$

• Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.

**Remark:** Arnoldi (PRIMA) yields only  $G(s) = \hat{G}(s) + O((s - s_0)^r)$ .

# Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for  $\|y \hat{y}\|_2$  often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases; usually requires post processing which (partially) destroys moment matching properties.

# Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for  $||y \hat{y}||_2$  often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases; usually requires post processing which (partially) destroys moment matching properties.

# Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for  $||y \hat{y}||_2$  often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases; usually requires post processing which (partially) destroys moment matching properties.

# Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for  $||y \hat{y}||_2$  often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points. Optimal choice for second-order systems with proportional/Rayleigh damping (BEATTIE/GUGERCIN '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases; usually requires post processing which (partially) destroys moment matching properties.

| Internolatory Model |  | I Reduction |      |  |
|---------------------|--|-------------|------|--|
|                     |  |             | 0000 |  |
|                     |  |             |      |  |

#### Computation of reduced-order model by projection

Given an LTI system  $\dot{x} = Ax + Bu$ , y = Cx with transfer function  $G(s) = C(sI_n - A)^{-1}B$ , a reduced-order model is obtained using projection approach with  $V, W \in \mathbb{R}^{n \times r}$  and  $W^T V = I_r$  by computing

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V.$$

Petrov-Galerkin-type (two-sided) projection:  $W \neq V$ ,

Galerkin-type (one-sided) projection: W = V.

| Interno | latory Mode | I Reduction |       |  |
|---------|-------------|-------------|-------|--|
|         |             |             | 00000 |  |
|         |             |             |       |  |

### Computation of reduced-order model by projection

Given an LTI system  $\dot{x} = Ax + Bu$ , y = Cx with transfer function  $G(s) = C(sI_n - A)^{-1}B$ , a reduced-order model is obtained using projection approach with  $V, W \in \mathbb{R}^{n \times r}$  and  $W^T V = I_r$  by computing

$$\hat{A} = W^{\mathsf{T}} A V, \quad \hat{B} = W^{\mathsf{T}} B, \quad \hat{C} = C V.$$

Petrov-Galerkin-type (two-sided) projection:  $W \neq V$ , Galerkin-type (one-sided) projection: W = V.

### Rational Interpolation/Moment-Matching

Choose V, W such that

$$G(s_j) = \hat{G}(s_j), \quad j = 1, \ldots, k,$$

and

$$rac{d^i}{ds^i}G(s_j)=rac{d^i}{ds^i}\hat{G}(s_j), \quad i=1,\ldots,K_j, \quad j=1,\ldots,k.$$

| Intorno | latory Mada | Deduction |      |  |
|---------|-------------|-----------|------|--|
|         |             |           | 0000 |  |
|         |             |           |      |  |

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

#### lf

$$\begin{array}{ll} \operatorname{span}\left\{(s_1I_n-A)^{-1}B,\ldots,(s_kI_n-A)^{-1}B\right\} &\subset & \operatorname{Ran}(V), \\ \operatorname{span}\left\{(s_1I_n-A)^{-T}C^T,\ldots,(s_kI_n-A)^{-T}C^T\right\} &\subset & \operatorname{Ran}(W), \end{array}$$

#### then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

| Intownol | atom Mada | Deduction |      |  |
|----------|-----------|-----------|------|--|
|          |           |           | 0000 |  |
|          |           |           |      |  |

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\begin{array}{ll} \operatorname{span}\left\{(s_1I_n-A)^{-1}B,\ldots,(s_kI_n-A)^{-1}B\right\} &\subset & \operatorname{Ran}(V), \\ \operatorname{span}\left\{(s_1I_n-A)^{-T}C^T,\ldots,(s_kI_n-A)^{-T}C^T\right\} &\subset & \operatorname{Ran}(W), \end{array}$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

#### Remarks:

using Galerkin/one-sided projection yields  $G(s_j) = \hat{G}(s_j)$ , but in general

$$\frac{d}{ds}G(s_j)\neq \frac{d}{ds}\hat{G}(s_j).$$

| Intownal | atom Mada | Deduction |      |  |
|----------|-----------|-----------|------|--|
|          |           |           | 0000 |  |
|          |           |           |      |  |

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\begin{array}{ll} \operatorname{span}\left\{(s_1I_n-A)^{-1}B,\ldots,(s_kI_n-A)^{-1}B\right\} &\subset & \operatorname{Ran}(V), \\ \operatorname{span}\left\{(s_1I_n-A)^{-T}C^T,\ldots,(s_kI_n-A)^{-T}C^T\right\} &\subset & \operatorname{Ran}(W), \end{array}$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

#### Remarks:

k = 1, standard Krylov subspace(s) of dimension  $K \rightsquigarrow$  moment-matching methods/Padé approximation,

$$\frac{d^i}{ds^i}G(s_1)=\frac{d^i}{ds^i}\hat{G}(s_1), \quad i=0,\ldots, K-1(+K).$$
| Intownal | atom Mada | Deduction |      |  |
|----------|-----------|-----------|------|--|
|          |           |           | 0000 |  |
|          |           |           |      |  |

#### Interpolatory Model Reduction Short Introduction

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\begin{array}{ll} \operatorname{span}\left\{(s_{1}I_{n}-A)^{-1}B,\ldots,(s_{k}I_{n}-A)^{-1}B\right\} &\subset & \operatorname{Ran}(V), \\ \operatorname{span}\left\{(s_{1}I_{n}-A)^{-T}C^{T},\ldots,(s_{k}I_{n}-A)^{-T}C^{T}\right\} &\subset & \operatorname{Ran}(W), \end{array}$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

#### Remarks:

computation of V, W from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [GRIMME '97],
- Iterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN '07].

## Best $\mathcal{H}_2$ -norm approximation problem

Find 
$$\arg \min_{\hat{G} \in \mathcal{H}_2 \text{ of order } \leq r} \|G - \hat{G}\|_2.$$

Best 
$$\mathcal{H}_2$$
-norm approximation problem

Find 
$$\arg\min_{\hat{G}\in\mathcal{H}_2 \text{ of order } \leq r} \|G-\hat{G}\|_2.$$

 $\rightsquigarrow$  First-order necessary  $\mathcal{H}_2\text{-}optimality$  conditions:

For SISO systems

$$G(-\mu_i) = \hat{G}(-\mu_i),$$
  

$$G'(-\mu_i) = \hat{G}'(-\mu_i),$$

where  $\mu_i$  are the poles of the reduced transfer function  $\hat{G}$ .

Best 
$$\mathcal{H}_2$$
-norm approximation problem

Find 
$$\arg \min_{\hat{G} \in \mathcal{H}_2 \text{ of order } \leq r} \|G - \hat{G}\|_2.$$

 $\rightsquigarrow$  First-order necessary  $\mathcal{H}_2\text{-}optimality$  conditions:

For MIMO systems

$$\begin{aligned} G(-\mu_i)\tilde{B}_i &= \hat{G}(-\mu_i)\tilde{B}_i, & \text{for } i = 1, \dots, r, \\ \tilde{C}_i^T G(-\mu_i) &= \tilde{C}_i^T \hat{G}(-\mu_i), & \text{for } i = 1, \dots, r, \\ \tilde{C}_i^T G'(-\mu_i)\tilde{B}_i &= \tilde{C}_i^T \hat{G}'(-\mu_i)\tilde{B}_i, & \text{for } i = 1, \dots, r, \end{aligned}$$

where  $T^{-1}\hat{A}T = \text{diag} \{\mu_1, \dots, \mu_r\} = \text{spectral decomposition and}$  $\tilde{B} = \hat{B}^T T^{-T}, \quad \tilde{C} = \hat{C}T.$ 

→ tangential interpolation conditions.

|  |      | 00000 |  |
|--|------|-------|--|
|  | <br> |       |  |

Construct reduced transfer function by Petrov-Galerkin projection  $\mathcal{P} = VW^{T}$ , i.e.

$$\hat{G}(s) = CV \left( sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as the rational Krylov subspaces

$$V = \left[ (-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$
  
$$W = \left[ (-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right]$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and  $G'(-\mu_i) = \hat{G}'(-\mu_i),$ 

for i = 1, ..., r as desired.  $\leftrightarrow$  iterative algorithms (IRKA/MIRIAm) that yield  $\mathcal{H}_2$ -optimal models.

> [Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

|      | 00000 |  |
|------|-------|--|
| <br> |       |  |

Construct reduced transfer function by Petrov-Galerkin projection  $\mathcal{P} = VW^{T}$ , i.e.

$$\hat{G}(s) = CV \left( sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as the rational Krylov subspaces

$$V = \left[ (-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$
  
$$W = \left[ (-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right]$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and  $G'(-\mu_i) = \hat{G}'(-\mu_i),$ 

for  $i = 1, \ldots, r$  as desired.

 $\rightsquigarrow$  iterative algorithms (IRKA/MIRIAm) that yield  $\mathcal{H}_2$ -optimal models.

[Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

.

|      | 00000 |  |
|------|-------|--|
| <br> |       |  |

Construct reduced transfer function by Petrov-Galerkin projection  $\mathcal{P} = VW^{T}$ , i.e.

$$\hat{G}(s) = CV \left( sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as the rational Krylov subspaces

$$V = \left[ (-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$
  
$$W = \left[ (-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and  $G'(-\mu_i) = \hat{G}'(-\mu_i),$ 

for  $i = 1, \ldots, r$  as desired.

 $\rightsquigarrow$  iterative algorithms (IRKA/MIRIAm) that yield  $\mathcal{H}_2$ -optimal models.

[Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

|      | 00000 |  |
|------|-------|--|
| <br> |       |  |

Construct reduced transfer function by Petrov-Galerkin projection  $\mathcal{P} = VW^{T}$ , i.e.

$$\hat{G}(s) = CV \left( sI - W^{T}AV \right)^{-1} W^{T}B,$$

where V and W are given as the rational Krylov subspaces

$$V = \left[ (-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B \right],$$
  
$$W = \left[ (-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T \right]$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and  $G'(-\mu_i) = \hat{G}'(-\mu_i)$ ,

for i = 1, ..., r as desired.  $\rightsquigarrow$  iterative algorithms (IRKA/MIRIAm) that yield  $\mathcal{H}_2$ -optimal models.

> [Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

|      | 00000 |  |
|------|-------|--|
| <br> |       |  |

#### Algorithm 1 IRKA

**Input:** A stable, B, C,  $\hat{A}$  stable,  $\hat{B}$ .  $\hat{C}$ .  $\delta > 0$ . **Output:** A<sup>opt</sup>, B<sup>opt</sup>, C<sup>opt</sup> 1: while  $(\max_{j=1,...,r} \left\{ \frac{|\mu_j - \mu_j^{\text{old}}|}{|\mu_j|} \right\} > \delta)$  do diag  $\{\mu_1, \ldots, \mu_r\} := T^{-1} \hat{A} T$  = spectral decomposition, 2:  $\tilde{B} = \hat{B}^* T^{-*}$   $\tilde{C} = \hat{C} T$ 3:  $V = \left[ (-\mu_1 I - A)^{-1} B \tilde{B}_1, \dots, (-\mu_r I - A)^{-1} B \tilde{B}_r \right]$  $W = \left[ (-\mu_1 I - A^T)^{-1} C^T \tilde{C}_1, \dots, (-\mu_r I - A^T)^{-1} C^T \tilde{C}_r \right]$ 4: 5:  $V = \operatorname{orth}(V), W = \operatorname{orth}(W)$  $\hat{A} = (W^*V)^{-1} W^*AV, \ \hat{B} = (W^*V)^{-1} W^*B, \ \hat{C} = CV$ 6. 7 end while 8:  $A^{opt} = \hat{A}, B^{opt} = \hat{B}, C^{opt} = \hat{C}$ 

- Co-integration of solid fuel with silicon micromachined system.
- Goal: Ignition of solid fuel cells by electric impulse.
- Application: nano satellites.
- Thermo-dynamical model, ignition via heating an electric resistance by applying voltage source.
- Design problem: reach ignition temperature of fuel cell w/o firing neighbouring cells.
- Spatial FEM discretization of thermo-dynamical model → linear system, m = 1, p = 7.





Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Courtesy of C. Rossi, LAAS-CNRS/EU project "Micropyros".

|      |  | 000 |  |
|------|--|-----|--|
| <br> |  | -   |  |

- axial-symmetric 2D model
- FEM discretisation using linear (quadratic) elements  $\rightarrow n = 4,257$  (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.

|      |   |  | 000 |
|------|---|--|-----|
| <br> | - |  | -   |

- axial-symmetric 2D model
- FEM discretisation using linear (quadratic) elements  $\rightarrow n = 4,257$  (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.



|      |  | 000 |
|------|--|-----|
| <br> |  |     |

- axial-symmetric 2D model
- FEM discretisation using linear (quadratic) elements  $\rightarrow n = 4,257$  (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.



|      |   |  | 000 |
|------|---|--|-----|
| <br> | - |  | -   |

- axial-symmetric 2D model
- FEM discretisation using linear (quadratic) elements  $\rightarrow n = 4,257$  (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.



|      |  | 000 |
|------|--|-----|
| <br> |  | -   |

- axial-symmetric 2D model
- FEM discretisation using linear (quadratic) elements  $\rightarrow n = 4,257$  (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.



Max Planck Institute Magdeburg

|      |  | 000 |  |
|------|--|-----|--|
| <br> |  | -   |  |

# Numerical Comparison of MOR Approaches

- axial-symmetric 2D model
- FEM discretization using quadratic elements  $\rightsquigarrow n = 11,445, m = 1, p = 7.$
- Reduced model computed with LyaPack [Penzl '99].
- Order of reduced model: r = 28.

|      |  | 000 |
|------|--|-----|
| <br> |  | -   |

# Numerical Comparison of MOR Approaches

- axial-symmetric 2D model
- FEM discretization using quadratic elements  $\rightsquigarrow n = 11,445, m = 1, p = 7.$
- Reduced model computed with LyaPack [Penzl '99].
- Order of reduced model: r = 28.



|   |  | 000 |
|---|--|-----|
| - |  |     |

- axial-symmetric 2D model
- FEM discretization using quadratic elements  $\rightsquigarrow n = 11,445, m = 1, p = 7.$
- Reduced model computed with LyaPack [Penzl '99].
- Order of reduced model: r = 28.



| 000000000000000000000000000000000000000 | 000 | 0000000000000000000 | 00000 | 000 |  |
|-----------------------------------------|-----|---------------------|-------|-----|--|

# **Topics Not Covered**

- Balanced residualization (singular perturbation approximation), yields  $G(0) = \hat{G}(0)$ .
- Special methods for second-order (mechanical) systems.
- Extensions to bilinear and stochastic systems.
- Rational interpolation methods for nonlinear systems.
- Other MOR techniques like POD, RB.
- MOR methods for discrete-time systems.
- Extensions to descriptor systems  $E\dot{x} = Ax + Bu$ , E singular.
- Parametric model reduction:

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x,$$

where  $p \in \mathbb{R}^d$  is a free parameter vector; parameters should be preserved in the reduced-order model.

| Refer | rences                                                                                                                                                          |                                                                               |         |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|--|
|       | G. Obinata and B.D.O. Anderson.<br><i>Model Reduction for Control System D</i><br>Springer-Verlag, London, UK, 2001.                                            | esign.                                                                        |         |  |
| 2     | Z. Bai.<br>Krylov subspace techniques for reduced<br>APPL. NUMER. MATH, 43(1-2):9-44, 1                                                                         | -order modeling of large-scale dynamical s                                    | ystems. |  |
| 8     | R. Freund.<br>Model reduction methods based on Kry<br>ACTA NUMERICA, 12:267–319, 2003.                                                                          | lov subspaces.                                                                |         |  |
| ٩     | P. Benner, V. Mehrmann, and D. Sorer<br>Dimension Reduction of Large-Scale Sy<br>LECTURE NOTES IN COMPUTATIONAL<br>Springer-Verlag, Berlin/Heidelberg, Ger      | usen (editors).<br>stems.<br>SCIENCE AND ENGINEERING, Vol. 45,<br>many, 2005. |         |  |
| 5     | A.C. Antoulas.<br>Lectures on the Approximation of Large<br>SIAM Publications, Philadelphia, PA, 2                                                              | e-Scale Dynamical Systems.<br>005.                                            |         |  |
| 6     | P. Benner, R. Freund, D. Sorensen, and<br>Special issue on <i>Order Reduction of La</i><br>LINEAR ALGEBRA APPL., June 2006.                                     | I A. Varga (editors).<br>rge-Scale Systems.                                   |         |  |
| 9     | W.H.A. Schilders, H.A. van der Vorst, i<br>Model Order Reduction: Theory, Resea<br>MATHEMATICS IN INDUSTRY, Vol. 13,<br>Springer-Verlag, Berlin/Heidelberg, 200 | and J. Rommes (editors).<br>rch Aspects and Applications.<br>18.              |         |  |
| 8     | P. Benner, J. ter Maten, and M. Hinze<br>Model Reduction for Circuit Simulation                                                                                 | (editors).                                                                    |         |  |

LECTURE NOTES IN ELECTRICAL ENGINEERING, Vol. 74, Springer-Verlag, Dordrecht, 2011.