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Linear systems

Linear Systems

Linear autonomous (time-invariant) systems:

©(t) = Axz(t)+ Bu(t), t>0, z(0) = xy,
y(t) = Ca(t)+ Du(t),

e n state-space variables, i.e., z(t) € R™ (n is the degree of the system);
e m inputs, i.e., u(t) € R™;
e p outputs, i.e., y(t) € RP;

e A stable, i.e,, A\(A) C C~ = system is stable.

Corresponding transfer function:

Gls) = C(sI, — A)'B + D = [éig].
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Linear systems

Realizations
Laplace transform:  sz(s) — x(0) = Ax(s) + Bu(s), y(s) = Cxz(s) + Du(s).
z(0)=0 = y(s) = (C(sl, — A)"'B+ D) u(s) = G(s)u(s).

A| B
CD

(A,B,C,D) = [ ] is a realization of the system G.

(Realizations are not unique! m, p are fixed, n is variable!)

A

Minimal realization: find minimal degree n (= McMillan degree), A, B,C, D with
G(s) = C(sl; — A)~'B+D.
Minimal realization is not unique: for any state-space transformation
T:x — Tz, (A B,C,D) — (TAT ', TB,CT *',D)

obtain new realization of the system: D + (CT 1) (sI — TAT)"YTB) = G(s).
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Linear systems

Balanced Realization

e Controllability and observability Gramians of G solve Lyapunov equations

AP + PAT + BBT = 0,

ATQ +QA+CTC = 0.

e (A,B,C, D) is a balanced realization of G iff P = @ =

e 01 > 09 > ... > 0, >0 are the Hankel singular values (HSV) of the system

(invariant under state-space transfromation).

e (A, B,C, D) minimal = d balancing state-space transformation.

(Av B7 C, D) non-minimal — Pl:ﬁ,l:ﬁ =

HSV are {o1,...,04,0,...,0}.

Ql:ﬁ,l:ﬁ —

01

01

On
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Spectral projection methods

Spectral Projection Methods

For Z € R™ ™ with A (Z) = Ay UAs, AyN Ay =0, let P be a (skew) projector
onto the right Z-invariant subspace corresponding to A;.

1. rank (P) = |A1]| := k, range(P) = range (AP).

2. Let ) i}

Ri1 R l K
— , Ry; € RFXE
0 0 ] 11

P = QRP, R:[

where P is a permutation matrix. Then obtain block-triangular form

Z11  Zi2 ]

Z = Q'zZQ = [ 0z,

where A\ (le) = Al, A (222) = AQ.
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Spectral projection methods Sign function method

The Sign Function Method
|[Roberts ’71]

For Z € R™*™ with A\ (Z) N2R = () and Jordan canonical form

Jt 0 I 0
Z:S_ll ]S — sinZ::S[ ]S‘l.
0 I gn (Z) 0 —I..,

(J* = Jordan blocks corresponding to A (Z) N C¥)

sign (Z) is root of I,, = use Newton's method to compute it:

1 1
ZO — Z, Zj_|_1 — 5 (Cij + Zj_1> . j = 1,2, ...

Cj

—> | sign(Z) =lim, . Z;.

(c; > 0 is scaling parameter for convergence acceleration and rounding error minimization.)
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Spectral projection methods Sign function method

Properties of the Sign Function Method

o >(I, —sign(Z)) is skew projector onto stable Z-invariant subspace.

e Sign function undefined if Z has purely imaginary eigenvalues = problems for
eigenvalues close to imaginary axis.

cond(Zj) during Newton iteration for sign(2)

e Usually, computed invariant subspaces

are as accurate as their conditioning ad- 10"}
mits. [Byers/He/Mehrmann 1997] "

e Block-triangular form often better con-
ditioned than computation of Schur
form. == Sign function often more  gu'f

accurate than computations based on 6
QR/QZ algorithms.

e Here: cond (sign(Z)) = 1 as Z sta-

ble or anti-stable, hence computation of 10° - !
sign (Z) itself is well-conditioned prob- S oo o

6] 2 4 6 8 10 12 14 16 18 20
lem! iteration no.

A
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Model reduction

Given

find reduced model

Model Reduction

<
=
|
)
ST
—~
=
4+
>
Q
=

of degree ¢ < n with g(t) € RP and output error

such that

~

y—7=Gu—Gu= (G- G)u

ly —g|| “small” or, respectively, |[|G' — G| “small”.

% o
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Model reduction

Truncation Methods

e For arbitrary state-space transformation T' € R™*"™:

A21 A22

TAT' = [A“ A”], TB = [31], CT™' =[C1 Co].

with A;; € REXE .

T;

e Partition T’ = [ W,

],TZEMX”, Tt =T, W, ]|, T e R

[1|B]
C|D

A | By ]
|G| D] | CT, | D

with projected dynamics: x = T, 1.

e Reduced-order model: [

e Choice of T', £ such that ||y — g|| is “small”!
Note: lim, o0 (G (w) — G(w)) = D — D = 0.
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Model reduction

Absolute Error Methods

Recall: want reduced-order model

(t) + Bu(t),

~

(t) + Du(t),

(t) = A
gty = C

SR

SR

of degree ¢ < n with small absolute error.

Note: for ||G||co := €ss sup omax(G(w)), we have
weR

1G(5) — G(5)|oe = sup (G = G)ull2 . ly — 4l

u€EHo HUH2 u€Hy HU||2

Hence, [y —gll2 < IG — Gllocllull2-

Consequence of Paley-Wiener Theorem: ||y — g2 = ||y — 91, = |y — 7l £,[0,00)
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Balanced truncation

Balanced Truncation

>

For balanced realization G(s) = [ é I g ] with P = @ =: 5, the
reduced-order model

: A|B1 [ An|B

G(s) = =

=55 =D
is balanced, minimal, stable. The Gramiansare P=0Q =X =
o

— Computable global error bound |G — G|oo < 2 Z Tk
k=0+1

—> adaptive choice of /.

~

Balancing transformation often ill-conditioned. Remedy: compute 17, T, , such that GG is not
balanced, but error bound holds! [Safonov/Chiang 1989, Varga 1991
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Balanced truncation

Balanced Truncation: SR method

[Heath/Laub/Paige/Ward ’87, Tombs/Postlethwaite ’87]

Gramians are spd = P =S'S, Q = R'R. For better numerical robustness,
use S, R instead of P, ():

o (SRT)? = A\(PQ), cond (SR") = +/cond (PQ).

Note: S—T(PQ)ST = (SRT)(SRT)T = (UsvT)(veuT) =Us2UT.

Compute balancing transformation using SVD:

Y1 0 %% .
SRT — [Ul UZ] [ 01 Yo ] [ V;T ] 3 2 = dlag(gla e 706)
T, = 7 *VTR, = STy s 2,
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Balanced truncation

Computing the Factors S, R

Standard approach:
S, R = {i” c R™* "™ are Cholesky factors of P, (.

Use Hammarling's method: solve Lyapunov equations
ASSTY +(88sMHAa" + BBT =0, AT(R'TR)+(R"R)A+C"C = 0

by reducing A to Schur form (QR algorithm) and solve resulting linear system
for S, R by backsubstitution.

Approach here:

S € Rrank(P)xn R c Rrank(Q)Xn gre fy|| rank factors of P, Q.
Advantages:

— more reliable if Cholesky factors are numerically singular;

— more efficient if rank (P) , rank (Q) < n;

— SVD is cheaper, e.g., semi-discretized point control of 1D heat equation with n = 1000:
rank (P) ~ rank (Q) ~ 20 = O(10°) flops instead of O (10'%), i.e., factor 100, 000.
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Balanced truncation

Example for Cheaper SVD
Complexity of SVD in standard approach: O(n?).

Often, for large-scale systems Gramians have low numerical rank.

Eigenvalues of Gramians, HSV
T

o AP
EAN(®)]
Hankel singular values

— Linear 1D heat equation with point control on
[0, 1],

10° |

— FE-discretization with linear B-splines,

T
o
(@]
Q
o
[S]
o
o
o]
[oa}
8
=)
=
i

- h =1/1000 (= n = 1001). "

10720 [

107%°

1 1
200 400 600
Index k

~ (s)(g(sT () sXn
g ~ ;(s)((iz(s)))T’ Z(r) 2 EW” = SVD of S(S)(R(S))T has complexity O(r2(s +7)).
Here: s ~

r =~ 20 = O(10°) flops instead of ©(10'?).
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Balanced truncation Sign function-based computation of Gramians

Solving Lyapunov Equations with the Sign Function Method
Consider Lyapunov equation F*X + XF 4+ E = 0, F stable.

— [ _I)”(* ] is stable invariant subspace of Z := {g _%T:| :

Apply sign function Newton iteration Z;,; «— (Z; + Zj_l)/2 to Z.

— | sign (Z) =1 i
sign = lim; 00 Z; = ox. 1. |
Newton iteration (with scaling) is equivalent to
FO — F, EO — E,
for y=0,1,2,...
1 2 —1 17
Fij1 — Q—O(Fj—l—chj ), — | X, =3lim; o E;
J
1 _ _
Eip1 — Q—O(Ej—l—c?Fj "E;F).
J
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Balanced truncation Sign function-based computation of Gramians

Semidefinite Lyapunov Equations

Here: E=BYBor CTC, F = A" or A.
Want factor R of solution of ATQ + QA+ CTC = 0.
For Eg = C{Cy := CTC, C € RP*™ obtain

T
B = 5 (B + A7 B AT = z_cj[chjAj—l ¢iCAT |
— re-write Ej—iteration:
C.
o , L 1 J

Problem: C; € RPi*" = (41 € R#i*™
I.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space...
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Balanced truncation Sign function-based computation of Gramians

Compute Cholesky factor R. of ()
Require p; < n: for j > logy(n/p) compute QR factorization

AR R BRI AN

AN

— Ej = éféj, RC = % limj_>oo Cj

Compute full-rank factor R of ()

In every step compute rank-revealing QR factorization:

1 [ C; ]_ | Rjt1 Tipa
\/2_(33 CjCjAj_l I+ O Sj_|_1

| | C;
where R € RPi+1%Pi+1 p.. = rank ([ ch'jjélj_l ]) Then

Hj+17

Ci1:=[Rjp1 Tja W1, Eja = CjCin, | By = J5lim; 00 €

@ & Peter Benner & TU Chemnitz &



Stochastic truncation

Model Reduction Based on Relative Errors

Compute reduced-order system such that relative error || A el||cc becomes “small”,
G(s) = G(s)(I + Asel).

For p=m, D full-rank: find argmin |GG — Q)| .
degree(G)<¢

Balanced stochastic truncation (BST): [Desai/Pal '84, Green '88]

e Compute balancing transformation for controllability Gramian of (G(s) and observability Gramian
W of right spectral factor C'(sI — A) !B + D of power spectrum ®(s) := G(s)GT(—s).

e W is stabilizing solution of algebraic Riccati equation (ARE): (E := DD?')

0 = C'ET'"C+(A-—BE'C)'W+W(A-BE'C)+ WBE 'B"W.
Numerical solution via Newton’s method with line search [B. 97, B./Byers '98]
Newton iteration: solve Lyapunov equation using factored sign function iteration ~~ factored
solution of ARE. [B./Byers/Quintana-Ortix 2 '00]
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Stochastic truncation

Advantages of Stochastic Truncation

Lpj

e Global relative error bound | [|Aselllco < TT5—pp; 1= i — 1, M(PW) = {uj} C [0, 1]

= uniform approximation of transfer function over whole frequency domain.

e Additional system properties are preserved compared to balanced truncation:
— right-half plane zeroes ~~ reduced-order model of minimum-phase system is minimum phase;
— robust stability (controller for reduced model stabilizes full-order plant) [Safonov/Chiang '88].

e o error bounds for phase (for BT, only error bounds for magnitude).

Straightforward error bound for inverse system:
1GT! = G oo < N Avatllo |Gl

~~ can solve inverse problems

y = Gu, vy known from measurements, compute u = G 'y

for a given accuracy threshold with reduced-order model.

Analogous computational techniques for

e LQG balancing (reduce plant and controller at the same time),
e positive real balancing (preserve passivity).

A
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Unstable Systems

Model Reduction of Unstable Systems

Use additive decomposition of transfer function,
G(s) = G_(s)+G4(s), G _(s) stable, G,(s) anti-stable,

and reduce G_(s) using BT etc., keep G (s) (dominates the dynamics).

Need block-diagonalization of A:

. A 0 .
A;:U—lAU:[ 011 A22]iBIZU_lB::[g;]’C_CU_[0102]’
Then
(sl — A1)~ By
G = C; C D
(s) [ 1 2 ] [ (S[n_k—Agg)_l Bo +

= {Cl(SIk: — All)_lBl} + {CQ(SIn_k — A22)_1BQ + D} = G_(S) + G_|_(S>,
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Unstable Systems

Block-Diagonalization via the Sign Function Method

1. Compute sign (A) and obtain spectral projector P_ := £(I, — sign (Z)) =
obtain block-triangular form from QR decomposition of P_
_ A A
_ = QRP A= QTAQ = ,
P- = QRP, Q AQ [ 0 A, ]

2. Solve Sylvester equation A11Y — Y Aoy + A5 = 0. Then

A= vidv = | A 0 v | Y
- B 0 Axp |’ - 0 Lk |

Aq1, — Ao stable = solve Sylvester equation via sign function method:

Ey = Ay, Ejv1 =35 E; + EJ_1> :
Fo i=Ap,  Fy =3 (F+F), j=0,1,2,....
W() = A12, Wj_|_1 = % Wj —+ Ej_:[Wij_1> y
. . 1 q-
= hmj_mo Ej = —1I;, hmj_wo Fj =1,,_,and Y = §hmj_>oo Wj.
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Large-scale problems

Model Reduction for Large-Scale Systems

Large-scale dense problems of size n = O(lOk), m,p < n arise, e.g., from
discretization of integral equations via BEM or wavelet techniques.

n = O(10°) ~ sign function based methods applicable on current workstations.

n = O(10*) ~ parallelization on PC or workstation cluster using off-the-shelf computer tech-
nology (standard chips, Fast Ethernet,...) and software (MPI, PBLAS, BLACS, ScaLAPACK).

Large-scale sparse systems, e.g., from 3D FEM models, large-scale circuits, etc.
~+ use the same ideas (truncation methods, factored Gramians), but need sparse

Lyapunov/Riccati solvers.

e Balanced truncation: [Penzl '98, Li/White '99-'02, Antoulas/Sorensen/Gugercin/Zhou '00-'03]

e Stochastic truncation: [B. "0x]

Alternative:

sparse representation (approximation) of A using hierarchical matrices
[Hackbusch/Khoromskij/Grasedyck ‘03, Ph.D. thesis Baur in progress]
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Large-scale problems H-matrix implementation of BT

‘H-Matrix Implementation

Recall: solution of the Lyapunov equation
FP+PF'+ BB =0

with the sign function method:

F, = A, FE,=BB?

1 _
Fipn = S(F+F )

1 _ _
Ejy = §(Ej+AjTEjAj )

involves the inversion, addition and multiplication of n X n matrices
— complexity: O(n?)

Approximation of A in H-matrix format, use of the formatted H-matrix arithmetic
— complexity: O(nlog?n).
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Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Short Introduction

Hierarchical (7{-)matrices are a data-sparse approximation of large, dense matrices
arising

e from the discretisation of non-local integral operators occuring in BEM,
e as inverses of FEM discretized elliptic differential operators,

but can also be used to represent FEM matrices directly.

Properties of H-matrices:

e only few data are needed for the representation of the matrix,

e matrix-vector multiplication can be performed in almost linear complexity

(O(nlogin)),

e building sums, products, inverses is of “almost” linear complexity.
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Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Construction

Consider matrices over a product index set I x I.

Partition I x I by the H-tree 17«7, where a problem dependend admissibility
condition is used to decide whether a block t x s C I x I allows for a low rank
approximation.

Definition: Hierarchical matrices (H{-matrices)
The set of the hierarchical matrices is defined by

H(Trxr, k) = {M € R"™| rank(M|;xs) < k V admissible leaves txs of Tryr}

Submatrices of M € H(T;«1, k) corresponding to inadmissible leaves are stored
as dense blocks whereas those corresponding to admissible leaves are stored in
factorized form as rank-k matrices, called R,-format.
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Large-scale problems H-matrix implementation of BT

Example

Stiffness matrix of 2D heat equation with distributed control and isolation BC
n =1024 and k =4
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Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Formatted Arithmetic

H(Tr«1, k) is not a linear subspace of R!*! ~~ formatted arithmetics
~ projection of the sum, product and inverse into H(Tx1, k)

1. Formatted Addition (@)
with complexity Nygr = O(nk?logn)) (for sparse Ty )
Corresponds to best approximation (in the Frobenius-norm).

2. Formatted Multiplication (®)
Nuor = O(nk? log? n) (under some technical assumptions on Ty« )

—~——

3. Formatted inversion (Inv)

N, — = O(nk?log?n) (under some technical assumptions on T«
H,Inv &
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Large-scale problems H-matrix implementation of BT

Error propagation
Sign function iteration with formatted H-matrix arithmetic:

~

. I —
Ao = (A)n, Ajp1 = 5(143' ® Inv(A;))
Accuracy control for iterates ~ k = O(log ; + log %)) where

(A7 — Inv(A)))]|2

[(A7" +Inv(4))) — (A7 @ Tnv(A))ll. < p

VAN
>,

—> forward error bound (assuming c;(J + ,0)||Aj_1||2 < 1Vj):

|A; — Ajll2 < ¢;(6 + p),

where

co=||Ado — All2(6 +p) 7", cjy1 =

DO | =

1+ ¢j+c; 14571
T AT )
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Large-scale problems Parallel implementation of BT

Parallelization

e Newton iteration for sign function easy to parallelize — need basic linear algebra
(systems of linear equations, matrix inverse, matrix addition, matrix product).

e Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical
linear algebra — portable code.

e Development of software library PLICMR.

e Testing on PC Cluster (Linux) with 32 Intel Pentium 11-300MHz processors.

— workspace/processor: 128 MBytes.
— Myrinet Switch, bandwidth ~ 100 Mbit/sec.

e Results on 1 processor: SLICOT codes, based on computation of Cholesky
factors via Hammarling’s method.

SLICOT = Subroutine Library in Control Theory, available from http://www.win.tue.nl/niconet
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Numerical examples Parallel implementation of BT

Numerical Examples

Benchmark tests:

1. 1D heat equation with point control

Control of temperature distribution in thin rod with heat source in the middle = 1D heat
equation with homogeneous Dirichlet boundary. Discretization with FEM, linear elements.

n = dimension of the FE ansatz space.
m = 1: spatially constant heat source.
p = 1: temperature is measured in one interval.

2. Simulation of catalytic reactor (taken from ABB gPROMS tutorial)

e FE discretization of boundary control problem for coupled PDE system (conservation laws,
reaction-diffusion equations, Robin and Neumann boundary conditions), linearization around
working point.

e Dynamics: oxidation (o-Xylene to phthalic anhydrite).

e Control: external cooling of the reactor.

o n—=1171, m =6, p = 4.

A
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Numerical examples

Parallel implementation of BT

3. “Random” systems with given McMillan degree and given rank of Gramians.

4. Optimal cooling of steel profiles (model

[ Tréltzsch/Unger, Penzl 1999))

e Mathematical model: boundary control for lin-
earized 2D heat equation.

2:13 = >\AlC, £ el

ot c-p

0 1

5,7 = Jlww—=), £€l k=1,
3CIS = 0 £€F7.

on ’

e FEM Discretization, initial mesh (n = 821).
2 steps of mesh refinement =— n = 3113.

0.9
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0.7

0.6

0.5

0.4

0.3

0.2

0.1+

by Mannesmann/Demag,

I I
-0.6 -0.4 -0.2

I
0.2 0.4
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Numerical examples

Accuracy

Example 1:

Absolute Error for Balanced Truncation

rank (P) = 32, rank (Q) = 38(37), £ = 6.

3 n =500 s n = 1000
10 ¢ ‘ 10 T
107 = 10" —
‘\‘x, ~'\‘
r S \“'-
L = =,
L ‘ ~
. \\/ . “
10 "¢ N, B 10 7k .,
_«~ F \ 3] :N
= S, 3
g \'\ "%— 3
> 3 o *
Q 100k \'\, : 1 10°F S
’é\ 3 \/\ ] 3 N
. [ . = ,\
5 I \‘\ o N
—_— - = \
0L J 107 3
10 3 | S,
r \
r - - = = SLICOT/ABO9AD q
I . gggg;./é?qogAD ---- PDGEBTSR
_8 10-8 B - error bound
10 F — error bound 4
z A
" q
-9
-9 10 | | | | |
10 ‘ ‘ ‘ ‘ ‘ — -4 -2 0 2 4
1076 10—4 10—2 100 102 10 10 10 10 10 10 10 10
frequency w frequency w
& Peter Benner TU Chemnitz & 33




Numerical examples

Accuracy

Absolute Error for Singular Perturbation Approximation

SPA: minimal realization via BT, compute G such that G(0) = G(0) and % < Z O-

k=¢+1
Example 2: rank (P) = 124, rank (Q) = 93, £ = 40
. From u toy, . From utoy,
10 T T T T 10 F T T T T
I O : ey
s [ . ] o \
10 \ E 10 2L \\ \ 3
”‘, E |l’ !ﬁ ]
-6 (1N Vi
107 ¢ (S ) 1y
v 1 \,\‘ 3 10 3? i \\( J
\, g \
107 L \\' ] : S
. ) ,

s, 10 4; N 3
£ 8 N c F ]
c 10 \, E o .

o N ] A
i s 10 ¢ 3
107 F ' : T
_67
107°L ] 10 'k 3
E original system A R original system
_al - - reduced-order mode -7] - - reduced-order mode
10 ¢ 3 10 3 3
ol i
10 Il 1 1 1 1 _8
_6 -4 _2 O 2 4 10 Il 1 1 1 1
10 10 10 10 10 10 10 10°° 107 1072 10° 10° 10* 10°
Freaguency (wrad/sec.) Frequency (w rad/sec.)
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Numerical examples Accuracy

Uniform Approximation of BST /Example 4

e n = 821: rank (P) = 165, rank (Q) = 210, £ =40 = ||G—G|ls < 3.2:107%||G||

-3

Fromu 1 toy 1 10 T T T T 3
10° ¢ 3
10 b \ 3
1 1
10 "¢ .
£ 10 S -
-6
— 0 -
10°F o
T | 3
s | Spo”
= I <
c
107 ?
£ : S
= F 310
.% L 8
© 10-4; 107 b
— full order system
] PDGESTSR -10 —— PDGESTSR ]
' — — ABO9HD 107F — ABO9AD ,
107°F (error bound)*|G(w)l,
-11
10 E
! ! ! ! _12
-2 0 2 4 10 ‘ ‘ ‘ ‘
10 10 10 10 10 1072 10° 10 10* 10
Frequency w (rad./sec.) Frequency w (rad./sec.)

e n = 3113: rank (P) = 179, rank (Q) = 204,
— (numerical) stochastic McMillan degree: pup < n-pp-u = n = 135.
— 4=40 = ||G -Gl <2.8-107Y G|
— SVD: < 1sec. on 2 processors using full-rank factors, =~ 25 minutes using Cholesky factors.

A
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Numerical examples

Efficiency

Speed-Up/Efficiency of Parallel Algorithms

Example 3 /balanced truncation:
n = 1000, m = p = 100,n = £ = 50

600

Example 3/BT, discrete-time:
n = 1000,m = p = 100,n = £ = 50

500
/ SLICOT/ABO9AD 450 » :
500k . SLICOT/ABO9AD
400
350
400
é 5 300
(0] [0}
£ 300 E 250t
15 5
§ é 200}
m 200 '-'>j
150
100
100r e 46\0
50
‘e; ‘o
0 ! ! ! ! ! ! Uy I l l l l ! ! ! 1
0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8 9
Number of processors Number of processors
TU Chemnitz & 36
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Numerical examples Efficiency

Speed-Up/Efficiency of Parallel Algorithms
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Numerical examples
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Conclusions

Conclusions

e Not shown, but “available” spectral projection-based methods:

— BT et al for discrete-time systems: compute factors of Gramians using
factored Smith-Iteration,

— optimal Hankel norm approximation,

— modal truncation,

— "“generic’ frequency-weighted BT,

— BT for descriptor systems using spectral projection-based approach equivalent
to [Stykel '01-'03],

— truncation for SISO and symmetric systems using the cross-Gramian ~~
factored solution of Sylvester equations, need product QR for non-square
factors!

e Parallel implementations are collected in software library PLICMR and are
integrated into parallel version of SLICOT, accessible via remote computing.

e Implementations of methods for sparse systems based on ADI in progress.
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Conclusions

Open Problems

e Error bounds for interconnecting compact models using frequency-weighted
BT-based models?

e |n circuit simulation, need passive reduced systems for DAE systems ~~ positive
real balancing applicable?

e Exploiting PDE structures ~~ H-matrix based BT, combination with POD for
nonlinear systems?

e Sign function implementation using formatted arithmetic based on wavelet
compression techniques ~ promising results by [Schneider/Harbrecht '03].

e How far can we go with dense parallel implementations?

With 32-node (2 P4 with 1 GB each) cluster can apply (dense) BT for
n = 75,000 in single precision.
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