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Linear systems

Linear Systems

Linear autonomous (time-invariant) systems:

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t),

• n state-space variables, i.e., x(t) ∈ R
n (n is the degree of the system);

• m inputs, i.e., u(t) ∈ R
m;

• p outputs, i.e., y(t) ∈ R
p;

• A stable, i.e., λ (A) ⊂ C
− ⇒ system is stable.

Corresponding transfer function:

G(s) = C(sIn − A)−1B + D ≡
[

A B
C D

]
.
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Linear systems

Realizations

Laplace transform: sx(s) − x(0) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).

x(0) = 0 =⇒ y(s) =
(
C(sIn − A)−1B + D

)
u(s) = G(s)u(s).

(A,B, C,D) ≡
[

A B
C D

]
is a realization of the system G.

(Realizations are not unique! m, p are fixed, n is variable!)

Minimal realization: find minimal degree n̂ (= McMillan degree), Â, B̂, Ĉ, D̂ with

G(s) = Ĉ(sIn̂ − Â)−1B̂ + D̂.

Minimal realization is not unique: for any state-space transformation

T : x → Tx, (A,B, C,D) → (TAT−1, TB,CT−1, D)

obtain new realization of the system: D + (CT−1)(sI − TAT−1)−1(TB) = G(s).
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Linear systems

Balanced Realization

• Controllability and observability Gramians of G solve Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

• (A,B, C,D) is a balanced realization of G iff P = Q =




σ1
. . .

σn


.

• σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are the Hankel singular values (HSV) of the system
(invariant under state-space transfromation).

• (A,B, C,D) minimal =⇒ ∃ balancing state-space transformation.

(A,B, C,D) non-minimal =⇒ P1:n̂,1:n̂ = Q1:n̂,1:n̂ =




σ1
. . .

σn̂


,

HSV are {σ1, . . . , σn̂, 0, . . . , 0}.
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Spectral projection methods

Spectral Projection Methods

For Z ∈ R
n×n with λ (Z) = Λ1 ∪ Λ2, Λ1 ∩ Λ2 = ∅, let P be a (skew) projector

onto the right Z-invariant subspace corresponding to Λ1.

1. rank (P) = |Λ1| := k, range (P) = range (AP).

2. Let

P = QRP, R =

[
R11 R12

0 0

]
=




@
@

@
@@


 , R11 ∈ R

k×k,

where P is a permutation matrix. Then obtain block-triangular form

Z̃ := QTZQ =

[
Z11 Z12

0 Z22

]
,

where λ (Z11) = Λ1, λ (Z22) = Λ2.
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Spectral projection methods Sign function method

The Sign Function Method

[Roberts ’71]

For Z ∈ R
n×n with λ (Z) ∩ ıR = ∅ and Jordan canonical form

Z = S−1

[
J+ 0

0 J−

]
S =⇒ sign (Z) := S

[
Ik 0

0 −In−k

]
S−1 .

(J± = Jordan blocks corresponding to λ (Z) ∩ C
±)

sign (Z) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z, Zj+1 ← 1

2

(
cjZj +

1

cj
Z−1

j

)
, j = 1, 2, . . .

=⇒ sign (Z) = limj→∞ Zj.

(cj > 0 is scaling parameter for convergence acceleration and rounding error minimization.)
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Spectral projection methods Sign function method

Properties of the Sign Function Method

• 1
2(In − sign (Z)) is skew projector onto stable Z–invariant subspace.

• Sign function undefined if Z has purely imaginary eigenvalues =⇒ problems for
eigenvalues close to imaginary axis.

• Usually, computed invariant subspaces

are as accurate as their conditioning ad-

mits. [Byers/He/Mehrmann 1997 ]

• Block-triangular form often better con-

ditioned than computation of Schur

form. =⇒ Sign function often more

accurate than computations based on

QR/QZ algorithms.

• Here: cond (sign (Z)) = 1 as Z sta-

ble or anti-stable, hence computation of

sign (Z) itself is well-conditioned prob-

lem!
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Model reduction

Model Reduction

Given

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t),

find reduced model

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t),

of degree ` ¿ n with ỹ(t) ∈ R
p and output error

y − ỹ = Gu − G̃u = (G − G̃)u

such that

‖y − ỹ‖ “small” or, respectively, ‖G − G̃‖ “small”.

♦ Peter Benner ♦ TU Chemnitz ♦ 9



Model reduction

Truncation Methods

• For arbitrary state-space transformation T ∈ R
n×n:

TAT−1 =

[
A11 A12

A21 A22

]
, TB =

[
B1

B2

]
, CT−1 =

[
C1 C2

]
.

with A11 ∈ R
`×`, . . ..

• Partition T =

[
Tl

Wl

]
, Tl ∈ R

`×n, T−1 =
[

Tr Wr

]
, Tr ∈ R

n×`.

• Reduced-order model:

[
Ã B̃

C̃ D̃

]
=

[
A11 B1

C1 D

]
=

[
TlATr TlB
CTr D

]

with projected dynamics: x̃ = TrTlx.

• Choice of T , ` such that ‖y − ỹ‖ is “small”!

Note: limω→∞(G(ıω) − G̃(ıω)) = D − D = 0.
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Model reduction

Absolute Error Methods

Recall: want reduced-order model

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t) + D̃u(t),

of degree ` ¿ n with small absolute error.

Note: for ‖G‖∞ := ess sup
ω∈R

σmax(G(ıω)), we have

‖G(s) − G̃(s)‖∞ = sup
u∈H2

‖(G − G̃)u‖2

‖u‖2
= sup

u∈H2

‖y − ỹ‖2

‖u‖2

Hence, ‖y − ỹ‖2 ≤ ‖G − G̃‖∞‖u‖2.

Consequence of Paley-Wiener Theorem: ‖y − ỹ‖2 ≡ ‖y − ỹ‖H2 ≡ ‖y − ỹ‖L2[0,∞)
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Balanced truncation

Balanced Truncation

For balanced realization G(s) ≡
[

A B
C D

]
with P = Q =:

[
Σ̃

Σ2

]
the

reduced-order model

G̃(s) ≡
[

Ã B̃

C̃ D̃

]
≡

[
A11 B1

C1 D

]

is balanced, minimal, stable. The Gramians are P̃ = Q̃ = Σ̃ =

[
σ1

. . .

σ`

]
.

=⇒ Computable global error bound ‖G − G̃‖∞ ≤ 2

n∑

k=`+1

σk.

=⇒ adaptive choice of `.

Balancing transformation often ill-conditioned. Remedy: compute Tl, Tr , such that G̃ is not

balanced, but error bound holds! [Safonov/Chiang 1989, Varga 1991 ]
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Balanced truncation

Balanced Truncation: SR method

[Heath/Laub/Paige/Ward ’87, Tombs/Postlethwaite ’87]

Gramians are spd =⇒ P = STS, Q = RTR. For better numerical robustness,
use S,R instead of P,Q:

σ (SRT )2 = λ(PQ), cond (SRT ) =
√

cond (PQ).

Note: S−T (PQ)ST = (SRT )(SRT )T = (UΣV T )(V ΣUT ) = UΣ2UT .

Compute balancing transformation using SVD:

SRT = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
, Σ1 = diag(σ1, . . . , σ`)

⇓

Tl = Σ
−1/2
1 V T

1 R, Tr = STU1Σ
−1/2
1 .
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Balanced truncation

Computing the Factors S,R

Standard approach:

S,R =
[

@
@

@@

]
∈ R

n×n are Cholesky factors of P,Q.

Use Hammarling’s method: solve Lyapunov equations

A(SS
T
) + (SS

T
)A

T
+ BB

T
= 0, A

T
(R

T
R) + (R

T
R)A + C

T
C = 0

by reducing A to Schur form (QR algorithm) and solve resulting linear system
for S,R by backsubstitution.

Approach here:

S ∈ R
rank(P )×n, R ∈ R

rank(Q)×n are full rank factors of P,Q.

Advantages:

– more reliable if Cholesky factors are numerically singular;

– more efficient if rank (P ) , rank (Q) ¿ n;

– SVD is cheaper, e.g., semi-discretized point control of 1D heat equation with n = 1000:

rank (P ) ≈ rank (Q) ≈ 20 ⇒ O(105) flops instead of O(1010), i.e., factor 100, 000.
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Balanced truncation

Example for Cheaper SVD

Complexity of SVD in standard approach: O(n3).

Often, for large-scale systems Gramians have low numerical rank.

Example:

– Linear 1D heat equation with point control on

[ 0, 1 ],

– FE-discretization with linear B-splines,

– h = 1/1000 (=⇒ n = 1001).
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λ k, σ
k

Eigenvalues of Gramians, HSV

Λ (P)
Λ (Q)
Hankel singular values

P ≈ S(s)(S(s))T , S(s) ∈ R
s×n

Q ≈ R(s)(R(s))T , R(r) ∈ R
r×n ⇒ SVD of S

(s)
(R

(s)
)
T

has complexity O(r
2
(s + r)).

Here: s ≈ r ≈ 20 =⇒ O(105) flops instead of O(1010).
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Balanced truncation Sign function-based computation of Gramians

Solving Lyapunov Equations with the Sign Function Method

Consider Lyapunov equation F TX + XF + E = 0, F stable.

=⇒
[

In

−X∗

]
is stable invariant subspace of Z :=

[
F
E

0
−F T

]
.

Apply sign function Newton iteration Zj+1 ← (Zj + Z−1
j )/2 to Z.

=⇒ sign (Z) = limj→∞ Zj =

[ −In 0

2X∗ In

]
.

Newton iteration (with scaling) is equivalent to

F0 ← F, E0 ← E,
for j = 0, 1, 2, . . .

Fj+1 ← 1

2cj

(
Fj + c2

jF
−1
j

)
,

Ej+1 ← 1

2cj

(
Ej + c2

jF
−T
j EjF

−1
j

)
.

=⇒ X∗ = 1
2 limj→∞ Ej
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Balanced truncation Sign function-based computation of Gramians

Semidefinite Lyapunov Equations

Here: E = BTB or CTC, F = AT or A.

Want factor R of solution of ATQ + QA + CTC = 0.

For E0 = CT
0 C0 := CTC, C ∈ R

p×n obtain

Ej+1 =
1

2cj

(
Ej + c2

jA
−T
j EjA

−1
j

)
=

1

2cj

[
Cj

cjCjA
−1
j

]T [
Cj

cjCjA
−1
j

]
.

=⇒ re-write Ej–iteration:

C0 := C, Cj+1 := 1√
2cj

[
Cj

cjCjA
−1
j

]
.

Problem: Cj ∈ R
pj×n =⇒ Cj+1 ∈ R

2pj×n,
i.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space...
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Balanced truncation Sign function-based computation of Gramians

Compute Cholesky factor Rc of Q

Require pj ≤ n: for j > log2(n/p) compute QR factorization

1
√

2cj

[

Cj

cjCjA
−1
j

]

= Uj

[

Ĉj

0

]

, Ĉj =
[

@
@

@@

]

∈ R
n×n

.

=⇒ Ej = ĈT
j Ĉj, Rc = 1√

2
limj→∞ Ĉj

Compute full-rank factor Rf of Q

In every step compute rank-revealing QR factorization:

1
√

2cj

[

Cj

cjCjA
−1
j

]

= Uj+1

[

Rj+1 Tj+1

0 Sj+1

]

Πj+1,

where Rj+1 ∈ R
pj+1×pj+1, pj+1 = rank

([
Cj

cjCjA
−1
j

])
. Then

Cj+1 := [Rj+1 Tj+1 ]Πj+1, Ej+1 = CT
j+1Cj+1, Rf = 1√

2
limj→∞ Cj
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Stochastic truncation

Model Reduction Based on Relative Errors

Compute reduced-order system such that relative error ‖∆rel‖∞ becomes “small”,

G̃(s) = G(s)(I + ∆rel).

For p = m, D full-rank: find argmin
degree(G̃)≤`

‖G−1(G − G̃)‖∞.

Balanced stochastic truncation (BST): [Desai/Pal ’84, Green ’88 ]

• Compute balancing transformation for controllability Gramian of G(s) and observability Gramian

W of right spectral factor Ĉ(sI − Â)−1B̂ + D̂ of power spectrum Φ(s) := G(s)GT (−s).

• W is stabilizing solution of algebraic Riccati equation (ARE): (E := DDT )

0 = C
T
E

−1
C + (A − B̂E

−1
C)

T
W + W (A − B̂E

−1
C) + WB̂E

−1
B̂

T
W.

Numerical solution via Newton’s method with line search [B. ’97, B./Byers ’98 ]

Newton iteration: solve Lyapunov equation using factored sign function iteration Ã factored

solution of ARE. [B./Byers/Quintana-Ort́ı×2 ’00 ]
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Stochastic truncation

Advantages of Stochastic Truncation

• Global relative error bound ‖∆rel‖∞ ≤
∏n

j=`+1

1+µj

1−µj
− 1, λ (PW ) = {µ2

j} ⊂ [0, 1]

⇒ uniform approximation of transfer function over whole frequency domain.

• Additional system properties are preserved compared to balanced truncation:

– right-half plane zeroes Ã reduced-order model of minimum-phase system is minimum phase;

– robust stability (controller for reduced model stabilizes full-order plant) [Safonov/Chiang ’88 ].

• ∃ error bounds for phase (for BT, only error bounds for magnitude).

• Straightforward error bound for inverse system:

‖G
−1

− G̃
−1

‖∞ ≤ ‖∆rel‖∞‖G̃
−1

‖∞

Ã can solve inverse problems

y = Gu, y known from measurements, compute u = G−1y

for a given accuracy threshold with reduced-order model.

Analogous computational techniques for

• LQG balancing (reduce plant and controller at the same time),

• positive real balancing (preserve passivity).
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Unstable Systems

Model Reduction of Unstable Systems

Use additive decomposition of transfer function,

G(s) = G−(s) + G+(s), G−(s) stable, G+(s) anti-stable,

and reduce G−(s) using BT etc., keep G+(s) (dominates the dynamics).

Need block-diagonalization of A:

Â := U−1AU =

[
A11 0

0 A22

]
⇒ B̂ := U−1B =:

[
B1

B2

]
, Ĉ := CU =: [C1 C2 ] ,

Then

G(s) =
[

C1 C2

] [
(sIk − A11)

−1

(sIn−k − A22)
−1

] [
B1

B2

]
+ D

=
{
C1(sIk − A11)

−1B1

}
+

{
C2(sIn−k − A22)

−1B2 + D
}

=: G−(s) + G+(s),
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Unstable Systems

Block-Diagonalization via the Sign Function Method

1. Compute sign (A) and obtain spectral projector P− := 1
2(In − sign (Z)) ⇒

obtain block-triangular form from QR decomposition of P−

P− = QRP, Ã := Q
T
AQ =

[

A11 A12

0 A22

]

.

2. Solve Sylvester equation A11Y − Y A22 + A12 = 0. Then

Â := V
−1

ÃV =

[

A11 0

0 A22

]

, V :=

[

Ik Y

0 In−k

]

.

A11,−A22 stable ⇒ solve Sylvester equation via sign function method:

E0 := A11, Ej+1 := 1
2

(

Ej + E−1
j

)

,

F0 := A22, Fj+1 := 1
2

(

Fj + F−1
j

)

,

W0 := A12, Wj+1 := 1
2

(

Wj + E−1
j WjF

−1
j

)

,

j = 0, 1, 2, . . . .

⇒ limj→∞ Ej = −Ik, limj→∞ Fj = In−k, and Y = 1
2 limj→∞ Wj.
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Large-scale problems

Model Reduction for Large-Scale Systems

Large-scale dense problems of size n = O(10k), m, p ¿ n arise, e.g., from
discretization of integral equations via BEM or wavelet techniques.

n = O(103) Ã sign function based methods applicable on current workstations.

n = O(104) Ã parallelization on PC or workstation cluster using off-the-shelf computer tech-

nology (standard chips, Fast Ethernet,...) and software (MPI, PBLAS, BLACS, ScaLAPACK).

Large-scale sparse systems, e.g., from 3D FEM models, large-scale circuits, etc.
Ã use the same ideas (truncation methods, factored Gramians), but need sparse
Lyapunov/Riccati solvers.

• Balanced truncation: [Penzl ’98, Li/White ’99–’02, Antoulas/Sorensen/Gugercin/Zhou ’00–’03 ]

• Stochastic truncation: [B. ’0x ]

Alternative:

sparse representation (approximation) of A using hierarchical matrices
[Hackbusch/Khoromskij/Grasedyck ’03, Ph.D. thesis Baur in progress ]
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Large-scale problems H-matrix implementation of BT

H-Matrix Implementation

Recall: solution of the Lyapunov equation

FP + PF T + BBT = 0

with the sign function method:

F0 = A, E0 = BBT

Fj+1 =
1

2
(Fj + F−1

j )

Ej+1 =
1

2
(Ej + A−T

j EjA
−1
j )

involves the inversion, addition and multiplication of n × n matrices
↪→ complexity: O(n3)

Approximation of A in H-matrix format, use of the formatted H-matrix arithmetic
↪→ complexity: O(n logq n).
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Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Short Introduction

Hierarchical (H-)matrices are a data-sparse approximation of large, dense matrices
arising

• from the discretisation of non-local integral operators occuring in BEM,

• as inverses of FEM discretized elliptic differential operators,

but can also be used to represent FEM matrices directly.

Properties of H-matrices:

• only few data are needed for the representation of the matrix,

• matrix-vector multiplication can be performed in almost linear complexity
(O(n logq n)),

• building sums, products, inverses is of “almost” linear complexity.
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Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Construction

Consider matrices over a product index set I × I.

Partition I × I by the H-tree TI×I, where a problem dependend admissibility
condition is used to decide whether a block t × s ⊂ I × I allows for a low rank
approximation.

Definition: Hierarchical matrices (H-matrices)
The set of the hierarchical matrices is defined by

H(TI×I, k) := {M ∈ R
I×I| rank(M |t×s) ≤ k ∀ admissible leaves t×s of TI×I}

Submatrices of M ∈ H(TI×I, k) corresponding to inadmissible leaves are stored
as dense blocks whereas those corresponding to admissible leaves are stored in
factorized form as rank-k matrices, called Rk-format.
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Large-scale problems H-matrix implementation of BT

Example

Stiffness matrix of 2D heat equation with distributed control and isolation BC
n = 1024 and k = 4

♦ Peter Benner ♦ TU Chemnitz ♦ 27



Large-scale problems H-matrix implementation of BT

Hierarchical Matrices: Formatted Arithmetic

H(TI×I, k) is not a linear subspace of R
I×I

Ã formatted arithmetics
Ã projection of the sum, product and inverse into H(TI×I, k)

1. Formatted Addition (⊕)
with complexity NH⊕H = O(nk2 log n)) (for sparse TI×I)
Corresponds to best approximation (in the Frobenius-norm).

2. Formatted Multiplication (¯)
NH¯H = O(nk2 log2 n) (under some technical assumptions on TI×I)

3. Formatted inversion (Ĩnv)
NH,Ĩnv

= O(nk2 log2 n) (under some technical assumptions on TI×I)
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Large-scale problems H-matrix implementation of BT

Error propagation
Sign function iteration with formatted H-matrix arithmetic:

Ã0 = (A)H, Ãj+1 =
1

2
(Ãj ⊕ Ĩnv(Aj))

Accuracy control for iterates Ã k = O(log 1
δ + log 1

ρ)), where

‖(Ã−1
j − Ĩnv(Ãj))‖2 ≤ δ

‖(Ã−1
j + Ĩnv(Ãj)) − (Ã−1

j ⊕ Ĩnv(Ãj))‖2 ≤ ρ

=⇒ forward error bound (assuming cj(δ + ρ)‖A−1
j ‖2 < 1 ∀j):

‖Ãj − Aj‖2 ≤ cj(δ + ρ),

where

c0 = ‖Ã0 − A‖2(δ + ρ)−1, cj+1 =
1

2

(
1 + cj + cj

‖A−1
j ‖2

2

1 − cj(δ + ρ)‖A−1
j ‖2

)
.
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Large-scale problems Parallel implementation of BT

Parallelization

• Newton iteration for sign function easy to parallelize – need basic linear algebra
(systems of linear equations, matrix inverse, matrix addition, matrix product).

• Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical
linear algebra −→ portable code.

• Development of software library PLiCMR.

• Testing on PC Cluster (Linux) with 32 Intel Pentium II-300MHz processors.

– workspace/processor: 128 MBytes.
– Myrinet Switch, bandwidth ≈ 100 Mbit/sec.

• Results on 1 processor: SLICOT codes, based on computation of Cholesky
factors via Hammarling’s method.

SLICOT = Subroutine Library in Control Theory, available from http://www.win.tue.nl/niconet
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Numerical examples Parallel implementation of BT

Numerical Examples

Benchmark tests:

1. 1D heat equation with point control

Control of temperature distribution in thin rod with heat source in the middle =⇒ 1D heat

equation with homogeneous Dirichlet boundary. Discretization with FEM, linear elements.

n = dimension of the FE ansatz space.

m = 1: spatially constant heat source.

p = 1: temperature is measured in one interval.

2. Simulation of catalytic reactor (taken from ABB gPROMS tutorial)

• FE discretization of boundary control problem for coupled PDE system (conservation laws,

reaction-diffusion equations, Robin and Neumann boundary conditions), linearization around

working point.

• Dynamics: oxidation (o-Xylene to phthalic anhydrite).

• Control: external cooling of the reactor.

• n = 1171, m = 6, p = 4.
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Numerical examples Parallel implementation of BT

3. “Random” systems with given McMillan degree and given rank of Gramians.

4. Optimal cooling of steel profiles (model by Mannesmann/Demag,
[Tröltzsch/Unger, Penzl 1999])

• Mathematical model: boundary control for lin-

earized 2D heat equation.

∂

∂t
x =

λ

c · ρ
∆x, ξ ∈ Ω

∂

∂n
x =

1

λ
(uk − x), ξ ∈ Γk, k = 1, . . . , 6,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = p = 6

• FEM Discretization, initial mesh (n = 821).

2 steps of mesh refinement =⇒ n = 3113.
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Numerical examples Accuracy

Absolute Error for Balanced Truncation

Example 1: rank (P ) = 32, rank (Q) = 38(37), ` = 6.
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Numerical examples Accuracy

Absolute Error for Singular Perturbation Approximation

SPA: minimal realization via BT, compute G̃ such that G(0) = G̃(0) and ‖G−G̃‖∞
2 ≤

n
∑

k=`+1

σk.

Example 2: rank (P ) = 124, rank (Q) = 93, ` = 40
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Numerical examples Accuracy

Uniform Approximation of BST/Example 4

• n = 821: rank (P ) = 165, rank (Q) = 210, ` = 40 ⇒ ‖G−G̃‖∞ ≤ 3.2·10−4‖G‖∞
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• n = 3113: rank (P ) = 179, rank (Q) = 204,

— (numerical) stochastic McMillan degree: µn̂ ≤ n · µ1 · u ⇒ n̂ = 135 .

— ` = 40 ⇒ ‖G − G̃‖∞ ≤ 2.8 · 10−4‖G‖∞

— SVD: < 1sec. on 2 processors using full-rank factors, ≈ 25 minutes using Cholesky factors.
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Numerical examples Efficiency

Speed-Up/Efficiency of Parallel Algorithms

Example 3/balanced truncation:
n = 1000,m = p = 100, n̂ = ` = 50
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Example 3/BT, discrete-time:
n = 1000,m = p = 100, n̂ = ` = 50
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Numerical examples Efficiency

Speed-Up/Efficiency of Parallel Algorithms

Example 2/SPA:
n = 1171,m = 6, p = 4, ` = 40
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Example 3/BST:
n = 1000,m = 10, p = 10, ` = 40
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Numerical examples

Remote Computing:
PLiCMR Web Interface

• Upload data on cluster.

• Select MR method.

• Submit job.

• User receives reduced-order

model

– A, B, C, D

– HSV

– infos

via e-mail.
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Conclusions

Conclusions

• Not shown, but “available” spectral projection-based methods:

– BT et al for discrete-time systems: compute factors of Gramians using
factored Smith-Iteration,

– optimal Hankel norm approximation,
– modal truncation,
– “generic” frequency-weighted BT,
– BT for descriptor systems using spectral projection-based approach equivalent

to [Stykel ’01–’03 ],
– truncation for SISO and symmetric systems using the cross-Gramian Ã

factored solution of Sylvester equations, need product QR for non-square
factors!

• Parallel implementations are collected in software library PLiCMR and are
integrated into parallel version of SLICOT, accessible via remote computing.

• Implementations of methods for sparse systems based on ADI in progress.

♦ Peter Benner ♦ TU Chemnitz ♦ 39



Conclusions

Open Problems

• Error bounds for interconnecting compact models using frequency-weighted
BT-based models?

• In circuit simulation, need passive reduced systems for DAE systems Ã positive
real balancing applicable?

• Exploiting PDE structures Ã H-matrix based BT, combination with POD for
nonlinear systems?

• Sign function implementation using formatted arithmetic based on wavelet
compression techniques Ã promising results by [Schneider/Harbrecht ’03 ].

• How far can we go with dense parallel implementations?

With 32-node (2 P4 with 1 GB each) cluster can apply (dense) BT for
n = 75, 000 in single precision.

♦ Peter Benner ♦ TU Chemnitz ♦ 40


