Model Reduction Algorithms Using Spectral Projection Methods

Peter Benner

Fakultät für Mathematik TU Chemnitz, Germany

DFG research center Berlin mathematics for key technologies

benner@mathematik.tu-chemnitz.de

Dimension Reduction of Large-Scale Systems Oberwolfach, October 19–24, 2003

Thanks to: Enrique and Gregorio Quintana-Ortí, Rafael Mayo, Ulrike Baur

Outline

- Linear autonomous systems
- Spectral projection methods the sign function method
- Model reduction
- Balanced truncation
- Stochastic truncation
- Model reduction for unstable systems
- Large-scale problems
 - \mathcal{H} -matrix based implementation
 - parallelization
- Numerical examples

 \diamond

Conclusions

Linear Systems

Linear autonomous (time-invariant) systems:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \qquad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

- n state-space variables, i.e., $x(t) \in \mathbb{R}^n$ (n is the degree of the system);
- m inputs, i.e., $u(t) \in \mathbb{R}^m$;
- p outputs, i.e., $y(t) \in \mathbb{R}^p$;
- A stable, i.e., $\lambda(A) \subset \mathbb{C}^- \Rightarrow$ system is stable.

Corresponding transfer function:

 \diamond

$$G(s) = C(sI_n - A)^{-1}B + D \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}.$$

 \diamond

Realizations

Laplace transform: sx(s) - x(0) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).

$$x(0) = 0 \implies y(s) = \left(C(sI_n - A)^{-1}B + D\right)u(s) = G(s)u(s).$$

$$(A, B, C, D) \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$
 is a realization of the system G.

(Realizations are not unique! m, p are fixed, n is variable!)

Minimal realization: find minimal degree \hat{n} (= McMillan degree), $\hat{A}, \hat{B}, \hat{C}, \hat{D}$ with

$$G(s) = \hat{C}(sI_{\hat{n}} - \hat{A})^{-1}\hat{B} + \hat{D}.$$

Minimal realization is not unique: for any state-space transformation

$$\mathcal{T} : x \to Tx, \quad (A, B, C, D) \to (TAT^{-1}, TB, CT^{-1}, D)$$

obtain new realization of the system: $D + (CT^{-1})(sI - TAT^{-1})^{-1}(TB) = G(s)$.

Balanced Realization

• Controllability and observability Gramians of G solve Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0.$$

- (A, B, C, D) is a balanced realization of G iff $P = Q = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}$.
- $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$ are the Hankel singular values (HSV) of the system (invariant under state-space transfromation).
- (A, B, C, D) minimal $\implies \exists$ balancing state-space transformation.

$$(A, B, C, D) \text{ non-minimal} \implies P_{1:\hat{n}, 1:\hat{n}} = Q_{1:\hat{n}, 1:\hat{n}} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_{\hat{n}} \end{bmatrix},$$

HSV are $\{\sigma_1, \dots, \sigma_{\hat{n}}, 0, \dots, 0\}.$

 \diamond

 \diamond

Spectral Projection Methods

For $Z \in \mathbb{R}^{n \times n}$ with $\lambda(Z) = \Lambda_1 \cup \Lambda_2$, $\Lambda_1 \cap \Lambda_2 = \emptyset$, let \mathcal{P} be a (skew) projector onto the right Z-invariant subspace corresponding to Λ_1 .

1. rank $(\mathcal{P}) = |\Lambda_1| := k$, range $(\mathcal{P}) = \text{range}(A\mathcal{P})$.

2. Let

$$\mathcal{P} = QRP, \quad R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

where ${\cal P}$ is a permutation matrix. Then obtain block-triangular form

$$\tilde{Z} := Q^T Z Q = \begin{bmatrix} Z_{11} & Z_{12} \\ 0 & Z_{22} \end{bmatrix},$$

where $\lambda\left(Z_{11}
ight)=\Lambda_{1}$, $\lambda\left(Z_{22}
ight)=\Lambda_{2}$.

 \diamond

The Sign Function Method [Roberts '71]

For $Z \in \mathbb{R}^{n \times n}$ with $\lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S^{-1} \begin{bmatrix} J^+ & 0 \\ 0 & J^- \end{bmatrix} S \qquad \Longrightarrow \qquad \operatorname{sign} \left(Z \right) := S \begin{bmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{bmatrix} S^{-1} \ .$$

$$(J^{\pm} =$$
Jordan blocks corresponding to $\lambda \left(Z
ight) \cap \mathbb{C}^{\pm})$

sign (Z) is root of $I_n \Longrightarrow$ use Newton's method to compute it:

$$Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(c_j Z_j + \frac{1}{c_j} Z_j^{-1} \right), \qquad j = 1, 2, \dots$$

 $\implies \quad | \operatorname{sign} (Z) = \lim_{j \to \infty} Z_j.$

 \diamond

 $(c_j > 0$ is scaling parameter for convergence acceleration and rounding error minimization.)

 \diamond

7

Properties of the Sign Function Method

- $\frac{1}{2}(I_n \text{sign}(Z))$ is skew projector onto stable Z-invariant subspace.
- Sign function undefined if Z has purely imaginary eigenvalues ⇒ problems for eigenvalues close to imaginary axis.
- Usually, computed invariant subspaces are as accurate as their conditioning admits. [Byers/He/Mehrmann 1997]
- Block-triangular form often better conditioned than computation of Schur form. ⇒ Sign function often more accurate than computations based on QR/QZ algorithms.
- Here: cond (sign (Z)) = 1 as Z stable or anti-stable, hence computation of sign (Z) itself is well-conditioned problem!

 \diamond

Peter Benner

Model Reduction

Given

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \qquad x(0) = x_0,$$

 $y(t) = Cx(t) + Du(t),$

find reduced model

$$\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{B}u(t), \tilde{y}(t) = \tilde{C}\tilde{x}(t) + \tilde{D}u(t),$$

of degree $\ell \ll n$ with $\tilde{y}(t) \in \mathbb{R}^p$ and output error

$$y-\tilde{y}=Gu-\tilde{G}u=(G-\tilde{G})u$$

such that

$$\|y - \tilde{y}\|$$
 "small" or, respectively, $\|G - \tilde{G}\|$ "small".

 \diamond

9

Truncation Methods

• For arbitrary state-space transformation $T \in \mathbb{R}^{n \times n}$:

$$TAT^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, TB = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, CT^{-1} = \begin{bmatrix} C_1 & C_2 \end{bmatrix}.$$

with $A_{11} \in \mathbb{R}^{\ell \times \ell}, \ldots$

• Partition
$$T = \begin{bmatrix} T_l \\ W_l \end{bmatrix}$$
, $T_l \in \mathbb{R}^{\ell \times n}$, $T^{-1} = \begin{bmatrix} T_r & W_r \end{bmatrix}$, $T_r \in \mathbb{R}^{n \times \ell}$.

• Reduced-order model: $\begin{bmatrix} \tilde{A} & \tilde{B} \\ \hline{\tilde{C}} & D \end{bmatrix} = \begin{bmatrix} A_{11} & B_1 \\ \hline C_1 & D \end{bmatrix} = \begin{bmatrix} T_l A T_r & T_l B \\ \hline C T_r & D \end{bmatrix}$

with projected dynamics: $\tilde{x} = T_r T_l x$.

• Choice of T, ℓ such that $||y - \tilde{y}||$ is "small"! Note: $\lim_{\omega \to \infty} (G(\imath \omega) - \tilde{G}(\imath \omega)) = D - D = 0.$

 \diamond

Absolute Error Methods

Recall: want reduced-order model

$$\dot{\tilde{x}}(t) = \tilde{A}\tilde{x}(t) + \tilde{B}u(t), \tilde{y}(t) = \tilde{C}\tilde{x}(t) + \tilde{D}u(t),$$

of degree $\ell \ll n$ with small absolute error.

Note: for $||G||_{\infty} := \operatorname{ess sup}_{\omega \in \mathbb{R}} \sigma_{\max}(G(\imath \omega))$, we have

$$||G(s) - \tilde{G}(s)||_{\infty} = \sup_{u \in \mathcal{H}_2} \frac{||(G - \tilde{G})u||_2}{||u||_2} = \sup_{u \in \mathcal{H}_2} \frac{||y - \tilde{y}||_2}{||u||_2}$$

Hence, $||y - \tilde{y}||_2 \le ||G - \tilde{G}||_{\infty} ||u||_2$.

 \diamond

Consequence of Paley-Wiener Theorem: $\|y - \tilde{y}\|_2 \equiv \|y - \tilde{y}\|_{\mathcal{H}_2} \equiv \|y - \tilde{y}\|_{\mathcal{L}_2[0,\infty)}$

Balanced Truncation

For balanced realization $G(s) \equiv \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ with $P = Q =: \begin{bmatrix} \tilde{\Sigma} & \\ & \Sigma_2 \end{bmatrix}$ the reduced-order model

$$\tilde{G}(s) \equiv \begin{bmatrix} \tilde{A} & \tilde{B} \\ \hline \tilde{C} & \tilde{D} \end{bmatrix} \equiv \begin{bmatrix} A_{11} & B_1 \\ \hline C_1 & D \end{bmatrix}$$

is balanced, minimal, stable. The Gramians are $\tilde{P} = \tilde{Q} = \tilde{\Sigma} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_\ell \end{bmatrix}$.

 \implies Computable global error bound

$$\|G - \tilde{G}\|_{\infty} \le 2\sum_{k=\ell+1}^{n} \sigma_k.$$

 \implies adaptive choice of ℓ .

 \diamond

Balancing transformation often ill-conditioned.Remedy: compute T_l, T_r , such that \tilde{G} is not
balanced, but error bound holds![Safonov/Chiang 1989, Varga 1991]

Balanced Truncation: SR method

[Heath/Laub/Paige/Ward '87, Tombs/Postlethwaite '87]

Gramians are spd $\implies P = S^T S$, $Q = R^T R$. For better numerical robustness, use S, R instead of P, Q:

$$\sigma (SR^T)^2 = \lambda(PQ), \quad \text{cond} (SR^T) = \sqrt{\text{cond} (PQ)}.$$

Note: $S^{-T}(PQ)S^T = (SR^T)(SR^T)^T = (U\Sigma V^T)(V\Sigma U^T) = U\Sigma^2 U^T$.

Compute balancing transformation using SVD:

$$T_l = \Sigma_1^{-1/2} V_1^T R, \qquad T_r = S^T U_1 \Sigma_1^{-1/2}.$$

 \diamond

Computing the Factors S, R

Standard approach:

$$S, R = \left[\bigtriangledown \right] \in \mathbb{R}^{n \times n}$$
 are Cholesky factors of P, Q .

Use Hammarling's method: solve Lyapunov equations

$$A(SS^{T}) + (SS^{T})A^{T} + BB^{T} = 0, \qquad A^{T}(R^{T}R) + (R^{T}R)A + C^{T}C = 0$$

by reducing A to Schur form (QR algorithm) and solve resulting linear system for S, R by backsubstitution.

Approach here:

$$S \in \mathbb{R}^{\operatorname{rank}(P) \times n}$$
, $R \in \mathbb{R}^{\operatorname{rank}(Q) \times n}$ are full rank factors of P, Q .

Advantages:

- more reliable if Cholesky factors are numerically singular;
- more efficient if rank (P), rank $(Q) \ll n$;

 \diamond

- SVD is cheaper, e.g., semi-discretized point control of 1D heat equation with n = 1000: rank $(P) \approx \operatorname{rank}(Q) \approx 20 \Rightarrow \mathcal{O}(10^5)$ flops instead of $\mathcal{O}(10^{10})$, i.e., factor 100,000.

Example for Cheaper SVD

Complexity of SVD in standard approach: $\mathcal{O}(n^3)$.

Often, for large-scale systems Gramians have low numerical rank.

- Linear 1D heat equation with point control on $[\,0,\,1\,]\text{,}$
- FE-discretization with linear B-splines,

$$- h = 1/1000 \implies n = 1001).$$

 \diamond

$$\begin{array}{ll} P &\approx & S^{(s)}(S^{(s)})^T, & S^{(s)} \in \mathbb{R}^{s \times n} \\ Q &\approx & R^{(s)}(R^{(s)})^T, & R^{(r)} \in \mathbb{R}^{r \times n} \end{array} \Rightarrow \quad \mathsf{SVD of } S^{(s)}(R^{(s)})^T \text{ has complexity } \mathcal{O}(r^2(s+r)). \end{array}$$

 \diamond

Here: $s \approx r \approx 20 \implies \mathcal{O}(10^5)$ flops instead of $\mathcal{O}(10^{10})$.

Solving Lyapunov Equations with the Sign Function Method

Consider Lyapunov equation $F^T X + XF + E = 0$, F stable.

$$\implies \begin{bmatrix} I_n \\ -X_* \end{bmatrix} \text{ is stable invariant subspace of } Z := \begin{bmatrix} F & 0 \\ E & -F^T \end{bmatrix}.$$

Apply sign function Newton iteration $Z_{j+1} \leftarrow (Z_j + Z_j^{-1})/2$ to Z.

$$\implies \operatorname{sign}(Z) = \lim_{j \to \infty} Z_j = \begin{bmatrix} -I_n & 0\\ 2X_* & I_n \end{bmatrix}.$$

Newton iteration (with scaling) is equivalent to

 \diamond

16

Semidefinite Lyapunov Equations

Here: $E = B^T B$ or $C^T C$, $F = A^T$ or A.

Want factor R of solution of $A^TQ + QA + C^TC = 0$.

For $E_0 = C_0^T C_0 := C^T C$, $C \in \mathbb{R}^{p \times n}$ obtain

$$E_{j+1} = \frac{1}{2c_j} \left(E_j + c_j^2 A_j^{-T} E_j A_j^{-1} \right) = \frac{1}{2c_j} \left[\begin{array}{c} C_j \\ c_j C_j A_j^{-1} \end{array} \right]^T \left[\begin{array}{c} C_j \\ c_j C_j A_j^{-1} \end{array} \right].$$

 \implies re-write E_j -iteration:

 \diamond

$$C_0 := C, \qquad C_{j+1} := \frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix}.$$

Problem: $C_j \in \mathbb{R}^{p_j \times n} \implies C_{j+1} \in \mathbb{R}^{2p_j \times n}$, i.e., the necessary workspace doubles in each iteration.

Two approaches in order to limit work space...

17

Compute Cholesky factor R_c of Q

Require $p_j \leq n$: for $j > \log_2(n/p)$ compute QR factorization

$$\frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix} = U_j \begin{bmatrix} \hat{C}_j \\ 0 \end{bmatrix}, \qquad \hat{C}_j = \begin{bmatrix} \\ \\ \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

$$\implies E_j = \hat{C}_j^T \hat{C}_j, \qquad R_c = \frac{1}{\sqrt{2}} \lim_{j \to \infty} \hat{C}_j$$

Compute full-rank factor R_f of Q

In every step compute rank-revealing QR factorization:

$$\frac{1}{\sqrt{2c_j}} \begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix} = U_{j+1} \begin{bmatrix} R_{j+1} & T_{j+1} \\ 0 & S_{j+1} \end{bmatrix} \Pi_{j+1},$$

where $R_{j+1} \in \mathbb{R}^{p_{j+1} \times p_{j+1}}$, $p_{j+1} = \operatorname{rank}\left(\begin{bmatrix} C_j \\ c_j C_j A_j^{-1} \end{bmatrix}\right)$. Then

$$C_{j+1} := [R_{j+1} T_{j+1}] \Pi_{j+1}, \quad E_{j+1} = C_{j+1}^T C_{j+1},$$

$$R_f = \frac{1}{\sqrt{2}} \lim_{j \to \infty} C_j$$

Model Reduction Based on Relative Errors

Compute reduced-order system such that relative error $\|\Delta_{rel}\|_\infty$ becomes "small",

 $\tilde{G}(s) = G(s)(I + \Delta_{\rm rel}).$

For p = m, D full-rank: find $\underset{\text{degree}(\tilde{G}) \leq \ell}{\operatorname{argmin}} \|G^{-1}(G - \tilde{G})\|_{\infty}$.

Balanced stochastic truncation (BST):

[Desai/Pal '84, Green '88]

- Compute balancing transformation for controllability Gramian of G(s) and observability Gramian W of right spectral factor $\hat{C}(sI \hat{A})^{-1}\hat{B} + \hat{D}$ of power spectrum $\Phi(s) := G(s)G^{T}(-s)$.
- W is stabilizing solution of algebraic Riccati equation (ARE): $(E := DD^T)$

$$0 = C^{T}E^{-1}C + (A - \hat{B}E^{-1}C)^{T}W + W(A - \hat{B}E^{-1}C) + W\hat{B}E^{-1}\hat{B}^{T}W.$$

Numerical solution via Newton's method with line search[B. '97, B./Byers '98]Newton iteration: solve Lyapunov equation using factored sign function iteration \rightsquigarrow factored
solution of ARE.[B./Byers/Quintana-Ortí×2 '00]

 \diamond

Advantages of Stochastic Truncation

• Global relative error bound

$$\|\Delta_{ ext{rel}}\|_{\infty} \leq \prod_{j=\ell+1}^{n} rac{1+\mu_{j}}{1-\mu_{j}} - 1, \ \lambda \left(PW\right) = \{\mu_{j}^{2}\} \subset [0,1]$$

 \Rightarrow uniform approximation of transfer function over whole frequency domain.

- Additional system properties are preserved compared to balanced truncation:
 - right-half plane zeroes ~>> reduced-order model of minimum-phase system is minimum phase;
 - robust stability (controller for reduced model stabilizes full-order plant) [Safonov/Chiang '88].
- \exists error bounds for phase (for BT, only error bounds for magnitude).
- Straightforward error bound for inverse system:

$$\|G^{-1} - \tilde{G}^{-1}\|_{\infty} \le \|\Delta_{\mathrm{rel}}\|_{\infty} \|\tilde{G}^{-1}\|_{\infty}$$

 \rightsquigarrow can solve inverse problems

y = Gu, y known from measurements, compute $u = G^{-1}y$

for a given accuracy threshold with reduced-order model.

Analogous computational techniques for

 \diamond

- LQG balancing (reduce plant and controller at the same time),
- positive real balancing (preserve passivity).

Model Reduction of Unstable Systems

Use additive decomposition of transfer function,

 $G(s) = G_{-}(s) + G_{+}(s), \qquad G_{-}(s)$ stable, $G_{+}(s)$ anti-stable,

and reduce $G_{-}(s)$ using BT etc., keep $G_{+}(s)$ (dominates the dynamics).

Need block-diagonalization of A:

 \diamond

$$\hat{A} := U^{-1}AU = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} \Rightarrow \hat{B} := U^{-1}B =: \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \ \hat{C} := CU =: \begin{bmatrix} C_1 & C_2 \end{bmatrix},$$

Then

$$G(s) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} (sI_k - A_{11})^{-1} & \\ (sI_{n-k} - A_{22})^{-1} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} + D$$

$$= \{C_1(sI_k - A_{11})^{-1}B_1\} + \{C_2(sI_{n-k} - A_{22})^{-1}B_2 + D\} =: G_-(s) + G_+(s),$$

 \diamond

21

Block-Diagonalization via the Sign Function Method

1. Compute sign (A) and obtain spectral projector $\mathcal{P}_{-} := \frac{1}{2}(I_n - \operatorname{sign}(Z)) \Rightarrow$ obtain block-triangular form from QR decomposition of \mathcal{P}_{-}

$$\mathcal{P}_{-} = QRP, \qquad ilde{A} := Q^{T}AQ = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

2. Solve Sylvester equation $A_{11}Y - YA_{22} + A_{12} = 0$. Then

$$\hat{A} := V^{-1}\tilde{A}V = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}, \quad V := \begin{bmatrix} I_k & Y \\ 0 & I_{n-k} \end{bmatrix}.$$

 $A_{11}, -A_{22}$ stable \Rightarrow solve Sylvester equation via sign function method:

$$E_{0} := A_{11}, \qquad E_{j+1} := \frac{1}{2} \left(E_{j} + E_{j}^{-1} \right),$$

$$F_{0} := A_{22}, \qquad F_{j+1} := \frac{1}{2} \left(F_{j} + F_{j}^{-1} \right), \qquad j = 0, 1, 2, \dots$$

$$W_{0} := A_{12}, \qquad W_{j+1} := \frac{1}{2} \left(W_{j} + E_{j}^{-1} W_{j} F_{j}^{-1} \right),$$

 $\Rightarrow \lim_{j \to \infty} E_j = -I_k, \lim_{j \to \infty} F_j = I_{n-k}, \text{ and } Y = \frac{1}{2} \lim_{j \to \infty} W_j.$

 \diamond

22

Model Reduction for Large-Scale Systems

Large-scale dense problems of size $n = O(10^k)$, $m, p \ll n$ arise, e.g., from discretization of integral equations via BEM or wavelet techniques.

 $n = \mathcal{O}(10^3) \rightsquigarrow$ sign function based methods applicable on current workstations. $n = \mathcal{O}(10^4) \rightsquigarrow$ parallelization on PC or workstation cluster using off-the-shelf computer technology (standard chips, Fast Ethernet,...) and software (MPI, PBLAS, BLACS, ScaLAPACK).

Large-scale sparse systems, e.g., from 3D FEM models, large-scale circuits, etc. \rightsquigarrow use the same ideas (truncation methods, factored Gramians), but need sparse Lyapunov/Riccati solvers.

- Balanced truncation: [*Penzl '98, Li/White '99–'02, Antoulas/Sorensen/Gugercin/Zhou '00–'03*]
- Stochastic truncation: [*B. '0x*]

 \diamond

Alternative:

sparse representation (approximation) of A using hierarchical matrices [Hackbusch/Khoromskij/Grasedyck '03, Ph.D. thesis Baur in progress]

Large-scale problems

$\mathcal H\text{-}\mathsf{Matrix}$ Implementation

Recall: solution of the Lyapunov equation

$$FP + PF^T + BB^T = 0$$

with the sign function method:

 \diamond

$$F_{0} = A, \quad E_{0} = BB^{T}$$

$$F_{j+1} = \frac{1}{2}(F_{j} + F_{j}^{-1})$$

$$E_{j+1} = \frac{1}{2}(E_{j} + A_{j}^{-T}E_{j}A_{j}^{-1})$$

involves the inversion, addition and multiplication of $n\times n$ matrices \hookrightarrow complexity: $\mathcal{O}(n^3)$

Approximation of A in \mathcal{H} -matrix format, use of the formatted \mathcal{H} -matrix arithmetic \hookrightarrow complexity: $\mathcal{O}(n \log^q n)$.

Hierarchical Matrices: Short Introduction

Hierarchical $(\mathcal{H}$ -)matrices are a data-sparse approximation of large, dense matrices arising

- from the discretisation of non-local integral operators occuring in BEM,
- as inverses of FEM discretized elliptic differential operators,

but can also be used to represent FEM matrices directly.

Properties of \mathcal{H} -matrices:

 \diamond

- only few data are needed for the representation of the matrix,
- matrix-vector multiplication can be performed in almost linear complexity $(\mathcal{O}(n\log^q n))$,
- building sums, products, inverses is of "almost" linear complexity.

Hierarchical Matrices: Construction

Consider matrices over a product index set $I \times I$.

Partition $I \times I$ by the \mathcal{H} -tree $T_{I \times I}$, where a problem dependend admissibility condition is used to decide whether a block $t \times s \subset I \times I$ allows for a low rank approximation.

Definition: Hierarchical matrices (\mathcal{H} -matrices) The set of the hierarchical matrices is defined by

 $\mathcal{H}(T_{I\times I},k) := \{ M \in \mathbb{R}^{I\times I} | \operatorname{rank}(M|_{t\times s}) \le k \forall \text{ admissible leaves } t \times s \text{ of } T_{I\times I} \}$

Submatrices of $M \in \mathcal{H}(T_{I \times I}, k)$ corresponding to inadmissible leaves are stored as dense blocks whereas those corresponding to admissible leaves are stored in factorized form as rank-k matrices, called R_k -format.

 \diamond

26

Example

Stiffness matrix of 2D heat equation with distributed control and isolation BC n=1024 and k=4

Hierarchical Matrices: Formatted Arithmetic

 $\mathcal{H}(T_{I \times I}, k)$ is not a linear subspace of $\mathbb{R}^{I \times I} \rightsquigarrow$ formatted arithmetics \rightsquigarrow projection of the sum, product and inverse into $\mathcal{H}(T_{I \times I}, k)$

1. Formatted Addition (\oplus)

with complexity $\mathcal{N}_{\mathcal{H}\oplus\mathcal{H}} = \mathcal{O}(nk^2 \log n))$ (for sparse $T_{I \times I}$) Corresponds to best approximation (in the Frobenius-norm).

- 2. Formatted Multiplication (\odot) $\mathcal{N}_{\mathcal{H}\odot\mathcal{H}} = \mathcal{O}(nk^2\log^2 n)$ (under some technical assumptions on $T_{I\times I}$)
- 3. Formatted inversion (\widetilde{Inv})

 \diamond

 $\mathcal{N}_{\mathcal{H},\widetilde{Inv}} = \mathcal{O}(nk^2 \log^2 n)$ (under some technical assumptions on $T_{I \times I}$)

Error propagation function iteration with formatted \mathcal{H}_{-} matrix arithmet

Sign function iteration with formatted \mathcal{H} -matrix arithmetic:

$$\widetilde{A}_0 = (A)_{\mathcal{H}}, \qquad \widetilde{A}_{j+1} = \frac{1}{2} (\widetilde{A}_j \oplus \widetilde{Inv}(A_j))$$

Accuracy control for iterates $\rightsquigarrow k = \mathcal{O}(\log \frac{1}{\delta} + \log \frac{1}{\rho}))$, where

$$\|(\tilde{A}_j^{-1} - \widetilde{\operatorname{Inv}}(\tilde{A}_j))\|_2 \leq \delta$$
$$\|(\tilde{A}_j^{-1} + \widetilde{\operatorname{Inv}}(\tilde{A}_j)) - (\tilde{A}_j^{-1} \oplus \widetilde{\operatorname{Inv}}(\tilde{A}_j))\|_2 \leq \rho$$

 \implies forward error bound (assuming $c_j(\delta + \rho) \|A_j^{-1}\|_2 < 1 \ \forall j$):

 $\|\tilde{A}_j - A_j\|_2 \le c_j(\delta + \rho),$

where

$$c_0 = \|\tilde{A}_0 - A\|_2 (\delta + \rho)^{-1}, \quad c_{j+1} = \frac{1}{2} \left(1 + c_j + c_j \frac{\|A_j^{-1}\|_2^2}{1 - c_j (\delta + \rho) \|A_j^{-1}\|_2} \right).$$

Parallelization

- Newton iteration for sign function easy to parallelize need basic linear algebra (systems of linear equations, matrix inverse, matrix addition, matrix product).
- Use MPI, BLACS for communication, PBLAS and ScaLAPACK for numerical linear algebra → portable code.
- Development of software library PLiCMR.
- Testing on PC Cluster (Linux) with 32 Intel Pentium II-300MHz processors.
 - workspace/processor: 128 MBytes.
 - Myrinet Switch, bandwidth \approx 100 Mbit/sec.
- Results on 1 processor: SLICOT codes, based on computation of Cholesky factors via Hammarling's method.

SLICOT = Subroutine Library in Control Theory, available from http://www.win.tue.nl/niconet

Numerical Examples

Benchmark tests:

1. 1D heat equation with point control

Control of temperature distribution in thin rod with heat source in the middle \implies 1D heat equation with homogeneous Dirichlet boundary. Discretization with FEM, linear elements.

- n = dimension of the FE ansatz space.
- m = 1: spatially constant heat source.
- p = 1: temperature is measured in one interval.

2. Simulation of catalytic reactor (taken from ABB gPROMS tutorial)

- FE discretization of boundary control problem for coupled PDE system (conservation laws, reaction-diffusion equations, Robin and Neumann boundary conditions), linearization around working point.
- Dynamics: oxidation (*o*-Xylene to phthalic anhydrite).
- Control: external cooling of the reactor.
- n = 1171, m = 6, p = 4.

- 3. "Random" systems with given McMillan degree and given rank of Gramians.
- 4. Optimal cooling of steel profiles (model by Mannesmann/Demag, [*Tröltzsch/Unger, Penzl 1999*])
 - Mathematical model: boundary control for linearized 2D heat equation.

$$\begin{aligned} \frac{\partial}{\partial t}x &= \frac{\lambda}{c \cdot \rho} \Delta x, \quad \xi \in \Omega \\ \frac{\partial}{\partial n}x &= \frac{1}{\lambda}(u_k - x), \quad \xi \in \Gamma_k, \ k = 1, \dots, 6, \\ \frac{\partial}{\partial n}x &= 0, \qquad \xi \in \Gamma_7. \end{aligned}$$

 $\implies m = p = 6$

• FEM Discretization, initial mesh (n = 821). 2 steps of mesh refinement $\implies n = 3113$.

 \diamond

 \diamond

 \diamond

32

Absolute Error for Balanced Truncation

Example 1: rank
$$(P) = 32$$
, rank $(Q) = 38(37)$, $\ell = 6$.

 \diamond

33

Absolute Error for Singular Perturbation Approximation

SPA: minimal realization via BT, compute \tilde{G} such that $G(0) = \tilde{G}(0)$ and $\frac{\|G-\tilde{G}\|_{\infty}}{2} \leq \sum_{k=\ell+1}^{n} \sigma_k$.

Example 2: rank (P) = 124, rank (Q) = 93, $\ell = 40$

Uniform Approximation of BST/Example 4

• n = 821: rank (P) = 165, rank (Q) = 210, $\ell = 40 \implies ||G - \tilde{G}||_{\infty} \le 3.2 \cdot 10^{-4} ||G||_{\infty}$

• n = 3113: rank (P) = 179, rank (Q) = 204,

— (numerical) stochastic McMillan degree: $\mu_{\hat{n}} \leq n \cdot \mu_1 \cdot \mathbf{u} \; \Rightarrow \; \hat{n} = 135$.

- $-\ell = 40 \implies ||G \tilde{G}||_{\infty} \le 2.8 \cdot 10^{-4} ||G||_{\infty}$
- SVD: < 1sec. on 2 processors using full-rank factors, \approx 25 minutes using Cholesky factors.

 \diamond

35

Speed-Up/Efficiency of Parallel Algorithms

Example 3/BT, discrete-time:

 $n = 1000, m = p = 100, \hat{n} = \ell = 50$

Example 3/balanced truncation: $n = 1000, m = p = 100, \hat{n} = \ell = 50$

Speed-Up/Efficiency of Parallel Algorithms

Example 2/SPA:
$$n = 1171, m = 6, p = 4, \ell = 40$$

Example 3/BST: $n = 1000, m = 10, p = 10, \ell = 40$

Remote Computing: PLiCMR Web Interface

- Upload data on cluster.
- Select MR method.
- Submit job.
- User receives reduced-order model
 - A, B, C, D
 - HSV
 - infos

via e-mail.

PLICE				pmrW ³ : Web form for Job Submissio	r n		
1. <u>User identifier</u>	I]		2. User password	Ĭ		
3. <u>Model reduccion method</u>	≪ Balance and ≪ Singular Pert ≪ Hankel-Nor	Truncate turbation Approx. m Approx.	•				
4. <u>Type of the original system</u>	C Discrete sys	item svstem		5. <u>Computational approach</u>	Square-root Balancing-free square-r	oot	
6. Preliminary equilibration	C Scale			7. Order selection method	C Fixed	CFixed Automatic	
8. <u>Number of states</u>	L			9. <u>Number of inputs</u>	1		
10. <u>Number of outputs</u>	Ľ			11. Order of reduced system	Ľ		
12. <u>Tolerance 1</u>	Ľ			13. <u>Tolerance 2</u>	I		
14. <u>Number of processors to use</u>	I			15. <u>Compressor used for matrix fil</u>	es Not compressed	⊂ gzip	
16. <u>E-mail for notification</u>	ýournail@nail.	server			Compress	<u>озф</u>	
File for A	Ĩ		Browse	File for B	T	Browse	
File for C	I		Browse	File for C	T	Browse	
Submit Job							

 \diamond

Conclusions

- Not shown, but "available" spectral projection-based methods:
 - BT et al for discrete-time systems: compute factors of Gramians using factored Smith-Iteration,
 - optimal Hankel norm approximation,
 - modal truncation,

 \diamond

- "generic" frequency-weighted BT,
- BT for descriptor systems using spectral projection-based approach equivalent to [*Stykel '01–'03*],
- truncation for SISO and symmetric systems using the cross-Gramian ~> factored solution of Sylvester equations, need product QR for non-square factors!
- Parallel implementations are collected in software library PLiCMR and are integrated into parallel version of SLICOT, accessible via remote computing.
- Implementations of methods for sparse systems based on ADI in progress.

Open Problems

- Error bounds for interconnecting compact models using frequency-weighted BT-based models?
- In circuit simulation, need passive reduced systems for DAE systems → positive real balancing applicable?
- Exploiting PDE structures → H-matrix based BT, combination with POD for nonlinear systems?
- Sign function implementation using formatted arithmetic based on wavelet compression techniques ~> promising results by [Schneider/Harbrecht '03].
- How far can we go with dense parallel implementations?

With 32-node (2 P4 with 1 GB each) cluster can apply (dense) BT for n = 75,000 in single precision.

