Using model order reduction for computing fast frequency sweeps of vibro-acoustic systems described by indirect boundary element models

Sanda Lefteriu ¹ H. Beriot ² M. S. Lenzi ³

¹Ecole des Mines de Douai
²Siemens Industry Software (formerly LMS International)
³Universidade Federal do Parana

November 17, 2015
Outline

1 Problem description

2 System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3 System solving: computing Padé approximants (MOR)

4 Proposed algorithm

5 Numerical examples
 - Exterior application
 - Interior/exterior application

6 Conclusion
Using MOR to compute **fast frequency sweeps**...

Why frequency, why frequency sweeps and why fast sweeps?

Analyzing systems in the **frequency domain** allows one to infer properties regarding resonances (e.g., vibro-acoustic systems), filtering properties (e.g., electrical systems), etc.
Using MOR to compute fast frequency sweeps...

Why frequency, why frequency sweeps and why fast sweeps?

Analyzing systems in the frequency domain allows one to infer properties regarding resonances (e.g., vibro-acoustic systems), filtering properties (e.g., electrical systems), etc.

A frequency sweep amounts to solving a linear system $A(f)x(f) = b(f)$ (e.g., $A(f) = j2\pi f I - A$) at many frequencies.
Using MOR to compute fast frequency sweeps...

Why frequency, why frequency sweeps and why fast sweeps?

Analyzing systems in the frequency domain allows one to infer properties regarding resonances (e.g., vibro-acoustic systems), filtering properties (e.g., electrical systems), etc.

A frequency sweep amounts to solving a linear system $A(f)x(f) = b(f)$ (e.g., $A(f) = j2\pi f I - A$) at many frequencies.

A fast frequency sweep avoids solving the large linear system for each frequency by using extrapolation.
Using... of vibro-acoustic systems...

What are vibro-acoustic systems?

Vibro-acoustics or structural acoustics is the study of the acoustic waves in structures and how they interact with and radiate into adjacent media.
Using... of vibro-acoustic systems...

What are vibro-acoustic systems?

Vibro-acoustics or structural acoustics is the study of the acoustic waves in structures and how they interact with and radiate into adjacent media.

The steady-state acoustic pressure generated by harmonic excitations at wavenumber k is described by the scalar wave equation in 3D (Helmholtz):

$$\nabla^2 p + k^2 p = 0 \text{ in the domain } \Omega,$$
Using... of vibro-acoustic systems...

What are vibro-acoustic systems?

Vibro-acoustics or structural acoustics is the study of the acoustic waves in structures and how they interact with and radiate into adjacent media.

The steady-state acoustic pressure generated by harmonic excitations at wavenumber \(k\) is described by the scalar wave equation in 3D (Helmholtz):

\[
\nabla^2 p + k^2 p = 0 \quad \text{in the domain } \Omega, \text{ where}
\]

- \(\nabla^2 p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2}\)
- \(p\) denotes the complex amplitude of the pressure
- domain \(\Omega\) contains an inviscid compressible fluid.
What is IBEM?

Indirect formulation is employed for interior and exterior problems.

In IBEM, the unknowns are $\sigma = \frac{\partial p^+}{\partial n^+} - \frac{\partial p^-}{\partial n^-}$ (single layer potential) and $\mu = p^+ - p^-$ (double layer potential). Acoustic pressure at field point X is

$$p(X) = \int_S \left(G(X, Y)\sigma(Y) - \frac{\partial G(X, Y)}{\partial n(Y)} \mu(Y) \right) dS.$$

$$G(X, Y) = \frac{\exp(-ikR)}{4\pi R}, \quad R = |X - Y|$$ is the 3D Green’s function.
Problem description

What is IBEM?

The surface S is discretized into boundary elements $S \cong \sum S^e$.

The unknowns are expressed at the discretization points (nodes) as

$$\mu(X) = N_\mu \cdot \mu, \quad \sigma(X) = N_\sigma \cdot \sigma$$

with μ and σ, vectors of nodal double and single layer potentials, and N_μ and N_σ, shape functions. This yields the system of equations of size N_{DOF}:

$$
\begin{bmatrix}
A_{\sigma\sigma} & A_{\sigma\mu} \\
A_{H}^{\sigma} & A_{\mu\mu}
\end{bmatrix}
\begin{bmatrix}
\sigma \\
\mu
\end{bmatrix}
=
\begin{bmatrix}
0 \\
b_\mu
\end{bmatrix}.
$$

$$A_{\sigma\sigma} = -\frac{1}{ik} \sum_e \int_{S_e} \frac{N_\sigma^T(X)N_\sigma(X)}{\Delta\beta(X)} dS_e + \sum_e \int_{S_e} \sum_e \int_{S_e} N_\sigma^T(X)N_\sigma(Y)G(X,Y)dS_e dS_e.$$

A is complex, symmetric, dense, has complicated frequency dependency.
Challenges and goals

Challenges for IBEM:

- assembling and solving are equally expensive.
Challenges and goals

Challenges for IBEM:

- assembling and solving are equally expensive.

Goals for FFS:

- avoid assembling the system matrices at each frequency: perform polynomial interpolation on appropriate frequency scaled matrices
- avoid solving a linear system at each frequency: employ Padé approximations.
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Frequency scaling of the system matrices

Scale the entries \(\hat{A}_{[m,n]} = \left\{ \begin{array}{ll} e^{ikR_{[m,n]}}A_{[m,n]} & , \quad m, n = 1, \ldots, N_{DOF} \end{array} \right. \)

Figure: The effect of applying the scaling factor on two matrix entries
Outline

1 Problem description

2 System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3 System solving: computing Padé approximants (MOR)

4 Proposed algorithm

5 Numerical examples
 - Exterior application
 - Interior/exterior application

6 Conclusion
The scaled matrices are interpolated by Lagrange polynomials:

\[
\tilde{A}_{[m,n]}(k) = \sum_{j=1}^{N+1} P_j(k) \hat{A}_{[m,n]}(k_j), \quad P_j(k) = 1, \quad k = k_j, \quad \& \quad P_j(k) = 0, \quad k \neq k_j.
\]
The scaled matrices are interpolated by Lagrange polynomials:

\[\tilde{A}_{m,n}(k) = \sum_{j=1}^{N+1} P_j(k) \hat{A}_{m,n}(k_j), \quad P_j(k) = 1, \; k = k_j, \; & \; P_j(k) = 0, \; k \neq k_j. \]

We call the Lagrange nodes \(k_j = \text{the master wavenumbers (frequencies)} \).
Frequency interpolation of the system matrices

The scaled matrices are interpolated by Lagrange polynomials:
\[
\tilde{A}_{[m,n]}(k) = \sum_{j=1}^{N+1} P_j(k) \tilde{A}_{[m,n]}(k_j), \quad P_j(k) = 1, \quad k = k_j, \quad \& \quad P_j(k) = 0, \quad k \neq k_j.
\]

We call the Lagrange nodes \(k_j = \) the master wavenumbers (frequencies). The interpolation order \(N \) can be 1, 2, or higher. \(N + 1 \) system matrices need to be assembled and stored, so one needs to find a trade-off.
The scaled matrices are interpolated by Lagrange polynomials:

\[
\tilde{A}_{[m,n]}(k) = \sum_{j=1}^{N+1} P_j(k)\hat{A}_{[m,n]}(k_j), \quad P_j(k) = 1, k = k_j, \quad \& \quad P_j(k) = 0, k \neq k_j.
\]

We call the Lagrange nodes \(k_j = \) the master wavenumbers (frequencies). The interpolation order \(N \) can be 1, 2, or higher. \(N + 1 \) system matrices need to be assembled and stored, so one needs to find a trade-off. The approximated system matrix entries are obtained by multiplying \(\tilde{A}_{[m,n]}(k) \) with the inverse of the scaling factor.
Frequency interpolation of the system matrices

The scaled matrices are interpolated by Lagrange polynomials:

$$\tilde{A}_{[m,n]}(k) = \sum_{j=1}^{N+1} P_j(k) \tilde{A}_{[m,n]}(k_j), \quad P_j(k) = 1, \quad k = k_j, \quad & P_j(k) = 0, \quad k \neq k_j.$$

We call the Lagrange nodes $k_j = \text{the master wavenumbers (frequencies)}$.

The interpolation order N can be 1, 2, or higher. $N + 1$ system matrices need to be assembled and stored, so one needs to find a trade-off.

The approximated system matrix entries are obtained by multiplying $\tilde{A}_{[m,n]}(k)$ with the inverse of the scaling factor.

Remark: The approximated matrix equals the original at k_j: $\tilde{A}(k_j) = A(k_j)$.

Recall: To avoid assembling the system matrix at each f:

- assemble & store matrices @ master frequencies
- perform interpolation @ slave frequencies.
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Determining the frequency windows

Motivation: A large polynomial order N required when doing interpolation over the entire frequency band \Rightarrow use small N to obtain smaller intervals.

A few **representative matrix entries** are carefully chosen and assembled at all frequencies. These entries are interpolated simultaneously by an order N polynomial with an a-priori or user-defined accuracy.

Windows determined as intervals which contain highest possible number of frequencies in ascending order such that the fitting error for the representative entries inside the interval is below the tolerance.
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Taylor series

\[x(f) = x(f_0) + x'(f_0)(f - f_0) + \ldots + x^{(q)}(f_0) \frac{(f - f_0)^q}{q!} + \ldots \]
Taylor series for vector functions

Recall: We wish to solve $A(f)x(f) = b(f)$ for many f.

Notation: $w_{q+1} = \frac{x^{(q)}(f_0)}{q!}$, $A_q = \frac{A^{(q)}(f_0)}{q!}$, $b_q = \frac{b^{(q)}(f_0)}{q!}$.

\[
x(f_0) = A_0^{-1}b_0 = w_1,
\]
\[
x'(f_0) = A_0^{-1}(b_1 - A_1w_1) = w_2,
\]
\[
x^{(q)}(f_0) = A_0^{-1} \left(b_q - \sum_{i=1}^{q} A_i w_{q-i+1} \right) = w_{q+1}.
\]

This moments-computation process is **ill-conditioned**.
A Padé approximant of order \([q_1/q_2]\) of a scalar \(g(f)\) is a rational function

\[
\frac{a_0 + a_1(f - f_0) + \ldots + a_{q_1}(f - f_0)^{q_1}}{1 + b_1(f - f_0) + \ldots + b_{q_2}(f - f_0)^{q_2}},
\]

whose Taylor expansion around \(f_0\) matches the first \(q = q_1 + q_2 + 1\) terms in the Taylor series of \(g(f)\) around \(f_0\).
A Padé approximant of order \([q_1/q_2]\) of a scalar \(g(f)\) is a rational function

\[
\frac{a_0 + a_1(f - f_0) + \ldots + a_{q_1}(f - f_0)^{q_1}}{1 + b_1(f - f_0) + \ldots + b_{q_2}(f - f_0)^{q_2}},
\]

whose Taylor expansion around \(f_0\) matches the first \(q = q_1 + q_2 + 1\) terms in the Taylor series of \(g(f)\) around \(f_0\).

Padé via Asymptotic Waveform Evaluation (AWE)

Given derivatives of \(g(f)\) up to order \(q\), a linear system with a Hankel matrix is solved for the coefficients \(a_0, \ldots, a_{q_1}\) and \(b_1, \ldots, b_{q_2}\).

For vector functions, such an approximant must be computed for each component of the solution vector \(x(f)\).

Very ill-conditioned and time consuming!
Galerkin Asymptotic Waveform Evaluation

Galerkin AWE forms the moment-matching subspace $W_q = [w_1 \ w_2 \ldots \ w_q]$, imposes that the residual is perpendicular to W_q, yielding the following solution vector

$$x_q(f) = W_q \left(W_q^H A(f) W_q \right)^{-1} \left(W_q^H b(f) \right)$$

which matches the solution and the value of $q - 1$ derivatives around f_0.
Galerkin Asymptotic Waveform Evaluation

Galerkin AWE forms the moment-matching subspace \(\mathbf{W}_q = [w_1 w_2 \ldots w_q] \), imposes that the residual is perpendicular to \(\mathbf{W}_q \), yielding the following solution vector

\[
\mathbf{x}_q(\mathbf{f}) = \mathbf{W}_q \left(\mathbf{W}_q^H \mathbf{A}(\mathbf{f}) \mathbf{W}_q \right)^{-1} \left(\mathbf{W}_q^H \mathbf{b}(\mathbf{f}) \right)
\]

which matches the solution and the value of \(q - 1 \) derivatives around \(f_0 \).

Advantages of GAWE:

- a much smaller linear system needs to be solved, namely
 \[
 \left(\mathbf{W}_q^H \mathbf{A}(\mathbf{f}) \mathbf{W}_q \right)^{-1} \left(\mathbf{W}_q^H \mathbf{b}(\mathbf{f}) \right)
 \]
 where \(\mathbf{W}_q^H \mathbf{A}(\mathbf{f}) \mathbf{W}_q \) is of size \(q \times q \)
- yields the Padé approximant of the entire vector \(\mathbf{x}(\mathbf{f}) \).
WCAWE [Slone et al., 2003]

Uses GAWE with the moments computed in a well conditioned manner.
WCAWE [Slone et al., 2003]

Uses GAWE with the moments computed in a well conditioned manner.

Before: \(w_{q+1} = A_0^{-1} \left(b_q - \sum_{i=1}^{q} A_i w_{q-i+1} \right) \).

WCAWE: \(\tilde{w}_{q+1} = A_0^{-1} \left(\sum_{i=1}^{q} b_i c_i - A_1 \tilde{w}_q - \sum_{i=2}^{q} A_i \tilde{w}_{q-i+1} d_i \right) \),

where \(c_i, d_i \) are correction factors.

Moreover, they are orthonormalized via a modified Gram-Schmidt process.
Outline

1. **Problem description**

2. **System assembly: an efficient interpolation approach**
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. **System solving: computing Padé approximants (MOR)**

4. **Proposed algorithm**

5. **Numerical examples**
 - Exterior application
 - Interior/exterior application

6. **Conclusion**
Proposed algorithm

1. Choose a few representative matrix entries, assemble at all frequencies
2. Apply polynomial interpolation of order \(N \) to scaled entries with deviation \(d_{tol} = 10^{-3} \) ⇒ frequency windows
3. Each frequency window contains \(N + 1 \) master frequencies ⇒ set the highest as the expansion frequency
4. Apply WCAWE inside each window by matching moments at the expansion frequency
 1. Start with a small moment subspace
 2. Add new vectors to the moments subspace as long as residual
 \[
 r(f) = \frac{\|\tilde{A}(f)x_q(f) - b(f)\|_2}{\|b(f)\|_2}
 \]
 is larger than \(\varepsilon_{tol} = 10^{-3} \)
5. Combine spaces from \(N_r = 3 \) windows (multi-point approach)
Outline

1. Problem description
2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows
3. System solving: computing Padé approximants (MOR)
4. Proposed algorithm
5. Numerical examples
 - Exterior application
 - Interior/exterior application
6. Conclusion
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Sphere with rigid cap

The pressure outside the sphere verifies:

\[p(r, \theta) = \frac{-i \rho \nu_0(f)}{2} \sum_{n=0}^{\infty} \left[\tilde{P}_{n-1}(\cos \alpha) - \tilde{P}_{n+1}(\cos \alpha) \right] \frac{h_n(kr)}{h'_n(ka)} \tilde{P}_n(\cos \theta), \]

\(r \), distance to evaluation point, \(h_n \), spherical Hankel functions of first kind, \(\tilde{P}_n \), Legendre polynomials, \(\nu_0(f) \), uniform normal velocity of spherical cap, and \(a \), radius of sphere. The infinite summation is truncated at \(2k \).
Parameters for the problem

- sphere radius \(a = 0.6 \, \text{m} \), angle defining the vibrating cap \(\alpha = \pi/3 \, \text{rad} \)
- sound speed is \(c = 340 \, \text{m/s} \), fluid density is \(\rho = 1.225 \, \text{kg/m}^3 \)
- cap normal velocity \(v_0(f) \) is taken as the response of a classical 3 DOF mass-spring-damper: \(M_1 = 60, \ M_2 = 40, \ M_3 = 20 \, \text{(kg)} \); \(K_{1,2,3} = 2.7 \times 10^5 \, \text{(N/m)} \); \(C_{1,2,3} = 20 \, \text{(Ns/m)} \) \(\Rightarrow \) 3 resonances
- mesh with 8 653 nodes, 17 302 triangular elements \(\Rightarrow N_{\text{DOF}} = 15 \, 136 \)
- \(F = [200, 1000] \, \text{Hz} \) with 1 Hz increment (801 individual frequencies)
- \(N = 2 \) interpolation for 8 representative matrix entries \(\Rightarrow 10 \) frequency windows (7 min, 95% on assembly)
Results

FFS vs Matrix Interpolation vs Direct Approach

3h41m12s vs 45h17m23s vs 71h

⇒ speed up factors of 19.4 and 0.6, respectively
Outline

1. Problem description

2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows

3. System solving: computing Padé approximants (MOR)

4. Proposed algorithm

5. Numerical examples
 - Exterior application
 - Interior/exterior application

6. Conclusion
Car engine compartment

Motivation:
- Vehicles should comply with noise emission regulations
- Engine is a major contributor to vehicle pass by noise
- Acoustic treatments in various locations of engine compartment (e.g., under-bonnet, dash, firewall, floor, etc) are employed
- Interior/exterior acoustics problem: cavity with interior resonances and acoustic radiation in free field.
Parameters for the problem

- Mesh with 9,326 nodes, 18,408 elements ⇒ $N_{DOF} = 10,224$
- 6 field points measured by microphones
- A spherical point source is located at $(x = 3 \, \text{m}, \, y = 7 \, \text{m}, \, z = 0 \, \text{m})$
- $F = [100, 1000] \, \text{Hz}$ with 1 Hz frequency increment (901 frequencies)
- 29 frequency windows
Results

Frequency response at the field point P_{front} (in front of the engine).

Frequency response at the field point P_{top} (on top of the engine).

FFS vs Matrix Interpolation vs Direct Approach

5h40m59s vs 10h3m1s vs 34h
Outline

1. Problem description
2. System assembly: an efficient interpolation approach
 - Frequency scaling of the system matrices
 - Frequency interpolation of the system matrices
 - Determining the frequency windows
3. System solving: computing Padé approximants (MOR)
4. Proposed algorithm
5. Numerical examples
 - Exterior application
 - Interior/exterior application
6. Conclusion
Conclusion

MOR for computing FFS for IBEM:

- avoids *assembling and storing* the system matrix at each frequency
- avoids *solving* the linear system at each frequency

Future work: Apply similar ideas to MOR 4 MEMS.
Thank you for your attention!