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Examples structures and vibrations

Car tyres

Windscreens

Structural damping
Choice of connection (glue) to
the car

Planes
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Nonlinear damping

Clamped sandwhich beam
168 degrees of freedom (finite elements)
Linear system

(Ke +
G0 + G∞(iωτ)α

1 + (iωτ)α
Kv − ω2M)x = f

with α = 0.675 and τ = 8.230.
Parameters obtained from measurements.
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Lamot footbridge damper optimization

Lamot bridge finite element
model (n = 25,962)
The goal is to determine the
optimal stiffness and damping
coefficient of four bridge
dampers (=8 parameters).
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Objective
Large dynamical system in the frequency domain:

An(ω)x = f · u(ω)

y = cT x
with x ∈ Cn with n large.
We call H = y/u the transfer function or frequency response
function.
Reduce to

Ar(ω)x̃ = f̃ · u(ω)

ỹ = c̃T x̃
with x̃ ∈ Cr with r � n
Subspace methods:

I Right subspace Range(V) with V ∈ Cn×r (control side)
I Left subspace Range(W ) with W ∈ Cn×r (observation side)

(W ∗AV)x̃ = (W ∗f)

ŷ = (V∗c)T x̃
Choose V and W such that ‖y − ŷ‖ is small.K. Meerbergen (KU Leuven) MODRED 2013 December 11–13, 2013 7 / 53



Objective

Krylov methods
Dominant pole algorithm

both for
Nonlinear frequency dependence

(A0 + iωA1 + e−iωτA2)x = f
y = cT x

Parametric models

(A0 + iωA1 + γ1A2 + iωγ2A3)x = f
y = cT x
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Polynomial models
Polynomial model

(A0 + sA1 + · · ·+ ANsN)x = f
y = cT x

Companion linearization

(A+ sB)x = b
y = (e1 ⊗ c)T x

with

A+sB =


A0 + sA1 sA2 · · · sAN
−sI I 0

. . . . . . ...
−sI I

 ,x =


x
sx
...

sN−1x

 ,b =


f
0
...
0
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Nonlinear models

General form:

A(s)x = f
y = cT x

Approximate by a polynomial or rational polynomial by
interpolation in N + 1 points:

σ0, σ1, . . . , σN , . . .

by a (rational) polynomial
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Nonlinear models

Different bases:
I Newton polynomials:

Nj+1(λ) = Nj(λ) · (λ− σj) j = 1,2, . . .

I Rational Newton polynomials

(λ− ξj) · Nj+1(λ) = (λ− σj) · Nj(λ)

I barycentric Lagrange polynomials, . . .
Variants

I Dynamic: choose polynomial coefficients and degree during the
iterations

I Static: fix the polynomial and then reduce
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Newton polynomial basis

Newton polynomials:

N0 := 1,N1 := (λ− σ0),N2 := (λ− σ0)(λ− σ1), . . .

Nj+1(λ) = Nj(λ) · (λ− σj) j = 1,2, . . .

A(s) = A0N0 + A1N1 + · · · with
σ0, σ1, . . . are interpolation points.
Linearization:


A0 A1 · · · AN
σ0I I

. . . . . .
σN−2I I

− s


0 · · · · · · 0

I
...

. . . ...
I 0





x
N1(s)x
N2(s)x

...

 =


f
0
...
0
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Linear reduced model
Build reduced model for the linearization. Vectors:

V =


V
?
...
?

 W =


W
?
...
?


Reduced model for the linearization:

(Ã + sB̃)z = f̃
H̃ = c̃T z

where Ã = W∗ANV, B̃ = W∗BNV.
For example, a delay differential equation can then be solved by
an ODE solver
[Freund 2005], [Michiels, Jarlebring, M. 2012]
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Properties of linearized model
Original equation:

A(λ)x = f
Linearized equation (N = 2) A0 A1 A2

σ0I I
σ1I I

− s

 0 0 0
I 0 0
0 I 0

 x
N1(s)x
N2(s)x

 =

 f
0
0


Eigenvectors

A(λ)p = 0 A0 A1 A2
(σ0 − λ)I I

(σ1 − λ)I I

 p
N1(λ)p
N2(λ)p

 = 0

Left eigenvectors
q∗A(λ) = 0 q

−A∗1q + (σ1 − λ)A∗2q
−A∗2q

∗  A0 A1 A2
(σ0 − λ)I I

(σ1 − λ)I I

 = 0
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Properties of linearized model

Moments for simple interpolation points:

σ0, σ1, σ2

Nonlinear problems has moments: mj = A(σj)
−1f for j = 0,1,2.

Linearization of the polynomial has moments:

m0 =

 m0
0
0

 m1 =

 m1
N1(σ1)m1

0

 m2 =

 m2
N1(σ2)m2
N2(σ2)m2


For 2-sided moment matching, see [Michiels, Peeters 2013]
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Nonlinear reduced model

Original matrix:

A(s) =
m∑

j=0
fj(s)Aj

Krylov vectors V and W of linearization
Reduced nonlinear model:

(
m∑

j=0
fj(s)Ãj)z = f̃

H̃ = c̃T z

where Ãj = W ∗AjV .
SOAR [Bai, Su 2005]
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Algorithms

Apply a Krylov method to the linearization (moment matching)
I Krylov methods: two-sided Arnoldi
I Rational Krylov methods: the poles correspond to the interpolation

points σj

Use the dominant pole algorithm:
I The σj are the Ritz values computed by the dominant pole algorithm
I Linearization supports deflation (which is needed to compute more

than one pole)
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Rational Krylov method

Linear system:

(A + sB)x = f
y = cT x

Two-sided model reduction
I Interpolation in s0, . . . , sN :

V = orth((A + s0B)−1f , . . . , (A + sNB)−1f)

W = orth((A + s0B)−∗c, . . . , (A + sNB)−∗c)

I Moment matching property:

H̃(sj) = H(sj)
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Rational Krylov method

One sided algorithm:
Let b = (A + σ0B)−1f
Let v1 = b/‖b‖
for j = 1, . . . , k do

Solve
(A + σjB)tj = Bvj

Orthonormalize tj against Vj and add: Vj+1
end for

Numerically more stable than accumulating moments.
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Rational Krylov
Shift-and-invert step: (A− σjB)w = Bv

1 First step: multiply by B: shift vector downwards

B · v = w
0 · · · · · · 0
I

...
. . . ...

I 0

 ·

?
?
...
?
0

 =


0
?
?
...
?


2 Then solve with A

A0 A1 A2 A3 A4 A5
σ0I I

σ1I I
σ2I I

σ3I I
σ4I I



−1 
0
?
0
0
0
0

 =


?
?
?
?
?
?


This is rational Krylov with poles σ1, σ2, . . .
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Numerical example
‘gun’ problem Manchester-Berlin NEVP collection{

A(ω)x(ω) = fu(ω)
y(ω) = cx(ω)

,

where

A(ω) = K − ω2M + i
√
ω2 − σ2

1W1 + i
√
ω2 − σ2

2W2,

with
M, K , W1, W2 real symmetric matrices of dimension 9956.
K positive semidefinite and M positive definite.
W1 and W2 low rank matrices.
The vectors f and c are

f = [1 1 · · · 1]T/
√

n, c = [1 1 · · · 1]T/
√

n.
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Example: ‘gun’ problem

Reduced order models were constructed{
Â(ω)x(ω) = f̂ u(ω)

y(ω) = ĉ∗x̂(ω)
,

where x̂(ω) ∈ Ck and

Â(ω) = V∗k KVk − ω2 V∗k MVk + i
√
ω2 − σ2

1 V∗k W1Vk

+ i
√
ω2 − σ2

2 V∗k W2Vk ,

f̂ =V∗k f ,

ĉ =V∗k c
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Example: ‘gun’ problem

100 150 200 250 300 350
10

−4

10
−3

10
−2

10
−1

output gun model

ω

|y
|
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Example: ‘gun’ problem

Hermite interpolation in 4 points:

100 150 200 250 300 350

10
−15

10
−10

10
−5

10
0

ω

re
la

ti
v
e
 e

rr
o
r

Newton Rational Krylov MOR

 

 

k = 20 k = 40 k = 60

reduced model full model
3.8 s (k = 20)
4.9 s (k = 40) 512 s
7.1 s (k = 60)
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Example: boundary element problem

Boundary element formulation for the Helmholtz equation
(LMS — Siemens):

Nonlinear in ω
Full matrices

Procedure as follows:
1 Interpolate in k points on the ω axis
2 Build the interpolating polynomial (barycentric Lagrange

polynomials)
3 Build reduced polynomial problem of degree k − 1 with matrices of

dimension k × k.
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Example: boundary element problem

0 50 100 150 200 250 300

10−15

10−10

10−5

100

f [Hz]

re
la

tiv
e

er
ro

r

exact k = 10 k = 20
k = 30
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Other approximations
[Michiels, Jarlebring and M. 2012] Use spectral discretization for
delay equation
[Güttel, Van Beeumen, M., Michiels 2013] Use rational Newton
polynomials

0 20 40 60 80 100

10-15

10-10

10-5

100

number of interpolation nodes

interpolation error

poly. Newton
poly. Chebyshev
rational Newton
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Dominant pole algorithm
Computes poles of

c∗A(s)−1f ≈
∑

j

Rj
s− λj

with
Rj =

(q∗j f)(c∗pj)

q∗j A′(λj)pj

and A(λj)pj = 0 and q∗j A(λj) = 0.
DPA = Newton’s method applied to
1/(c∗A(s)−1f).
It converges to the eigenvalue with
largest

|Rj |
|Re(λj)|

K. Meerbergen (KU Leuven) MODRED 2013 December 11–13, 2013 29 / 53



Dominant pole algorithm
For a linear problem, DPA with subspace acceleration is like
rational Krylov/Jacobi-Davidson for the eigenvalue problem:

1 solve a sequence of linear systems:

(A + sjB)xj = f
(A + sjB)∗tj = c

2 Accumulate in subspace: Vj = [Vj−1, xj ], Wj = [Wj−1, tj ].
3 Solve projected eigenvalue problem

det((W∗j AVj) + λ(W∗j BVj)) = 0 → new sj+1

(= two-sided version of rational Krylov)
For computing more than one eigenvalue, modify the definition of
dominance:

f − (Bp)(q∗f)

[Rommes, & Martins 2006, 2008]
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Dominant pole algorithm
For a nonlinear problem, we do the same, but for a polynomial
eigenvalue problem interpolating in the sj ’s.

1 solve a sequence of linear systems:

A(sj)xj = f
A(sj)

∗yj = c

2 Solve projected nonlinear eigenvalue problem

det(W∗j A(λ)Vj) = 0 → new sj+1

Deflation can be reformulated as:

f − A(s)p
(λ− s)(q∗A′(λ)p)

q∗f

(Follows from the use of a ‘linearization’)
[Saadvandi, M. & Jarlebring 2012]
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Example: Sandwhich beam
Computed five dominant poles
Small scale (nonlinear) eigenvalue problem is solved with rational
Krylov
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Parametric models
Model: (A0 +

p∑
j=1

γjAj) + s(B0 +

p∑
j=1

γjBj)

 x = f

y = cT x
with x ∈ Cn with n large; γ ∈ Rp are parameters
Examples:

I The mean of the output:

z =

∫
Γ

ydγ

Numerical integration using cubature rule:

z ≈
N∑

j=1
wj · y(γj)

I Optimization problem:
min
γ∈Γ
|y|2
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Discretize the parameter space
Discretization of parameter space:

Cartesian grid (only for small
number of parameters)
Sparse grids
Lattice rules

0 1 2 3 4 5 6 7 8 9

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

γ
1

α
2

1,1,2,3,5,8, . . . ,Z ,N .

We define the N lattice points as

α(j) =

[
α

(j)
1
α

(j)
2

]
=

mod
(

(j − 1)

[
1
Z

]
,N
)

N , j = 1, . . . ,N
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Parametric models

Interpolatory model reduction:

1 Discretize the parameter space
2 Build a reduced model for each node
γj

3 Merge the spaces
For DPA

γ

s
Parameter integrated in the algorithm:

Vectors are functions of γ
Eigenvalues and moments are
functions of γ
Compute these functions

For moment matching

γ

s
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Hermite interpolation

For moment matching:

I
∂ iĤ(σj)

∂si =
∂ iH(σj)

∂si for i = 0, . . . ,2k − 2

I
∂ i+1Ĥ(σj)

∂γ∂si =
∂ i+1H(σj)

∂γ∂si for i = 0, . . . , k − 1

[Baur, Beattie, Benner, Gugercin 2011] [Yue, M. 2012]
For dominant poles:

I λj = λ̂j

I
∂λj
∂γ

=
∂λ̂j
∂γ

I Ĥ(s) ∼ H(s), s→ λ

I
∂Ĥ(s)

∂γ
∼ ∂H(s)

∂γ
, s→ λ

[Saadvandi, M. & Desmet 2013]
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Interpolatory MOR

Standard algorithm:
for j = 1, . . . ,N do

Compute V (j)
k and W (j)

k for node γ(j)

Merge the subspaces in V , W .
end for

Continuation DPA (CDPA)
Compute Vk and Wk for node γ(1)

for j = 1, . . . ,N do
Use V ane W as a starting subspace (good starting values).
Compute Vk and Wk for node γ(j).
Merge the subspaces in V , W .

end for
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Numerical example: aluminum plate
Model:

(K0 + γ2Kbnd + iω(C0 + γ1Cbnd)− ω2M)x = f

γ1 = 10−2 + α1(10−2 − 10−4)

γ2 =
−100
α2 − 1 − 101

α1,2 ∈ [0,1)

500 1000 1500 2000 2500 3000 3500
1

2

3

4

5

6

7

8

imag(λ)

γ(i
)

 

 

1st dp

2nd dp

3rd dp

4th dp

5th dp

6th dp

7th dp

Iterations
γ(1) 22
γ(2) 18
γ(3) 13
γ(4) 15
γ(5) 10
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Numerical example: Lamot footbridge

{ (
(1 + 0.02i)K0 + (k1 + iωc1)K1 − ω2M

)
x = f
y = c∗x.

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

iω(rad/s)

|H
(i
ω
)|

 

 

γ
(1)

γ
(2)

γ
(3)

γ
(4)

# iterations time (min)
γ(1) 8 0.45
γ(2) 4 0.25
γ(3) 7 0.43
γ(4) 3 0.19

Total 22 1.32
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Tensorize the solution
Discretize the parameters in a grid of
quadrature nodes:

γ(i1,...,ip) = (γ
(i1)
1 , . . . , γ

(ip)
p ) ∈ Γ ⊂ Rp

with ij = 1, . . . ,nj , j = 1, . . . ,p.
Then represent the state vector as a
tensor:

X:,i1,...,ip = x(γ(i1,...,ip))

System for each grid point:(A0 + sB0 +

p∑
j=1

γ
(i1,...,ip)
j (Aj + sBj))

X:,i1,...,ip = f
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Tensor-Krylov

For each grid point, a linear system needs to be solved:A0 + sB0 +

p∑
j=1

γ
(i1,...,ip)
j (Aj + sBj)

X:,i1,...,ip = f

This can be done with a tensor Krylov method [Kressner, Tobler
2011]: X is Tucker tensor
Solve preconditioned system iteratively

M−1

A0 + sB0 +

p∑
j=1

γ
(i1,...,ip)
j (Aj + sBj)

x(γ(i1,...,ip)) = M−1f

The main operation is the matrix-vector product
t = M−1(A(γ) + sB(γ))z
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Implementing preconditioned matrix-vector product

Represent tensors using Tucker decomposition

X = X1X̂XT
2 (SVD)

X = (X0,X1, . . . ,Xp)•X̂ X ≈ X0 X1

X2

X̂

The operation t = M−1(A(γ) + sB(γ))z goes as follows
1 No need to evaluate M−1(A(γ) + sB(γ))z for every grid point.
2 z is represented as a low rank tensor Z ≈ (Z0, . . . ,Zp)•Ẑ with

Z0 ∈ Cn×r and r � n.
3 Sparse matvec operations: M−1(Aj + sBj)Z0, j = 0, . . . ,p
4 Operations on tensors: can be expensive!

Key point: low rank X0
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Two algorithms

1 Interpolatory MOR
I Tensor-Krylov with preconditioner M−1 with M ≈ A0 + σB0
I Perform sufficiently large number of iterations so that parametric

system is solved accurately enough
2 Small number of iterations:

I Connection with multivariate Padé
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Multivariate Padé
We want to build the parametric Krylov space:

(A(γ) + σ0B(γ))−1f , (A(γ) + σ1B(γ))−1f , . . . , (A(γ) + σkB(γ))−1f

where the basis vectors are discretized by tensors.

Theorem
Consider the power sequence (M = A0 + σjB0):

v(0)
j (γ) ≡ M−1f

v(`)
j (γ) = v(`−1)

j (γ) +

p∑
j=1

M−1γjAjv(`−1)
j (γ)

v(`)
j is a moment matching polynomial of degree ` in γ:

‖v(`)
j (γ)− (A(γ) + σjB(γ))−1f‖2 = O(‖γ`+1‖)
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Reduced model
Form a reduced model for the mean problem (using the tensors as
state vectors.)(A0 +

p∑
j=1

γ
(i1,...,ip)
j Aj) + sB0

X:,i1,...,ip = f

z =
∑

i1,...,ip

wi1,...,ip(c∗X:,i1,...,ip)

From tensor representation (evaluation for grid points is available)
Y = (c∗)•0X

Classical parametric model using the mode-0 vector space of
iteration vectors: columns of Vj,0 in

Vj = (Vj,0, . . . ,Vj,p)•0V̂j

span the moments.
Project on the joined V = orth([V0,0, . . . ,Vk,0])
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Numerical example: acoustic box
3D box with parametric Robin boundary condition on two faces

` = 3 GMRES
iterations
Tensors truncated
τ = 10−8

Iter. Rank Iter. Rank Iter. Rank
1 16 8 109 14 205
2 27 9 125 15 221
3 38 10 141 16 237
4 51 11 157 17 253
5 64 12 173 18 269
6 79 13 189 19 285
7 94
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Numerical example: acoustic box
3D box with parametric Robin boundary condition on two faces

` = 3 GMRES
iterations
Tensors truncated
τ = 10−4

Iter. Rank Iter. Rank Iter. Rank
1 7 8 51 14 111
2 11 9 60 15 122
3 16 10 69 16 137
4 22 11 79 17 148
5 28 12 88 18 161
6 35 13 99 19 177
7 43
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Numerical example: acoustic box
3D box with parametric Robin boundary condition on two faces

` = 15 GMRES
iterations
Tensors truncated
τ = 10−4

Iter. Rank Iter. Rank Iter. Rank
1 17 8 108 14 204
2 25 9 124 15 220
3 34 10 140 16 236
4 50 11 156 17 252
5 63 12 172 18 268
6 77 13 188 19 284
7 93
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Numerical example: acoustic box
3D box with parametric Robin boundary condition on two faces

M computed by ILU
` = 15 GMRES
iterations
Tensors truncated
τ = 10−4

Iter. Rank Iter. Rank Iter. Rank
1 17 8 111 14 207
2 28 9 127 15 223
3 39 10 143 16 239
4 53 11 159 17 255
5 66 12 175 18 271
6 80 13 191 19 287
7 96
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Numerical example: footbridge
The matrix dependency on the 8 parameters has rank 8(

(1 + 0.02i)K0 +
4∑

i=1
(ki + iωci)Ki − ω2M

)
x = f

(Matrices K1, . . . ,K4 each have rank two.)

Ranks of iteration matrices
in Arnoldi’s method:
ni = 3 ni = 5

9 9
14 14
20 25
28 37
35 51

Results related to block Arnoldi for low rank parametric terms [Yue, M.
2013]
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Conclusions

Nonlinear in the frequency:
I Rational Krylov with simple poles is easy
I Rational Krylov with high order moment matching: possible, but

technical (based on polynomial interpolation)
Parametric:

I Interpolatory MOR for DPA can enjoy continuation properties of
eigenspaces

Tensors:
I Related to multivariate interpolation
I If a low rank tensor approximation does not exist, it is not a practical

method
I Automatic rank reduction
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