Recent advances in the reduction of frequency based models for structures and vibrations

Karl Meerbergen

KU Leuven

December 11–13, 2013

Joint work with Yao Yue, Maryam Saadvandi, Roel Van Beeumen, Wim Michiels, Wim Desmet

[Nonlinear models in the frequency domain](#page-8-0)

Outline

[Nonlinear models in the frequency domain](#page-8-0)

[Parametric models](#page-36-0)

[Conclusions](#page-55-0)

Examples structures and vibrations

Car tyres

- Structural damping
- Choice of connection (glue) to the car

Nonlinear damping

- Clamped sandwhich beam
- 168 degrees of freedom (finite elements)
- **•** Linear system

$$
(K_e+\frac{G_0+G_{\infty}(i\omega\tau)^{\alpha}}{1+(i\omega\tau)^{\alpha}}K_v-\omega^2M)x=f
$$

with $\alpha = 0.675$ and $\tau = 8.230$. Parameters obtained from measurements.

Lamot footbridge damper optimization

- Lamot bridge finite element model ($n = 25,962$)
- The goal is to determine the optimal stiffness and damping coefficient of four bridge dampers (=8 parameters).

Objective

Large dynamical system in the frequency domain:

$$
A_n(\omega)x = f \cdot u(\omega)
$$

$$
y = c^T x
$$

with $x \in \mathbb{C}^n$ with *n* large.

We call *H* = *y*/*u* the *transfer function* or *frequency response function*.

• Reduce to

$$
A_r(\omega)\widetilde{x} = \widetilde{f} \cdot u(\omega) \n\widetilde{y} = \widetilde{c}^T \widetilde{x}
$$

 $x \in \mathbb{C}^r$ with *r* ≪ *n*
Subspace methods:

• Subspace methods:

- **► Right subspace** $\text{Range}(V)$ **with** $V \in \mathbb{C}^{n \times r}$ **(control side)**
- ► Left subspace $\text{Range}(W)$ with $W \in \mathbb{C}^{n \times r}$ (observation side)

$$
\begin{array}{rcl} (W^*AV)\widetilde{x} & = & (W^*f) \\ \widehat{y} & = & (V^*c)^T \widetilde{x} \end{array}
$$

Objective

- Krylov methods
- Dominant pole algorithm

both for

• Nonlinear frequency dependence

$$
(A_0 + i\omega A_1 + e^{-i\omega \tau} A_2)x = f
$$

$$
y = c^T x
$$

• Parametric models

$$
(A0 + i\omega A1 + \gamma1A2 + i\omega \gamma2A3)x = f
$$

$$
y = cTx
$$

[Conclusions](#page-55-0)

Polynomial models

• Polynomial model

$$
(A0 + sA1 + \cdots + ANsN)x = fy = cTx
$$

• Companion linearization

$$
(\mathcal{A} + s\mathcal{B})\mathbf{x} = \mathbf{b}
$$

$$
\mathbf{y} = (e_1 \otimes c)^T \mathbf{x}
$$

with

$$
\mathcal{A}+s\mathcal{B}=\left[\begin{array}{cccc}A_0+sA_1 & sA_2 & \cdots & sA_N \\ -sI & I & 0 \\ & & \vdots & \\ & & -sI & I\end{array}\right],\mathbf{x}=\left(\begin{array}{c}x \\ sx \\ \vdots \\ s^{N-1}x\end{array}\right),\mathbf{b}=\left(\begin{array}{c}f \\ 0 \\ \vdots \\ 0\end{array}\right)
$$

Nonlinear models

General form:

$$
A(s)x = f
$$

$$
y = c^T x
$$

• Approximate by a polynomial or rational polynomial by interpolation in $N + 1$ points:

$$
\sigma_0,\sigma_1,\ldots,\sigma_N,\ldots
$$

by a (rational) polynomial

Nonlinear models

- **•** Different bases:
	- \triangleright Newton polynomials:

$$
N_{j+1}(\lambda) = N_j(\lambda) \cdot (\lambda - \sigma_j) \quad j = 1, 2, \dots
$$

 \blacktriangleright Rational Newton polynomials

$$
(\lambda - \xi_j) \cdot N_{j+1}(\lambda) = (\lambda - \sigma_j) \cdot N_j(\lambda)
$$

- \triangleright barycentric Lagrange polynomials, ...
- Variants
	- \triangleright Dynamic: choose polynomial coefficients and degree during the iterations
	- \triangleright Static: fix the polynomial and then reduce

Newton polynomial basis

• Newton polynomials:

$$
N_0 := 1, N_1 := (\lambda - \sigma_0), N_2 := (\lambda - \sigma_0)(\lambda - \sigma_1), \dots
$$

$$
N_{j+1}(\lambda) = N_j(\lambda) \cdot (\lambda - \sigma_j) \quad j = 1, 2, \dots
$$

$$
A(s) = A_0 N_0 + A_1 N_1 + \dots \text{ with}
$$

$$
\sigma_0, \sigma_1, \dots \text{ are interpolation points.}
$$
Linearization:

$$
\left(\left[\begin{array}{cccc}A_0 & A_1 & \cdots & A_N \\ \sigma_0 I & I & & \\ & \ddots & \ddots & \\ & & \sigma_{N-2}I & I\end{array}\right] - s\left[\begin{array}{cccc}0 & \cdots & \cdots & 0 \\ I & & & \vdots \\ & \ddots & & \vdots \\ & & & I & 0\end{array}\right]\right)\left[\begin{array}{c}x \\ N_1(s)x \\ N_2(s)x \\ \vdots\end{array}\right] = \left[\begin{array}{c}f \\ 0 \\ \vdots \\ 0\end{array}\right]
$$

 \bullet \bullet ٠

Linear reduced model

• Build reduced model for the linearization. Vectors:

$$
\mathbf{V} = \left(\begin{array}{c} V \\ \star \\ \vdots \\ \star \end{array} \right) \qquad \mathbf{W} = \left(\begin{array}{c} W \\ \star \\ \vdots \\ \star \end{array} \right)
$$

• Reduced model for the linearization:

$$
(\widetilde{A} + s\widetilde{B})z = \widetilde{f}
$$

$$
\widetilde{H} = \widetilde{c}^{T}z
$$

 W^* **W** \sim *A* \cong **W** $*$ *B* \sim **W**.

- For example, a delay differential equation can then be solved by an ODE solver
- [Freund 2005], [Michiels, Jarlebring, M. 2012]

Properties of linearized model

• Original equation:

$$
A(\lambda)x=f
$$

\n- Linearized equation
$$
(N = 2)
$$
\n- \n
$$
\left(\begin{bmatrix} A_0 & A_1 & A_2 \\ \sigma_0 I & I & \sigma_1 I & I \\ 0 & \sigma_1 I & I \end{bmatrix} - s \begin{bmatrix} 0 & 0 & 0 \\ I & 0 & 0 \\ 0 & I & 0 \end{bmatrix} \right) \begin{bmatrix} x \\ N_1(s)x \\ N_2(s)x \end{bmatrix} = \begin{bmatrix} f \\ 0 \\ 0 \end{bmatrix}
$$
\n
\n- Eigenvectors
\n

$$
A(\lambda)p = 0
$$

$$
\begin{bmatrix} A_0 & A_1 & A_2 \\ (\sigma_0 - \lambda)I & I & I \end{bmatrix} \begin{pmatrix} p \\ N_1(\lambda)p \\ N_2(\lambda)p \end{pmatrix} = 0
$$

• Left eigenvectors

 $q^*A(\lambda) = 0$

$$
\begin{pmatrix}\nq & A_1 & A_2 \\
-A_1^*q + (\sigma_1 - \lambda)A_2^*q & A_3^*q & A_4^*q & A_5^*q \\
-A_2^*q & A_4^*q & A_5^*q & A_6^*q & A_7^*q & A_7^*q \\
\text{K. Meeibergen (KU Leuven)} & A_5^*q & A_6^*q & B_6^*q & B_6^*q & 11-13, 2013 & 15/53\n\end{pmatrix}
$$

Properties of linearized model

• Moments for simple interpolation points:

$$
\sigma_0, \sigma_1, \sigma_2
$$

- Nonlinear problems has moments: $m_j = A(\sigma_j)^{-1}f$ for $j=0,1,2.$
- Linearization of the polynomial has moments:

$$
\mathbf{m}_0 = \left(\begin{array}{c} m_0 \\ 0 \\ 0 \end{array}\right) \quad \mathbf{m}_1 = \left(\begin{array}{c} m_1 \\ N_1(\sigma_1)m_1 \\ 0 \end{array}\right) \quad \mathbf{m}_2 = \left(\begin{array}{c} m_2 \\ N_1(\sigma_2)m_2 \\ N_2(\sigma_2)m_2 \end{array}\right)
$$

For 2-sided moment matching, see [Michiels, Peeters 2013]

Nonlinear reduced model

• Original matrix:

$$
A(s)=\sum_{j=0}^m f_j(s)A_j
$$

- Krylov vectors *V* and *W* of linearization
- Reduced nonlinear model:

$$
(\sum_{j=0}^{m} f_j(s)\widetilde{A}_j)z = \widetilde{f}
$$

$$
\widetilde{H} = \widetilde{c}^T z
$$

 $W^*A_j = W^*A_jV$. SOAR [Bai, Su 2005]

Algorithms

Apply a Krylov method to the linearization (moment matching)

- \triangleright Krylov methods: two-sided Arnoldi
- \triangleright Rational Krylov methods: the poles correspond to the interpolation points σ*^j*
- Use the dominant pole algorithm:
	- \blacktriangleright The σ_i are the Ritz values computed by the dominant pole algorithm
	- \blacktriangleright Linearization supports deflation (which is needed to compute more than one pole)

Rational Krylov method

• Linear system:

$$
(A + sB)x = f
$$

$$
y = cTx
$$

- Two-sided model reduction
	- Interpolation in s_0, \ldots, s_N :

$$
V = \operatorname{orth}((A + s_0B)^{-1}f, \ldots, (A + s_NB)^{-1}f)
$$

$$
W = \operatorname{orth}((A + s_0B)^{-*}c, \ldots, (A + s_NB)^{-*}c)
$$

 \blacktriangleright Moment matching property:

$$
\widetilde{H}(s_j) = H(s_j)
$$

Rational Krylov method

• One sided algorithm:

Let
$$
b = (A + \sigma_0 B)^{-1}f
$$

Let $v_1 = b/||b||$
for $j = 1, ..., k$ do
Solve

$$
(A + \sigma_j B)t_j = Bv_j
$$

Orthonormalize t_i against V_i and add: V_{i+1} **end for**

• Numerically more stable than accumulating moments.

Shift-and-invert step: $(A - \sigma_j B)w = Bv$

1 First step: multiply by *B*: shift vector downwards

$$
\begin{bmatrix}\n0 & \cdots & \cdots & 0 \\
\prime & & & \vdots \\
\cdot & & & \vdots \\
\cdot & & & \cdot \\
\cdot & & & & \cdot\n\end{bmatrix}\n\cdot\n\begin{bmatrix}\n\star \\
\star \\
\star \\
\star \\
\star \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
\star \\
\star \\
\star \\
\star \\
\star\n\end{bmatrix}
$$

² Then solve with *A*

$$
\begin{bmatrix}\nA_0 & A_1 & A_2 & A_3 & A_4 & A_5 \\
\sigma_0 I & I & & & \\
& \sigma_1 I & I & & \\
& & \sigma_2 I & I & \\
& & & \sigma_3 I & I \\
& & & & \sigma_4 I & I\n\end{bmatrix}^{-1} \begin{bmatrix}\n0 \\
\star \\
0 \\
0 \\
0 \\
\star \\
0\n\end{bmatrix} = \begin{bmatrix}\n\star \\
\star \\
\star \\
\star \\
\star \\
\star \\
\star\n\end{bmatrix}
$$

Shift-and-invert step: $(A - \sigma_j B)w = Bv$

¹ First step: multiply by *B*: shift vector downwards

$$
\begin{bmatrix}\n0 & \cdots & \cdots & 0 \\
I & & & \vdots \\
& & & \ddots & \vdots \\
& & & I & 0\n\end{bmatrix}\n\begin{bmatrix}\n\stackrel{\star}{\uparrow} \\
0 \\
\vdots \\
0\n\end{bmatrix} = \begin{bmatrix}\n0 \\
\stackrel{\star}{\uparrow} \\
0 \\
\vdots \\
0\n\end{bmatrix}
$$

2 Then solve with $A - \sigma_1 B$

$$
\left[\begin{array}{cccc|c}\nA_0 & A_1 & A_2 & A_3 & A_4 & A_5 \\
\star & I & & & & \\
& 0 & I & & & \\
& & \star & I & & \\
& & & \star & I & & \\
& & & & \star & I & \\
& & & & & 0\n\end{array}\right]^{-1}\left[\begin{array}{c} 0 \\ \star \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right] = \left[\begin{array}{c} \star \\ \star \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]
$$

Shift-and-invert step: $(A - \sigma_j B)w = Bv$

1 First step: multiply by *B*: shift vector downwards

$$
\begin{bmatrix}\n0 & \cdots & \cdots & 0 \\
\prime & & & \vdots \\
\cdot & & & \vdots \\
\cdot & & & \cdot \\
\cdot & & & & \cdot \\
\cdot & & & & \cdot\n\end{bmatrix}\n\cdot\n\begin{bmatrix}\n\star \\
\star \\
\star \\
0 \\
\vdots \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
\star \\
\star \\
0 \\
0 \\
0\n\end{bmatrix}
$$

2 Then solve with $A - \sigma_2 B$

$$
\begin{bmatrix} A_0 & A_1 & A_2 & A_3 & A_4 & A_5 \ \star & I & & & \\ \star & I & & & & \\ & & \star & I & & \\ & & & \star & I & & \\ & & & & \star & I & \\ & & & & & \star & I \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \star \\ \star \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \star \\ \star \\ \star \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

Shift-and-invert step: $(A - \sigma_j B)w = Bv$

1 First step: multiply by *B*: shift vector downwards

$$
\begin{bmatrix}\n0 & \cdots & \cdots & 0 \\
I & & & \vdots \\
\vdots & & & \vdots \\
& & & I & 0\n\end{bmatrix}\n\cdot\n\begin{bmatrix}\n\star \\
\star \\
\star \\
0 \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
\star \\
\star \\
\star \\
0\n\end{bmatrix}
$$

2 Then solve with $A - \sigma_3 B$

$$
\begin{bmatrix} A_0 & A_1 & A_2 & A_3 & A_4 & A_5 \ \star & I & & & \star \\ & \star & I & & & \star \\ & & 0 & I & & & \star \\ & & & \star & I & & & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \star \\ \star \\ \star \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \star \\ \star \\ \star \\ \star \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

Shift-and-invert step: $(A - \sigma_j B)w = Bv$

1 First step: multiply by *B*: shift vector downwards

$$
\begin{bmatrix}\n0 & \cdots & \cdots & 0 \\
\prime & & & \vdots \\
\cdot & & & \vdots \\
\cdot & & & \cdot \\
\cdot & & & & 0\n\end{bmatrix}\n\cdot\n\begin{bmatrix}\n\star \\
\star \\
\star \\
\star \\
\star \\
0\n\end{bmatrix} =\n\begin{bmatrix}\n0 \\
\star \\
\star \\
\star \\
\star \\
\star\n\end{bmatrix}
$$

2 Then solve with $A - \sigma_4 B$

$$
\left[\begin{array}{cccccc}\nA_0 & A_1 & A_2 & A_3 & A_4 & A_5 \\
\star & I & & & & \\
& \star & I & & & \\
& & \star & I & & \\
& & & 0 & I\n\end{array}\right]^{-1}\n\left[\begin{array}{c}\n0 \\
\star \\
\star \\
\star \\
\star \\
& \star \\
& 0\n\end{array}\right] = \left[\begin{array}{c}\n\star \\
\star \\
\star \\
\star \\
& \star \\
& \star \\
& 0\n\end{array}\right]
$$

Numerical example

'gun' problem Manchester-Berlin NEVP collection

$$
\begin{cases}\nA(\omega)x(\omega) &=& \text{f}u(\omega) \\
y(\omega) &=& \text{cx}(\omega)\n\end{cases}
$$

where

$$
A(\omega)=K-\omega^2M+i\sqrt{\omega^2-\sigma_1^2}W_1+i\sqrt{\omega^2-\sigma_2^2}W_2,
$$

with

- *M, K, W₁, W₂* real symmetric matrices of dimension 9956.
- *K* positive semidefinite and *M* positive definite.
- W_1 and W_2 low rank matrices.
- The vectors *f* and *c* are

$$
f = [1 \; 1 \; \cdots \; 1]^T/\sqrt{n}, \qquad c = [1 \; 1 \; \cdots \; 1]^T/\sqrt{n}.
$$

Example: 'gun' problem

Reduced order models were constructed

$$
\begin{cases}\n\widehat{A}(\omega)x(\omega) &= \widehat{f}u(\omega) \\
y(\omega) &= \widehat{c}^*\widehat{x}(\omega)\n\end{cases}
$$

where $\widehat{x}(\omega) \in \mathbb{C}^k$ and

$$
\widehat{A}(\omega) = V_k^* K V_k - \omega^2 V_k^* M V_k + i \sqrt{\omega^2 - \sigma_1^2} V_k^* W_1 V_k
$$

+
$$
i \sqrt{\omega^2 - \sigma_2^2} V_k^* W_2 V_k,
$$

$$
\widehat{f} = V_k^* f,
$$

$$
\widehat{c} = V_k^* c
$$

Example: 'gun' problem

Example: 'gun' problem

Hermite interpolation in 4 points:

Example: boundary element problem

Boundary element formulation for the Helmholtz equation (LMS — Siemens):

- **.** Nonlinear in ω
- **•** Full matrices

Procedure as follows:

- **1** Interpolate in *k* points on the ω axis
- ² Build the interpolating polynomial (barycentric Lagrange polynomials)
- ³ Build reduced polynomial problem of degree *k* − 1 with matrices of dimension $k \times k$.

Example: boundary element problem

Other approximations

- [Michiels, Jarlebring and M. 2012] Use spectral discretization for delay equation
- [Güttel, Van Beeumen, M., Michiels 2013] Use rational Newton polynomials

Dominant pole algorithm

• Computes poles of

$$
c^*A(s)^{-1}f \approx \sum_j \frac{R_j}{s-\lambda_j}
$$

with

$$
R_j = \frac{(q_j^* f)(c^* p_j)}{q_j^* A'(\lambda_j) p_j}
$$

and $A(\lambda_j)p_j = 0$ and $q_j^*A(\lambda_j) = 0$.

- \bullet DPA = Newton's method applied to $1/(c^*A(s)^{-1}f).$
- It converges to the eigenvalue with largest

$$
\frac{|R_j|}{|\mathsf{Re}(\lambda_j)|}
$$

Dominant pole algorithm

For a linear problem, DPA with subspace acceleration is like rational Krylov/Jacobi-Davidson for the eigenvalue problem:

1 solve a sequence of linear systems:

$$
(A + s_j B)x_j = f
$$

$$
(A + s_j B)^* t_j = c
$$

² Accumulate in subspace: *V^j* = [*Vj*−1, *x^j*], *W^j* = [*Wj*−1, *t^j*]. ³ Solve projected eigenvalue problem

$$
\det((W_j^*AV_j)+\lambda(W_j^*BV_j))=0\quad\to\quad\text{new }s_{j+1}
$$

(= two-sided version of rational Krylov)

For computing more than one eigenvalue, modify the definition of dominance:

f − (*Bp*)(*q* ∗ *f*)

[Rommes, & Martins 2006, 2008]

Dominant pole algorithm

For a nonlinear problem, we do the same, but for a polynomial eigenvalue problem interpolating in the *s^j* 's.

1 solve a sequence of linear systems:

$$
A(s_j)x_j = f
$$

$$
A(s_j)^*y_j = c
$$

² Solve projected nonlinear eigenvalue problem

$$
\det(W_j^*A(\lambda)V_j)=0\quad\to\quad\text{new }s_{j+1}
$$

• Deflation can be reformulated as:

$$
f-\frac{A(s)p}{(\lambda-s)(q^*A'(\lambda)p)}q^*f
$$

(Follows from the use of a 'linearization') [Saadvandi, M. & Jarlebring 2012]

Example: Sandwhich beam

- Computed five dominant poles
- Small scale (nonlinear) eigenvalue problem is solved with rational Krylov

Outline

[Motivation](#page-2-0)

[Nonlinear models in the frequency domain](#page-8-0)

3 [Parametric models](#page-36-0)

[Conclusions](#page-55-0)

Parametric models

Model:

$$
\left((A_0 + \sum_{j=1}^p \gamma_j A_j) + s(B_0 + \sum_{j=1}^p \gamma_j B_j)\right) x = f
$$

$$
y = c^T x
$$

with $x \in \mathbb{C}^n$ with *n* large; $\gamma \in \mathbb{R}^p$ are parameters **•** Examples:

 \blacktriangleright The mean of the output:

$$
z=\int_{\Gamma} y d\gamma
$$

Numerical integration using cubature rule:

$$
z \approx \sum_{j=1}^N w_j \cdot y(\gamma_j)
$$

 \triangleright Optimization problem:

$$
\min_{\gamma\in\Gamma}|y|^2
$$

Discretize the parameter space

Discretization of parameter space:

- Cartesian grid (only for small number of parameters)
- Sparse grids
- **•** Lattice rules

 $1, 1, 2, 3, 5, 8, \ldots, Z, N$.

We define the *N* lattice points as

$$
\alpha^{(j)} = \left[\begin{array}{c} \alpha^{(j)}_j \\ \alpha^{(j)}_2 \end{array} \right] = \frac{\text{mod}\left((j-1) \left[\begin{array}{c} 1 \\ Z \end{array} \right], N \right)}{N}, \qquad j = 1, \ldots, N
$$

Parametric models

Interpolatory model reduction:

- ¹ Discretize the parameter space
- ² Build a reduced model for each node $γ$ *j*
- ³ Merge the spaces

For DPA

Parameter integrated in the algorithm:

- Vectors are functions of γ
- Eigenvalues and moments are functions of γ
- Compute these functions

For moment matching

Hermite interpolation

• For moment matching:

$$
\frac{\partial^i \hat{H}(\sigma_j)}{\partial s^i} = \frac{\partial^i H(\sigma_j)}{\partial s^i} \text{ for } i = 0, ..., 2k - 2
$$

\n
$$
\frac{\partial^{i+1} \hat{H}(\sigma_j)}{\partial \gamma \partial s^i} = \frac{\partial^{i+1} H(\sigma_j)}{\partial \gamma \partial s^i} \text{ for } i = 0, ..., k - 1
$$

[Baur, Beattie, Benner, Gugercin 2011] [Yue, M. 2012]

• For dominant poles:

$$
\lambda_j = \hat{\lambda}_j
$$
\n
$$
\frac{\partial \lambda_j}{\partial \gamma} = \frac{\partial \hat{\lambda}_j}{\partial \gamma}
$$
\n
$$
\frac{\partial (s)}{\partial \gamma} \sim H(s), s \to \lambda
$$
\n
$$
\frac{\partial \hat{H}(s)}{\partial \gamma} \sim \frac{\partial H(s)}{\partial \gamma}, s \to \lambda
$$

[Saadvandi, M. & Desmet 2013]

Interpolatory MOR

• Standard algorithm:

```
for j = 1, \ldots, N do
    Compute V_k^{(j)}\mathcal{W}_k^{(j)} and \mathcal{W}_k^{(j)}f_k^{(l)} for node \gamma^{(j)}Merge the subspaces in V, W.
end for
```
• Continuation DPA (CDPA)

```
Compute V_k and W_k for node \gamma^{(1)}for j = 1, \ldots, N do
  Use V ane W as a starting subspace (good starting values).
  Compute V_k and W_k for node \gamma^{(j)}.
  Merge the subspaces in V, W.
end for
```
Numerical example: aluminum plate

Model:

$$
(K_0+\gamma_2 K_{bnd}+i\omega(C_0+\gamma_1 C_{bnd})-\omega^2 M)x=f
$$

$$
\gamma_1 = 10^{-2} + \alpha_1(10^{-2} - 10^{-4})
$$

\n
$$
\gamma_2 = \frac{-100}{\alpha_2 - 1} - 101
$$

\n
$$
\alpha_{1,2} \in [0,1)
$$

Numerical example: Lamot footbridge

$$
\begin{cases}\n((1+0.02i)K_0 + (k_1 + i\omega c_1)K_1 - \omega^2 M)x \\
y = \sqrt{\frac{1}{2}(\omega c_1 + i\omega c_1)(K_1 + i\omega c_1)^2} \\
&\text{where } \omega = 0.\n\end{cases}
$$

Tensorize the solution

• Discretize the parameters in a grid of quadrature nodes:

$$
\gamma^{(i_1,\ldots,i_p)}=(\gamma_1^{(i_1)},\ldots,\gamma_p^{(i_p)})\in\Gamma\subset\mathbb{R}^p
$$

with $i_j = 1, \ldots, n_j, j = 1, \ldots, p$.

• Then represent the state vector as a tensor:

$$
\mathcal{X}_{:,i_1,...,i_p}=x(\gamma^{(i_1,...,i_p)})
$$

• System for each grid point:

$$
\left((A_0 + sB_0 + \sum_{j=1}^p \gamma_j^{(i_1,\dots,i_p)}(A_j + sB_j))\right) \mathcal{X}_{:,i_1,\dots,i_p} = f
$$

Tensor-Krylov

• For each grid point, a linear system needs to be solved:

$$
\left(A_0 + sB_0 + \sum_{j=1}^p \gamma_j^{(i_1,\dots,i_p)}(A_j + sB_j)\right) \mathcal{X}_{:,i_1,\dots,i_p} = f
$$

This can be done with a tensor Krylov method [Kressner, Tobler 2011]: \mathcal{X} is Tucker tensor

• Solve preconditioned system iteratively

$$
M^{-1}\left(A_0 + sB_0 + \sum_{j=1}^p \gamma_j^{(i_1,\ldots,i_p)}(A_j + sB_j)\right) x(\gamma^{(i_1,\ldots,i_p)}) = M^{-1}f
$$

The main operation is the matrix-vector product $t=M^{-1}(A(\gamma)+sB(\gamma))$ z

Implementing preconditioned matrix-vector product

- Represent tensors using Tucker decomposition
	- $X = X_1 \hat{X} X_2^T$ (SVD) ^X = (*X*0, *^X*1, . . . , *^Xp*)•X^b ^X

- The operation $t = M^{-1}(A(\gamma) + sB(\gamma))$ z goes as follows
	- **1** No need to evaluate $M^{-1}(A(\gamma) + sB(\gamma))$ z for every grid point.
	- 2 *z* is represented as a low rank tensor $\mathcal{Z} \approx (Z_0, \ldots, Z_n) \bullet \widehat{\mathcal{Z}}$ with $Z_0 \in \mathbb{C}^{n \times r}$ and $r \ll n$.
		- ³ Sparse matvec operations: *M*[−]¹ (*A^j* + *sBj*)*Z*0, *j* = 0, . . . , *p*
	- ⁴ Operations on tensors: can be expensive!
- Key point: low rank X_0

Two algorithms

1 Interpolatory MOR

- **►** Tensor-Krylov with preconditioner M^{-1} with $M \approx A_0 + \sigma B_0$
- \blacktriangleright Perform sufficiently large number of iterations so that parametric system is solved accurately enough
- 2 Small number of iterations:
	- \triangleright Connection with multivariate Padé

Multivariate Padé

We want to build the parametric Krylov space:

$$
(A(\gamma)+\sigma_0B(\gamma))^{-1}f,(A(\gamma)+\sigma_1B(\gamma))^{-1}f,\ldots,(A(\gamma)+\sigma_kB(\gamma))^{-1}f
$$

where the basis vectors are discretized by tensors.

Theorem

Consider the power sequence $(M = A_0 + \sigma_j B_0)$:

$$
v_j^{(0)}(\gamma) \equiv M^{-1}f
$$

$$
v_j^{(\ell)}(\gamma) = v_j^{(\ell-1)}(\gamma) + \sum_{j=1}^p M^{-1} \gamma_j A_j v_j^{(\ell-1)}(\gamma)
$$

 $v_i^{(\ell)}$ $j_i^{(c)}$ is a moment matching polynomial of degree ℓ in γ :

$$
\|v_j^{(\ell)}(\gamma) - (A(\gamma) + \sigma_j B(\gamma))^{-1}f\|_2 = O(\|\gamma^{\ell+1}\|)
$$

Reduced model

Form a reduced model for the mean problem (using the tensors as state vectors.)

$$
\left((A_0 + \sum_{j=1}^p \gamma_j^{(i_1, ..., i_p)} A_j) + sB_0\right) \mathcal{X}_{:, i_1, ..., i_p} = f
$$

$$
z = \sum_{i_1, ..., i_p} w_{i_1, ..., i_p} (c^* \mathcal{X}_{:, i_1, ..., i_p})
$$

• From tensor representation (evaluation for grid points is available)

$$
\mathcal{Y} = (c^*) \bullet_0 \mathcal{X}
$$

Classical parametric model using the mode-0 vector space of iteration vectors: columns of $V_{i,0}$ in

$$
\mathcal{V}_j=(V_{j,0},\ldots,V_{j,p})\bullet_0\widehat{\mathcal{V}}_j
$$

span the moments.

Project on the joined $V = \text{orth}([V_{0,0}, \ldots, V_{k,0}])$

3D box with parametric Robin boundary condition on two faces

 $\ell = 3$ GMRES iterations Tensors truncated $\tau = 10^{-8}$

3D box with parametric Robin boundary condition on two faces

3D box with parametric Robin boundary condition on two faces

 $\ell = 15$ GMRES iterations Tensors truncated $\tau = 10^{-4}$

3D box with parametric Robin boundary condition on two faces

M computed by ILU $\ell = 15$ GMRFS iterations Tensors truncated $\tau = 10^{-4}$

Numerical example: footbridge

The matrix dependency on the 8 parameters has rank 8

$$
\left((1+0.02i)K_0+\sum_{i=1}^4(k_i+i\omega c_i)K_i-\omega^2M\right)x=f
$$

(Matrices K_1, \ldots, K_4 each have rank two.)

Results related to block Arnoldi for low rank parametric terms [Yue, M. 2013] K. Meerbergen (KU Leuven) [MODRED 2013](#page-0-0) December 11–13, 2013 51 / 53

Outline

[Motivation](#page-2-0)

[Nonlinear models in the frequency domain](#page-8-0)

[Parametric models](#page-36-0)

Conclusions

- Nonlinear in the frequency:
	- \triangleright Rational Krylov with simple poles is easy
	- \triangleright Rational Krylov with high order moment matching: possible, but technical (based on polynomial interpolation)
- **•** Parametric:
	- \triangleright Interpolatory MOR for DPA can enjoy continuation properties of eigenspaces
- **o** Tensors:
	- \blacktriangleright Related to multivariate interpolation
	- If a low rank tensor approximation does not exist, it is not a practical method
	- \blacktriangleright Automatic rank reduction