On stability and passivity in model reduction: A generalized SVD-Krylov approach

Marcus Köhler

Institute of Analysis - Department of Mathematics

December 13, 2013 ModRed 2013, MPI DCTS Magdeburg

Marcus Köhler

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Technische Universität Dresden

1

Outline

1 Introduction

- 2 Reduction of stable systems
- 3 Reduction of all-pass systems
- 4 Reduction of passive systems

Marcus Köhler

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Outline

1 Introduction

- 2 Reduction of stable systems
- 3 Reduction of all-pass systems
- 4 Reduction of passive systems

Marcus Köhler

On stability and passivity in model reduction

Our setting

Descriptor system S := (E, A, B, C, D) with $E, A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

$$E\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Transfer function $G(s) := C(sE - A)^{-1}B + D$

Marcus Köhler

Our setting

Descriptor system S := (E, A, B, C, D) with $E, A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

$$E\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Transfer function $G(s) := C(sE - A)^{-1}B + D$

Standard system $(I, E^{-1}A, E^{-1}B, C, D)$ if E is regular

Marcus Köhler

Choose $k \ll n, W^{\top}, V \in \mathbb{R}^{n \times k}$ Reduced system is $S_k := W \cdot S \cdot V := (WEV, WAV, WB, CV, D)$ with transfer function $G_k \approx G$

Marcus Köhler

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Technische Universität Dresden

5

Int	roduction	Reduction of stable systems	Reduction of all-pass systems	Reduction of passive system
	Model	Reduction		
	Choose	$k \ll n, W^{\top}, V \in \mathbb{R}^{n > 1}$	$^{< k}$	
	Reduce	d system is $S_k := W \cdot$	$S \cdot V := (WEV, WA$	V, WB, CV, D)
	with tra	ansfer function $G_k pprox G$	Y T	

The aim: preservation of stability,

Choose $k \ll n$, W^{\top} , $V \in \mathbb{R}^{n \times k}$ Reduced system is $S_k := W \cdot S \cdot V := (WEV, WAV, WB, CV, D)$ with transfer function $G_k \approx G$

The aim: preservation of

- stability,
- passivity.

Marcus Köhler

Choose $k \ll n$, W^{\top} , $V \in \mathbb{R}^{n \times k}$ Reduced system is $S_k := W \cdot S \cdot V := (WEV, WAV, WB, CV, D)$ with transfer function $G_k \approx G$

The aim: preservation of

- stability,
- passivity.

In general, this do not hold for Krylov based methods

Our Idea

Set $W := V^{\top}X^{\top}$ where X solves a certain Lyapunov or Riccati equation. Consequence: S_k remains stable or passive (under certain assumptions)

cus		

Choose $k \ll n$, W^{\top} , $V \in \mathbb{R}^{n \times k}$ Reduced system is $S_k := W \cdot S \cdot V := (WEV, WAV, WB, CV, D)$ with transfer function $G_k \approx G$

Our Idea

Set $W := V^{\top}X^{\top}$ where X solves a certain Lyapunov or Riccati equation. Consequence: S_k remains stable or passive (under certain assumptions)

Generalization of

- SVD-Krylov based method,
- Spectral zero interpolation method.

- S = (E, A, B, C, D) and (E, A) are called $\mbox{admissible}$ if
 - the spectrum $\sigma(E, A)$ is finite (regularity),

Marcus		

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

- S = (E, A, B, C, D) and (E, A) are called $\mbox{admissible}$ if
 - the spectrum $\sigma(E, A)$ is finite (regularity),
 - $\sigma(E, A) \subset \mathbb{C}_{<0} \cup \{\infty\}$ (stability),

- S = (E, A, B, C, D) and (E, A) are called $\mbox{admissible}$ if
 - the spectrum $\sigma(E, A)$ is finite (regularity),
 - $\sigma(E, A) \subset \mathbb{C}_{<0} \cup \{\infty\}$ (stability),
 - rank $\begin{pmatrix} E & A \\ 0 & E \end{pmatrix} = n + rank(E)$ (impulse-freeness).

S = (E, A, B, C, D) and (E, A) are called $\mbox{admissible}$ if

• the spectrum $\sigma(E, A)$ is finite (regularity),

•
$$\sigma(E, A) \subset \mathbb{C}_{<0} \cup \{\infty\}$$
 (stability),

■ rank $\begin{pmatrix} E & A \\ 0 & E \end{pmatrix} = n + rank(E)$ (impulse-freeness).

For regular E: admissible=stable

 ${\cal S}$ and $({\cal E},{\cal A},{\cal C})$ are called

- **R-observable** if $\forall \lambda \in \mathbb{C}$: rank $\binom{\lambda E A}{C} = n$,
- **I-observable** if rank $\begin{pmatrix} E & A \\ 0 & E \\ 0 & C \end{pmatrix} = n + \operatorname{rank}(E).$

Marcus Köhler

Outline

1 Introduction

2 Reduction of stable systems

3 Reduction of all-pass systems

4 Reduction of passive systems

Marcus Köhler

On stability and passivity in model reduction

Considered Lyapunov equation:

Reduced system $S_k = W \cdot S \cdot V = (WEV, WAV, WB, CV, D)$ with $W = V^\top X^\top$

Lemma 2.1 (Takaba et al. 1995)

Let S be admissible. Then there exists $X \in \mathbb{R}^{n \times n}$ such that

$$X^{\top}A + A^{\top}X + C^{\top}C = 0, \quad E^{\top}X \ge 0.$$
 (1)

If E is regular then X is unique and $X = \mathfrak{O}_S E$.

Marcus Köhler

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Theorem 2.2 (K. 2013)

Let $X \in \mathbb{R}^{n \times n}$ solve (1) and $V \in \mathbb{R}^{n \times k}$. We set $S_k := V^\top X^\top \cdot S \cdot V$. Then the following two are equivalent.

(i) S_k is stable, (ii) S_k is R-observable.

If (E_k, A_k) is regular then the following two are equivalent.

(i') S_k is impulse-free, (ii') S_k is l-observable.

Marcus Köhler

Theorem 2.2 (K. 2013)

Let $X \in \mathbb{R}^{n \times n}$ solve (1) and $V \in \mathbb{R}^{n \times k}$. We set $S_k := V^\top X^\top \cdot S \cdot V$. Then the following two are equivalent.

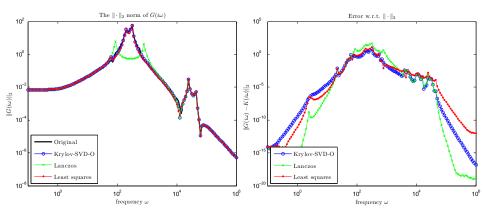
(i) S_k is stable, (ii) S_k is R-observable.

If (E_k, A_k) is regular then the following two are equivalent.

(i') S_k is impulse-free, (ii') S_k is I-observable.

Proved in [Villemagne 1987] for stable and observable ${\cal S}$ with ${\cal E}={\cal I}$

CD-Player, n = 120, k = 12, $s_0 = 0$, $s_1 = \infty$



Lanczos: 3 unstable poles

arcus Köhler

On stability and passivity in model reduction

Institute of Analysis - Department of Mathematics

What if S_k in our approach is unstable or not impulse-free?

Ma			

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

What if S_k in our approach is unstable or not impulse-free?

Theorem 2.3 (K. 2013)

Let S_k be unstable and (E_k, A_k) be regular. Then there exist $U, W \in \mathbb{R}^{k \times k}$ such that (\mathbf{gQR})

$$U \cdot S_k \cdot W = \left(\begin{pmatrix} E_1 & E_2 \\ 0 & E_3 \end{pmatrix}, \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}, (C_1, C_2), D \right)$$

where $\sigma(E_1, A_1) \subset i\mathbb{R}$ and $\sigma(E_3, A_3) \subset \mathbb{C}_{<0} \cup \{\infty\}$. Then $\widetilde{S}_k := (E_3, A_3, B_2, C_2, D)$ is a stable and R-observable realization of G_k .

Moreover, every *l*-observable realization of G_k is impulse-free.

larcı		

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Outline

1 Introduction

- 2 Reduction of stable systems
- 3 Reduction of all-pass systems
- 4 Reduction of passive systems

Marcus Köhler

On stability and passivity in model reduction

Definition

Let m = p and $\sigma \in \mathbb{R}_{>0}$. Then G is called σ -all-pass if $G(i\omega)^*G(i\omega) = \sigma^2 I$ for $\omega \in \mathbb{R}$.

Theorem 3.1 (K. 2013)

Let S be controllable and $\sigma(E, -A) \cap \sigma(E, A) = \emptyset$. Let $\sigma \in \mathbb{R}_{>0}$ and G be σ -all-pass. Set $S_k := V^\top E^\top \mathfrak{O}_S \cdot S \cdot V$ and let E_k be regular. Then G_k is σ -all-pass. If $\sigma(E_k, -A_k) \cap \sigma(E_k, A_k) = \emptyset$ then S_k is minimal.

Marcus Köhler

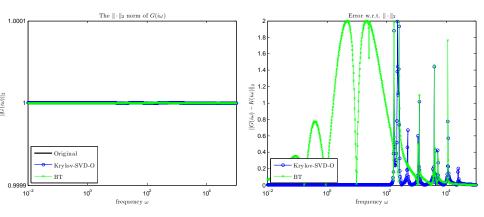
Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Technische Universität Dresden

13

Random all-pass system, n = 30, k = 10, $s_0 = 10i$



Marcus Köhler

On stability and passivity in model reduction

Institute of Analysis - Department of Mathematics

Outline

1 Introduction

- 2 Reduction of stable systems
- 3 Reduction of all-pass systems
- 4 Reduction of passive systems

Marcus Köhler

On stability and passivity in model reduction

Considered Riccati equation

Reduced system $S_k = W \cdot S \cdot V = (WEV, WAV, WB, CV, D)$ with $W = V^\top X^\top$

Lemma 4.1

Let (E, A) be regular and $D + D^{\top} > 0$. If there exists $X \in \mathbb{R}^{n \times n}$ such that

$$X^{\top}A + A^{\top}X + (C^{\top} - X^{\top}B)(D + D^{\top})^{-1}(C - B^{\top}X) = 0, \quad E^{\top}X \ge 0.$$
(2)

then S is passive.

cus		

On stability and passivity in model reduction

Theorem 4.2 (Knockaert 2011)

Let E = I and $X \in \mathbb{R}^{n \times n}$ solve (2) with X > 0. Let $V \in \mathbb{R}^{n \times k}$ be injective. We set $S_k := V^\top X \cdot S \cdot V$. Then

 S_k is passive.

Marcus Köhlei	

Theorem 4.2 (K. 2013)

Let $X \in \mathbb{R}^{n \times n}$ solve (2) . Let $V \in \mathbb{R}^{n \times k}$ be injective. We set $S_k := V^{\top} X^{\top} \cdot S \cdot V$. If (E_k, A_k) is regular then S_k is passive.

There is a similar result where ESPR and admissibility are always preserved.

Mar	CUS	iκ	۰or	ıle	r

Theorem 4.2 (K. 2013)

Let $X \in \mathbb{R}^{n \times n}$ solve (2) . Let $V \in \mathbb{R}^{n \times k}$ be injective. We set $S_k := V^{\top} X^{\top} \cdot S \cdot V$. If (E_k, A_k) is regular then S_k is passive.

There is a similar result where ESPR and admissibility are always preserved.

Remark

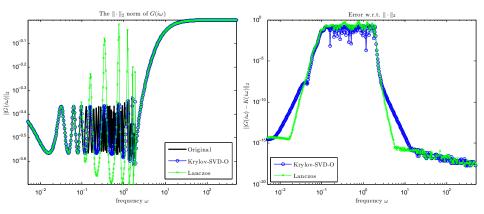
Now let

• X be an admissible solution of Riccati equation (2), i.e. $(E, A - B(D + D^{\top})^{-1}(C - B^{\top}X))$ is admissible, and

■ V span a Krylov space w.r.t. k spectral zeros of S in $\mathbb{C}_{<0}$. Then S_k in Theorem 4.2 is the same as in the spectral zero interpolation method presented in [Antoulas 2005] and [Sorensen 2005].

Mar	CUS	iκ	۰or	ıle	r

RLC example in [Sorensen 2005], n = 201, k = 20, $s_0 = 0$, $s_1 = \infty$



Marcus Köhler	Institute of Analysis - Department of Mathema	atics
On stability and passivity in model reduction	Technische Universität Dresden	18

	ro			

Outlook

- How to avoid or deal with singular (E_k, A_k) ?
- Generalize to systems with index > 1
- Preservation of minimum phase stability

- How to avoid or deal with singular (E_k, A_k) ?
- Generalize to systems with index > 1
- Preservation of minimum phase stability

Thank you for your attention!

Marcus Köhler

Institute of Analysis - Department of Mathematics

On stability and passivity in model reduction

Selected References

A.C. Antoulas.

A new result on passivity preserving model reduction. *Systems & Control Letters*, 54(4):361–374, 2005.

- C. de Villemagne and R. E. Skelton.
 Model reductions using a projection formulation.
 Proc. 26th IEEE Conf. Decision and Control, 26:461–466, 1987.
- S. Gugercin and A. C. Antoulas.
 Model reduction of large-scale systems by least squares.
 Linear Algebra and its Applications, 415(2-3):290–321, 2006.

D.C. Sorensen.

Passivity preserving model reduction via interpolation of spectral zeros.

Systems & Control Letters, 54(4):347–360, 2005.

Marcus Köhler	Institute of Analysis -	Department of Mathema	tics
On stability and passivity in model reduction	Technische Universität	t Dresden	20