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Reduced Basis Method

Motivation



−ν∆u + ∇p = 0 in Ω

∇ ·u = 0 in Ω

u = 0 on ΓD

ν
∂u
∂n
−pn =−n on Γin

ν
∂u
∂n
−pn = 0 on Γout

PDEs are very expensive to solve when
solutions need to capture fine physical
details (velocity boundary layers, wall shear
stresses, vorticity layers, etc.)

Classical numerical techniques (e.g. Finite
Element method) are not suitable in a
many query context, where the solution
has to be computed for many different
values of the parameters (Optimization
problem, Multiobjective optimization).

Reduced order modeling permits to
achieve the accuracy and reliability of a
high fidelity approximation by drastically
decreasing the problem complexity and
computational time.
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Reduced Basis Method

The Reduced Basis Method

Offline Stage

FEM solutions for a representative set of parameter values µ1, . . . ,µN with N�N

. . .

uN
1 uN

2 . . . uN
N

The parameter values can be selected by the Greedy algorithm or a optimization greedy
algorithm (Volkwein et al.,2012).

Online Stage

For each new parameter vector µ the RB solution is a weighted combinations

of the precomputed solutions (Galerkin projection)
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Reduced Basis Method

RB method: basic ingredients
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Multiobjective optimization

Multiobjective optimization

Often in real applications the optimization issue is described by introducing

several objective functions which compete with each other.

Optimal solution needs to be taken in the presence of trade-offs between

two or more conflicting objectives.

Does not exist a single solution that simultaneously optimizes each

objective, but there exists a (possibly infinite) number of Pareto optimal
solutions.

The computation of efficient points can be very expensive in particular, if

the constraints are given by partial differential equations.
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Multiobjective optimization

PDE-Constrained multiobjective optimization

V and U real, separable Hilbert spaces and X = V ×U,

we introduce the vector-valued objective J : V ×U→ R3 by

J1(x) =
1
2
‖C y−w1‖2W1

J2(x) =
1
2
‖Dy−w2‖

2
W2

, J3(x) =
γ

2
|u|2

where x = (y ,u) ∈ X , γ ≥ 0 W1, W2 are Hilbert spaces, w1 ∈W1, w2 ∈W2 and C , D

are linear, bounded from V to W1 respectively V to W2.

Multiobjective problem

to minimize all objectives Jk ,k = 1,2,3 “at the same time”, such that

(y ,u) ∈ V ×U solves the linear variational problem

a(y ,ϕ) = 〈f +Bu,ϕ〉V ′,V ∀ϕ ∈ V , (1)

where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′ and

B is a continuous, linear operator and a(·, ·) a coercive bilinear form.
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Multiobjective optimization

Multiobjective optimization - Pareto optimal points

First-order necessary conditions for Pareto optimality

Suppose that ū ∈ U is Pareto optimal, Ĵi(u) = Ji(y ,u). There exists a parameter

µ̄ = (µ̄1, µ̄2, µ̄3) ∈ R3 with µ̄i ≥ 0 and ∑
3
i=1 µ̄i = 1 satisfying

3

∑
i=1

µ̄i Ĵ
′
i (ū) = 0. (2)

We define the µ-dependent, scalar-valued objective

Ĵ(u; µ) =
3

∑
i=1

µi Ĵi(u).

Then, (2) are the necessary optimality conditions for a local solution ū to

min Ĵ(u; µ̄) s.t. (y ,u) ∈ U×Y solves (1). (P̂µ )

In the weighting method Pareto optimal points are computed by solving (P̂µ ). .

? Feasible extensions to control constrained and non-linear multiobjective problems.
Laura Iapichino Multiobjective PDE-constrained optimization using the reduced basis method 8 / 21



Multiobjective optimization

Multiobjective optimization solved with the RB method

Parametric saddle point formulation solvable by the reduced basis method

- C. Hillermeier. Nonlinear Multiobjective Optimization. A Generalized Homotopy
Approach. Birkhäuser Verlag, Basel, 2001
- F. Negri, G. Rozza, A. Manzoni, and A. Quateroni. Reduced basis method for

parametrized elliptic optimal control problems, 2012.
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Multiobjective optimization

Multiobjective optimization solved with the RB method

Ĵ(u; µ) = ∑
3
i=1 µ i Ĵi(u) =

µ1
2 m1(y−yd ,y−yd) +

µ2
2 m2(y ,y) +

(1−µ1−µ2)
2 m3(u,u).

min Ĵ(u; µ̄) s.t. u ∈ U solves a(y ,ϕ) = 〈f +C u,ϕ〉

Saddle-point formulation (Brezzi theorem for existence and uniqueness).A (x(µ),w ; µ) +B(w ,p(µ); µ) = 〈F (µ),w〉, ∀w ∈ X

B(x(µ),ϕ; µ) = 〈f ,ϕ〉, ∀ϕ ∈Q
(3)

p(µ) is the Lagrange multiplier associated to the constrain.

L (x ,p; µ) = J(x ,µ) +B(x ,p; µ)−〈f ,p〉.
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Multiobjective optimization

Multiobjective optimization solved with the RB method

RB spaces

Snapshots:

{yN (µn),n = 1, . . . ,N}, {uN (µn),n = 1, . . . ,N},{pN (µn),n = 1, . . . ,N}
State and adjoint space: ZN = span{yN (µn),pN (µn),n = 1, . . . ,N}.
Control space: UN = span{uN (µn),n = 1, . . . ,N}

A posteriori error estimates

A posteriori error bound for the solution:

(||xN (µ)−xN(µ)||2X + ||pN (µ)−pN(µ)||2Q)1/2 ≤∆N(µ) =
||r(·,µ)||X ′

βN (µ)
A posteriori error bound for the cost functional:

|J(yN (µ),uN (µ); µ)−J(yN(µ),uN(µ); µ)| ≤∆J
N(µ) =

1
2
||r(·,µ)||2X ′

βN (µ)
||r(·,µ)||X ′ dual norm of the residual

βN (µ) Babuska inf-sup constant (or a proper lower bound).
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Multiobjective optimization

Sensitivity analysis

Let consider µ̂ as first parameter to compute the first Pareto point, we are interested in
choosing the next µ such that the weights µ1 and µ2 lead to significant changes of the
cost functional

Ĵ(u; µ̂) =
µ̂1

2
‖C ŷ−w1‖

2
W1

+
µ̂2

2
‖D ŷ−w2‖

2
W2

+ (1− µ̂1− µ̂2)
γ

2
|û|2.

Taylor expansion of the reduced objective with respect to changes in µ1 and µ2 is:

J̃(u; µ) = Ĵ(û; µ̂) +
∂ Ĵ

∂ µ1
(û; µ̂)(µ1− µ̂1) +

∂ Ĵ

∂ µ2
(û; µ̂)(µ2− µ̂2)
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∂ µ1
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Multiobjective optimization

Sensitivity analysis

RB offline step for the RB approximation of the saddle point problem;

RB online step for defining the RB optimal solutions corresponding to initial

parameter guesses;

sensitivity analysis for defining a suitable parameter set Xs that leads to

significant variations of the cost functional;

RB Pareto optimal solutions for the parameter set Xs .

The sensitivity analysis allows to drastically reduce the number of online RB

computations needed to recover a suitable distribution of the Pareto optimal

solutions.
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Multiobjective optimization

Numerical results

We consider the domain Ω given by a rectangle separated in two subdomains Ω1 and Ω2.

J1(y) =
1
2
||y−yd ||2L2(Ω)

, J2(y) =
1
2
||∇y ||2L2(Ω)

, J3(u) =
α

2
||u||2U

where yd = 1 in Ω1 and yd = 0.6 in Ω2. The state function y ∈ Y = H1
0 (Ω) solves the

following Laplace problem: −∆y = u in Ω,

y = 1 on ΓD = ∂Ω,
(4)

where u ∈ L2(Ω) is the control function.
In order to apply the Pareto optimal theory we introduce the following cost functional:

Ĵ(y(µ),u(µ),µ) = µ1J1(y(µ)) + µ2J2(y(µ)) + (1−µ1−µ2)J3(u(µ)),

and the parametrized optimal control problem:

min
y ,u

Ĵ(y(µ),u(µ),µ) s. t. (y(µ),u(µ)) ∈ Y ×U solves (4).
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Multiobjective optimization

Numerical results

The numerical approximation of the reduced basis functions (state, control and

adjoint variables) is computed by using P1 finite elements. N = 11441. µ1 ∈ [0,1]

and µ2 ∈ [0,1−µ1].

Figure: Representative solution for µ = (0.11,0.83).

Laura Iapichino Multiobjective PDE-constrained optimization using the reduced basis method 15 / 21



Multiobjective optimization

Numerical results

The numerical approximation of the reduced basis functions (state, control and

adjoint variables) is computed by using P1 finite elements. N = 11441. µ1 ∈ [0,1]

and µ2 ∈ [0,1−µ1].

Figure: Representative solution for µ = (0.9,0).
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Multiobjective optimization

Numerical results

Figure: Average and maximum errors and error bounds regarding the solution of the problem (left)
and the cost functional (right) between the FE and RB approximations.
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Multiobjective optimization

Numerical results

Figure: speedup with respect to a FE computational time by
varying the number of basis functions.

Offline CPU time: 21
minutes for selecting the
RB bases.
Online evaluation time (15
basis functions-45 in total
for state, control and
adjoint) and including the
evaluation of the a
posteriori error bound is
0.016 seconds.

Evaluation of the FE
solution requires about
1.26 seconds, a speedup
equal to 88,32.
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Multiobjective optimization

Numerical results

We consider a smaller control space, U = span{b1,b2} where b1 and b2 ∈ L∞(Ω) are the
characteristic functions of Ω1 and Ω2 respectively. We introduce a geometrical
parameter µ3 ∈ [1,3.5] that defines the length of the domain Ω.

We recall the vector cost functional defined as follows:

J1(y) =
1
2
||y−yd ||2L2(Ω)

, J2(y) =
1
2
||∇y ||2L2(Ω)

, J3(u) =
α

2
||u||2U (5)

where yd = 1 in Ω1 and yd = 0.6 in Ω2. The state function y ∈ Y = H1
0 (Ω) solves the

following Laplace problem: −∆y = ∑
2
i=1 uibi in Ωµ ,

y = 1 on ΓD = ∂Ωµ ,
(6)

where ui ∈ R2 define the control function.
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Multiobjective optimization

Numerical results

S = {(w1,w2) ∈ R2 : w1 = J1(u),w2 = J2(u),u =
2

∑
i=1

uibi ,−30≤ ui ≤ 10}, µ3 = 3.

Figure: Set of the possible values of the cost functionals J1 and J2, by varying the function u.
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Multiobjective optimization

Numerical results

S = {(w1,w2) ∈ R2 : w1 = J1(u),w2 = J2(u),u =
2

∑
i=1

uibi ,−30≤ ui ≤ 10},

Pareto points µ1,µ2 ∈ [0,1],µ3 = 3

Figure: Set of the possible values of the cost functionals J1 and J2, by varying the function u and the
subset of the efficient points.

Laura Iapichino Multiobjective PDE-constrained optimization using the reduced basis method 18 / 21



Multiobjective optimization

Numerical results

S = {(w1,w2,w3) ∈ R2 : w1 = J1(u),w2 = J2(u),w3 = J3(u)u =
2

∑
i=1

uibi ,−30≤ ui ≤ 10}

Pareto points µ1,µ2 ∈ [0,1],µ3 = 3

Figure: Feasible points considering J1, J2, J3 by varying u and the subset of the efficient points.
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Multiobjective optimization

Sensitivity analysis

10 Random solutions 10 Sensitive solutions
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Multiobjective optimization

Sensitivity analysis

20 Random solutions 20 Sensitive solutions

Laura Iapichino Multiobjective PDE-constrained optimization using the reduced basis method 19 / 21



Multiobjective optimization

Sensitivity analysis

30 Random solutions 30 Sensitive solutions

Laura Iapichino Multiobjective PDE-constrained optimization using the reduced basis method 19 / 21



Multiobjective optimization
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Multiobjective optimization
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100 Random solutions 100 Sensitive solutions
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Conclusions

Conclusions

Model order reduction strategy proposed for solving the multiobjective
optimal problems, characterized by more than one cost functional.

The multiobjective problem leads to a parametric optimal control problem
through a new parametric cost functional defined as a weighted sum of
the original cost functionals.

The Pareto optimal points are the optimal controls corresponding to the

problem considering a different weighted sum of the cost functionals.

The use of the RB method, together with an useful and inexpensive sensitive
analysis, allows to drastically reduce the computational times compared

with FE.

A rigorous error bound analysis permits to ensure a certain level of

accuracy of the solution.
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Conclusions

THANK YOU FOR YOUR ATTENTION!
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