December 12, 2013

Interpolatory Model Reduction for Second Order Descriptor Systems

Mian Ilyas Ahmad and Peter Benner

MOR 2013 MPI Magdeburg

Max Planck Institute Magdeburg

M.I. Ahmad and P. Benner, IRKA for index-3 DAE's 1/25

Outline

- Linear Descriptor Systems
- 2 MOR for DAE's
- 3 MOR of Index-3 DAE
 - 4 Numerical Results

• Linear time invariant descriptor/DAE system

$$E\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t) + Du(t)$ $E \in \mathbb{R}^{n \times n}$ is singular

• The transfer matrix is

$$G(s) = C(sE - A)^{-1}B + D.$$

• Linear time invariant descriptor/DAE system

$$egin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t) \ y(t) &= Cx(t) + Du(t) \end{aligned} \quad E \in \mathbb{R}^{n imes n} ext{ is singular} \end{aligned}$$

• The transfer matrix is

$$G(s) = C(sE - A)^{-1}B + D.$$

$$E = I : \begin{cases} \lim_{w \to \infty} |G(jw)| < \infty & (Proper) \\ \lim_{w \to \infty} G(jw) = 0 & (Strictly Proper) \\ \lim_{w \to \infty} |G(jw)| = \infty & (Improper) \end{cases}$$

• Linear time invariant descriptor/DAE system

$$E\dot{x}(t) = Ax(t) + Bu(t)$$

 $y(t) = Cx(t) + Du(t)$ $E \in \mathbb{R}^{n \times n}$ is singular

The transfer matrix is

$$G(s) = C(sE - A)^{-1}B + D.$$

$$E \text{ singular}: \begin{cases} \lim_{w \to \infty} |G(jw)| < \infty & (\text{Proper}) \\ \lim_{w \to \infty} G(jw) = 0 & (\text{Strictly Proper}) \\ \lim_{w \to \infty} |G(jw)| = \infty & (\text{Improper}) \end{cases}$$

Linear Descriptor Systems

Strictly Proper and Polynomial Parts

 $\bullet\,$ The Weierstraß cannonical form is

$$P^{-1}(sE-A)Q = \left[egin{array}{cc} sI_f - J & 0 \ 0 & sN - I_\infty \end{array}
ight],$$

P and Q are nonsingular,

J - Jordan block $(\lambda_j(J)$ are finite eigenvalues of $\lambda E - A)$,

N - nilpotent ($N^{\nu-1} \neq 0, N^{\nu} = 0 \rightarrow \nu$ is index of $\lambda E - A$).

• Spectral projectors onto the deflating subspaces of $\lambda E - A$

$$P_{l} = P \begin{bmatrix} l_{l} & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \qquad Q_{l} = I - P_{l} = P \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} P^{-1}$$
$$P_{r} = Q \begin{bmatrix} l_{r} & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} \qquad Q_{r} = I - P_{r} = Q \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} Q^{-1}$$

Linear Descriptor Systems

Strictly Proper and Polynomial Parts

• The Weierstraß cannonical form is

$$Q^{-1}(sE-A)^{-1}P = \left[egin{array}{cc} (sI_f-J)^{-1} & 0 \ 0 & (sN-I_\infty)^{-1} \end{array}
ight]$$

P and Q are nonsingular,

J - Jordan block $(\lambda_j(J) \text{ are finite eigenvalues of } \lambda E - A)$,

N - nilpotent $(N^{\nu-1} \neq 0, N^{\nu} = 0 \rightarrow \nu$ is index of $\lambda E - A$).

• Spectral projectors onto the deflating subspaces of $\lambda E - A$

$$P_{l} = P \begin{bmatrix} I_{f} & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \qquad Q_{l} = I - P_{l} = P \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} P^{-1}$$
$$P_{r} = Q \begin{bmatrix} I_{f} & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} \qquad Q_{r} = I - P_{r} = Q \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} Q^{-1}$$

Ø

Linear Descriptor Systems

Strictly Proper and Polynomial Parts

• The Weierstraß cannonical form is

$$Q^{-1}(sE - A)^{-1}P = \begin{bmatrix} (sI_f - J)^{-1} & 0 \\ 0 & (sN - I_{\infty})^{-1} \end{bmatrix}$$

P and Q are nonsingular,

- J Jordan block $(\lambda_j(J) \text{ are finite eigenvalues of } \lambda E A)$,
- N nilpotent ($N^{\nu-1} \neq 0, \ N^{\nu} = 0 \rightarrow v$ is index of $\lambda E A$).
- Spectral projectors onto the deflating subspaces of $\lambda E A$

$$P_{l} = P \begin{bmatrix} I_{f} & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \qquad Q_{l} = I - P_{l} = P \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} P^{-1}$$
$$P_{r} = Q \begin{bmatrix} I_{f} & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} \qquad Q_{r} = I - P_{r} = Q \begin{bmatrix} 0 & 0 \\ 0 & I_{\infty} \end{bmatrix} Q^{-1}$$

inear Descriptor Systems MOR for DAE's MOR of Index-

MOR of Index-3 DA

Numerical Res

Summary

Ø

Linear Descriptor Systems Strictly Proper and Polynomial Parts

• The spectral projectors decompose G(s) as,

$$G(s) = \underbrace{CP_r(sE - A)^{-1}P_lB}_{G_{sp}(s)} + \underbrace{CQ_r(sE - A)^{-1}Q_lB + D}_{P(s)}$$
$$G(s) = CQ \begin{bmatrix} (sI_f - J)^{-1} & 0\\ 0 & 0 \end{bmatrix} P^{-1}B + CQ \begin{bmatrix} 0 & 0\\ 0 & (sN - I_{\infty})^{-1} \end{bmatrix} P^{-1}B + D$$

• This partitioning is useful for model reduction but is computationaly expensive.

inear Descriptor Systems MOR for DAE's MOR of Ir

MOR of Index-3 DA

Numerical Res

Summary

Ø

Linear Descriptor Systems Strictly Proper and Polynomial Parts

• The spectral projectors decompose G(s) as,

$$G(s) = \underbrace{CP_{r}(sE - A)^{-1}P_{l}B}_{G_{sp}(s)} + \underbrace{CQ_{r}(sE - A)^{-1}Q_{l}B + D}_{P(s)}$$
$$G(s) = CQ \begin{bmatrix} (sI_{f} - J)^{-1} & 0\\ 0 & 0 \end{bmatrix} P^{-1}B + CQ \begin{bmatrix} 0 & 0\\ 0 & (sN - I_{\infty})^{-1} \end{bmatrix} P^{-1}B + D$$

• This partitioning is useful for model reduction but is computationaly expensive.

Index Concept and Examples

- Index of a DAE system is the number of differentiations needed to transform the DAE into an ODE.
- Any solution of the DAE is also a solution of the underlying ODE.
- For linear DAEs this is equal to nilpotency index v.

Examples

• Index 1 DAE (semi-explicit systems)

$$E = \begin{bmatrix} E_{11} & E_{12} \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $E_{11} - E_{12}A_{22}^{-1}A_{21}$ and A_{22} are both nonsingular

$$N^0 = I, \qquad N^1 = 0.$$

Index Concept and Examples

- Index of a DAE system is the number of differentiations needed to transform the DAE into an ODE.
- Any solution of the DAE is also a solution of the underlying ODE.
- For linear DAEs this is equal to nilpotency index v.

Examples

• Index 1 DAE (semi-explicit systems)

$$E = \begin{bmatrix} E_{11} & E_{12} \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $E_{11} - E_{12}A_{22}^{-1}A_{21}$ and A_{22} are both nonsingular

$$N^0=I, \qquad N^1=0.$$

Index Concept and Examples

• Index 2 DAE (Stokes-like systems)

$$E = \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix},$$

where E_{11} is nonsingular and A_{12}, A_{21}^T have full column rank. $N^1 \neq 0, \quad N^2 = 0.$

• Index 3 DAE (Mechanical systems)

$$E = \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix},$$

where E_{11} is nonsingular and A_{12}, A_{21}^{T} are rank deficient.

$$N^2 \neq 0, \qquad N^3 = 0.$$

Index Concept and Examples

• Index 2 DAE (Stokes-like systems)

$$E = \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix},$$

where E_{11} is nonsingular and A_{12} , A_{21}^{T} have full column rank.

$$N^1 \neq 0, \qquad N^2 = 0.$$

Index 3 DAE (Mechanical systems)

$$E = \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix},$$

where E_{11} is nonsingular and A_{12}, A_{21}^{T} are rank deficient.

$$N^2 \neq 0, \qquad N^3 = 0.$$

Linear Descriptor Systems Second order DAE's

Ø

• Second order system can also be written as,

$$\begin{array}{ccc} M\ddot{q}(t) &= D\dot{q}(t) + Kq(t) + Bu(t) \\ y(t) &= Cq(t) \end{array} \rightarrow \begin{array}{ccc} \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix} \dot{x}(t) &= \begin{bmatrix} 0 & I \\ D & K \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ B \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} C & 0 \end{bmatrix} x(t) \end{array}$$

where
$$x(t) = \begin{bmatrix} q(t)^T & \dot{q}(t)^T \end{bmatrix}^T$$

• Special second order structure,

$$M = \begin{bmatrix} M_1 & 0 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix}, K = \begin{bmatrix} K_1 & G_1 \\ G_2 & 0 \end{bmatrix}, B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, C^{\mathsf{T}} = \begin{bmatrix} C_1^{\mathsf{T}} \\ 0 \end{bmatrix}$$

in which M_1 is invertable and G_1 , G_2^T have full rank then,

$$\begin{bmatrix} I & 0 & 0 \\ 0 & M_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x}(t) = \begin{bmatrix} 0 & I & 0 \\ K_1 & D_1 & G_1 \\ G_2 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ B_1 \\ 0 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_1 & 0 & 0 \end{bmatrix} x(t),$$

Linear Descriptor Systems Second order DAE's

C

• Second order system can also be written as,

$$\begin{array}{ll} M\ddot{q}(t) = D\dot{q}(t) + Kq(t) + Bu(t) \\ y(t) = Cq(t) \end{array} \rightarrow \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix} \dot{x}(t) = \begin{bmatrix} 0 & I \\ D & K \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ B \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} C & 0 \end{bmatrix} x(t) \end{array}$$

where $x(t) = \begin{bmatrix} q(t)^T & \dot{q}(t)^T \end{bmatrix}^T$

• Special second order structure,

$$M = \begin{bmatrix} M_1 & 0 \\ 0 & 0 \end{bmatrix}, D = \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix}, K = \begin{bmatrix} K_1 & G_1 \\ G_2 & 0 \end{bmatrix}, B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, C^T = \begin{bmatrix} C_1^T \\ 0 \end{bmatrix}$$

in which M_1 is invertable and G_1 , G_2^T have full rank then,

$$\begin{bmatrix} I & 0 & 0 \\ 0 & M_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x}(t) = \begin{bmatrix} 0 & I & 0 \\ K_1 & D_1 & G_1 \\ G_2 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ B_1 \\ 0 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_1 & 0 & 0 \end{bmatrix} x(t),$$
where $x(t) = \begin{bmatrix} q_1(t)^T & \dot{q}_1(t)^T & q_2(t)^T \end{bmatrix}^T$

Model Reduction Via Projection

• Given a descriptor system,

$$\Sigma : \begin{cases} E\dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases} \quad \text{dim}(\Sigma) = n \\ G(s) = C(sE - A)^{-1}B + D \end{cases}$$

find a reduced system,

Model Reduction Via Projection

 G̃(s) tangentially interpolates G(s) at s = σ ∈ C along right and left directions b, c ∈ Cⁿ if

$$\tilde{G}(\sigma)b = G(\sigma)b, \quad c^{T}\tilde{G}(\sigma) = c^{T}G(\sigma)$$

Standard Projection

- Compute basis matrices $V, W \in \mathbb{R}^{n \times r}$
- Approximate x(t) by $V\tilde{x}(t)$
- Ensure Petrov-Galerkin condition:

 $W^{T}(EV\dot{\tilde{x}}(t) - AV\tilde{x}(t) - Bu(t)) = 0,$ $y(t) = CV\tilde{x}(t) + Du(t)$

• Reduced system matrices

$$\tilde{E} = W^T E V, \ \tilde{A} = W^T A V, \ \tilde{B} = W^T B, \ \tilde{C} = C V, \ \tilde{D} = D$$

Model Reduction Via Projection

 G̃(s) tangentially interpolates G(s) at s = σ ∈ C along right and left directions b, c ∈ Cⁿ if

$$\tilde{G}(\sigma)b = G(\sigma)b, \quad c^{T}\tilde{G}(\sigma) = c^{T}G(\sigma)$$

Standard Projection

- Compute basis matrices $V, W \in \mathbb{R}^{n \times r}$
- Approximate x(t) by $V\tilde{x}(t)$
- Ensure Petrov-Galerkin condition:

$$W^{T}(EV\dot{\tilde{x}}(t) - AV\tilde{x}(t) - Bu(t)) = 0,$$

$$y(t) = CV\tilde{x}(t) + Du(t)$$

Reduced system matrices

$$\tilde{E} = W^T E V, \ \tilde{A} = W^T A V, \ \tilde{B} = W^T B, \ \tilde{C} = C V, \ \tilde{D} = D$$

MOR for DAE's Standard Subspaces

Interpolatory subspaces

$$Ran(V) = span\{(\sigma_1 E - A)^{-1} Bb_1, \dots, (\sigma_r E - A)^{-1} Bb_r\}$$

Ran(W) = span{ $(\sigma_1 E - A^T)^{-1} C^T c_1, \dots, (\sigma_r E - A^T)^{-1} C^T c_r\}$

$$\sigma_k \in \mathbb{C}, \,\, b_k \in \mathbb{C}^p, \,\, c_k \in \mathbb{C}^q \,\, ext{for} \,\, k=1,\ldots,r$$

• Interpolating approximation

MOR for DAE's Standard Subspaces

Interpolatory subspaces

Ran(V) = span{
$$(\sigma_1 E - A)^{-1}Bb_1, ..., (\sigma_r E - A)^{-1}Bb_r$$
}
Ran(W) = span{ $(\sigma_1 E - A^T)^{-1}C^Tc_1, ..., (\sigma_r E - A^T)^{-1}C^Tc_r$ }

$$\sigma_k \in \mathbb{C}, \,\, b_k \in \mathbb{C}^p, \,\, c_k \in \mathbb{C}^q \,\, ext{for} \,\, k=1,\ldots,r$$

Interpolating approximation

$$\begin{split} \tilde{G}(s) &= CV(sW^{T}EV - W^{T}AV)^{-1}W^{T}B + D\\ \tilde{G}(\sigma_{k})b_{k} &= G(\sigma_{k})b_{k}, \quad c_{k}^{T}\tilde{G}(\sigma_{k}) = c_{k}^{T}G(\sigma_{k}),\\ c_{k}^{T}\tilde{G}'(\sigma_{k})b_{k} = c_{k}^{T}G'(\sigma_{k})b_{k}. \end{split}$$

 $G'(\sigma)$ is derivative of G(s) w.r.t. s, evaluated at $s = \sigma$

- The interpolation conditions hold as long as the inverses $(\sigma_k E A)^{-1}, \ k = 1, \dots, r$ exist
- The conditions are independent of the singularity of E
- In *E* singular case, G(s) might be improper while $\tilde{E} = W^T E V$ is, in general, nonsingular and $\tilde{G}(s)$ proper.
- This may produce an unbounded error
- To ensure bounded error, Weierstraß canonical form is used to decompose G(s) = G_{sp}(s) + P(s) and the subspaces V and W are modified such that

$$\tilde{G}(s) = \tilde{G}_{sp}(s) + \tilde{P}(s)$$

in which $\tilde{G}_{sp}(s)$ interpolates $G_{sp}(s)$ and $\tilde{P}(s) = P(s)$.

- The interpolation conditions hold as long as the inverses $(\sigma_k E A)^{-1}, \ k = 1, \dots, r$ exist
- The conditions are independent of the singularity of E
- In *E* singular case, G(s) might be improper while $\tilde{E} = W^T E V$ is, in general, nonsingular and $\tilde{G}(s)$ proper.
- This may produce an unbounded error
- To ensure bounded error, Weierstraß canonical form is used to decompose $G(s) = G_{sp}(s) + P(s)$ and the subspaces V and W are modified such that

$$\tilde{G}(s) = \tilde{G}_{sp}(s) + \tilde{P}(s)$$

in which $ilde{G}_{sp}(s)$ interpolates $G_{sp}(s)$ and $ilde{P}(s)=P(s).$

MOR for DAE's Modified Subspaces

Theorem (Gugercin et al 2013)

Let $V = \begin{bmatrix} V_f & V_\infty \end{bmatrix}$ and $W = \begin{bmatrix} W_f & W_\infty \end{bmatrix}$. Also

- $Ran(V_f) = span\{(\sigma_1 E A)^{-1} P_I B b_1, \dots, (\sigma_r E A)^{-1} P_I B b_r)\}$
- $Ran(W_f) = span\{(\sigma_1 E A^T)^{-1} P_r^T C^T c_1, \dots, (\sigma_r E A^T)^{-1} P_r^T C^T c_r)\}$
- $Ran(V_{\infty}) = Ran(Q_r)$
- $Ran(W_{\infty}) = Ran(Q_{l}^{T})$

Then,

$$ilde{P}(s) = CV_{\infty}(W_{\infty}^{T}(sE-A)V_{\infty})^{-1}W_{\infty}^{T}B + D = P(s),$$

 $ilde{G}(\sigma_{k})b_{k} = G(\sigma_{k})b_{k}, \ \ c_{k}^{T}\tilde{G}(\sigma_{k}) = c_{k}G(\sigma_{k})$

Transformation based MOR

• Index-1 DAE transformation: $E_{11}\dot{x}_{1}(t) = A_{11}x_{1}(t) + A_{12}x_{2}(t) + B_{1}u(t)$ $0 = A_{21}x_{1}(t) + A_{22}x_{2}(t) + B_{2}u(t) \rightarrow f_{11}\dot{x}_{1}(t) = A_{1}x_{1}(t) + B_{1}u(t)$ $y(t) = C_{1}x_{1}(t) + C_{2}x_{2}(t) + Du(t)$ $A_{1} = A_{11} - A_{12}A_{22}^{-1}A_{21}, B_{1} = B_{1} - A_{12}A_{22}^{-1}B_{2}, C_{1} = C_{1} - C_{2}A_{22}^{-1}A_{21} \text{ and } D_{1} = D - C_{2}A_{22}^{-1}B_{2}$ • Index-2 DAE transformation: [Heinkenschloss et al 2008]

 $\Delta_{I} = I - A_{12}(A_{21}E_{11}^{-1}A_{12})^{-1}A_{21}E_{11}^{-1}, C_{1} = C - A_{22}^{-1}A_{21} \text{ and } \mathcal{D} = D - C_{2}A_{22}^{-1}A_{21}B_{1}. \text{ Also } \Delta_{r} = I - E_{11}^{-1}A_{12}(A_{21}E_{11}^{-1}A_{12})^{-1}A_{21} \text{ and } \Delta_{r}x_{1}(t) = x_{1}(t).$

Transformation based MOR

• Index-2 DAE transformation:[Heinkenschloss et al 2008]

$$\begin{array}{ccc} E_{11}\dot{x}_{1}(t) = A_{11}x_{1}(t) + A_{12}x_{2}(t) + B_{1}u(t) \\ 0 = A_{21}x_{1}(t) \\ y(t) = C_{1}x_{1}(t) + C_{2}x_{2}(t) + Du(t) \end{array} \rightarrow \begin{array}{c} \Delta_{I}E_{11}\Delta_{r}\dot{x}_{1}(t) = \Delta_{I}A_{11}\Delta_{r}x_{1}(t) + \Delta_{I}B_{1}u(t) \\ y(t) = C_{1}\Delta_{r}x_{1}(t) + C_{2}u(t) \end{array}$$

$$\Delta_{I} = I - A_{12}(A_{21}E_{11}^{-1}A_{12})^{-1}A_{21}E_{11}^{-1}, C_{1} = C - A_{22}^{-1}A_{21} \text{ and } \mathcal{D} = D - C_{2}A_{22}^{-1}A_{21}B_{1}. \text{ Also } \Delta_{r} = I - E_{11}^{-1}A_{12}(A_{21}E_{11}^{-1}A_{12})^{-1}A_{21} \text{ and } \Delta_{r}x_{1}(t) = x_{1}(t).$$

Ø

• Second order descriptor system is equivalent to,

$$\begin{bmatrix} I & 0 & 0 \\ 0 & M_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{x}(t) = \begin{bmatrix} 0 & I & 0 \\ K_1 & D_1 & G_1 \\ G_2 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ B_1 \\ 0 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_1 & 0 & 0 \end{bmatrix} x(t),$$

• Defining $\Pi_{I} = I - G_1 G M_1^{-1}$ where $G = (G_2 M_1^{-1} G_1)^{-1} G_2$ and replacing x_3 ,

$$\begin{bmatrix} I & 0 \\ 0 & M_1 \end{bmatrix} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & I \\ \Pi_I K_1 & \Pi_I D_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \Pi_I B_1 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}.$$

• The structure implies $G_2x_1(t)=0$ and $G_2x_2(t)=0$, since $x_2(t)=\dot{x}_1(t)$. Then

$$G_2 v(t) = 0 \quad \text{iff} \quad \Pi_r v(t) = v(t)$$

where $\Pi_r = I - M_1^{-1} G_1 G$. [Heinkenschloss et al 2008]

• These results give,

$$\begin{bmatrix} \Pi_r & 0\\ 0 & M_1 \Pi_r \end{bmatrix} \begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & \Pi_r\\ \Pi_l K_1 \Pi_r & \Pi_l D_1 \Pi_r \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0\\ \Pi_l B_1 \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_1 \Pi_r & 0 \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}.$$

where,
$$\Pi_L = \begin{bmatrix} \Pi_I & 0 \\ 0 & \Pi_I \end{bmatrix}$$
, $\Pi_R = \begin{bmatrix} \Pi_r & 0 \\ 0 & \Pi_r \end{bmatrix}$

$$\Pi_L = V_L W_L^{\mathsf{T}}, \quad \Pi_R = V_R W_R^{\mathsf{T}} \text{ and } W_L^{\mathsf{T}} V_L = W_R^{\mathsf{T}} V_R = I$$

$$\begin{aligned} W_L^T \mathcal{E} V_R \dot{\tilde{x}}(t) &= W_L^T \mathcal{A} V_R \tilde{x}(t) + W_L^T \mathcal{B} u(t), \\ y(t) &= \mathcal{C} V_R \tilde{x}(t) \end{aligned}$$

where,
$$ilde{x}(t) = W_R^T egin{bmatrix} x_1^T & x_2^T \end{bmatrix}^T$$

• These results give,

$$\begin{bmatrix} \Pi_{I}\Pi_{r} & 0\\ 0 & \Pi_{I}M_{1}\Pi_{r} \end{bmatrix} \begin{bmatrix} \dot{x}_{1}(t)\\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} 0 & \Pi_{I}\Pi_{r}\\ \Pi_{I}K_{1}\Pi_{r} & \Pi_{I}D_{1}\Pi_{r} \end{bmatrix} \begin{bmatrix} x_{1}(t)\\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} 0\\ \Pi_{I}B_{1} \end{bmatrix} u(t),$$
$$y(t) = \begin{bmatrix} C_{1}\Pi_{r} & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t)\\ x_{2}(t) \end{bmatrix}.$$

where,
$$\Pi_L = \begin{bmatrix} \Pi_I & 0 \\ 0 & \Pi_I \end{bmatrix}$$
, $\Pi_R = \begin{bmatrix} \Pi_r & 0 \\ 0 & \Pi_r \end{bmatrix}$

$$\Pi_L = V_L W_L^T, \quad \Pi_R = V_R W_R^T \text{ and } W_L^T V_L = W_R^T V_R = I$$

$$\begin{array}{lll} W_L^T \mathcal{E} V_R \dot{\tilde{x}}(t) &=& W_L^T \mathcal{A} V_R \tilde{x}(t) + W_L^T \mathcal{B} u(t), \\ y(t) &=& \mathcal{C} V_R \tilde{x}(t) \end{array}$$

where,
$$ilde{x}(t) = W_R^T egin{bmatrix} x_1^T & x_2^T \end{bmatrix}^T$$

• These results give,

$$\Pi_{L} \underbrace{\begin{bmatrix} I & 0 \\ 0 & M_{1} \end{bmatrix}}_{\mathcal{E}} \Pi_{R} \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \Pi_{L} \underbrace{\begin{bmatrix} 0 & I \\ K_{1} & D_{1} \end{bmatrix}}_{\mathcal{A}} \Pi_{R} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \Pi_{L} \underbrace{\begin{bmatrix} 0 \\ B_{1} \end{bmatrix}}_{\mathcal{B}} u(t),$$

$$y(t) = \underbrace{\begin{bmatrix} C_{1} & 0 \end{bmatrix}}_{\mathcal{C}} \Pi_{R} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix}$$

$$where, \Pi_{L} = \begin{bmatrix} \Pi_{I} & 0 \\ 0 & \Pi_{I} \end{bmatrix}, \Pi_{R} = \begin{bmatrix} \Pi_{r} & 0 \\ 0 & \Pi_{r} \end{bmatrix}$$

$$\Pi_L = V_L W_L^T, \quad \Pi_R = V_R W_R^T \text{ and } W_L^T V_L = W_R^T V_R = V_R^T V_$$

$$W_L^T \mathcal{E} V_R \dot{\tilde{x}}(t) = W_L^T \mathcal{A} V_R \tilde{x}(t) + W_L^T \mathcal{B} u(t),$$

$$y(t) = \mathcal{C} V_R \tilde{x}(t)$$

where,
$$\tilde{x}(t) = W_R^T \begin{bmatrix} x_1^T & x_2^T \end{bmatrix}^T$$

• These results give,

$$\Pi_{L} \underbrace{\begin{bmatrix} I & 0 \\ 0 & M_{1} \end{bmatrix}}_{\mathcal{E}} \Pi_{R} \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \Pi_{L} \underbrace{\begin{bmatrix} 0 & I \\ \mathcal{K}_{1} & D_{1} \end{bmatrix}}_{\mathcal{A}} \Pi_{R} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + \Pi_{L} \underbrace{\begin{bmatrix} 0 \\ B_{1} \end{bmatrix}}_{\mathcal{B}} u(t),$$
$$y(t) = \underbrace{\begin{bmatrix} C_{1} & 0 \end{bmatrix}}_{C} \Pi_{R} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix}$$
where,
$$\Pi_{L} = \begin{bmatrix} \Pi_{I} & 0 \\ 0 & \Pi_{I} \end{bmatrix}, \ \Pi_{R} = \begin{bmatrix} \Pi_{r} & 0 \\ 0 & \Pi_{r} \end{bmatrix}$$

$$\Pi_L = V_L W_L^T, \quad \Pi_R = V_R W_R^T \text{ and } W_L^T V_L = W_R^T V_R = I$$

$$\begin{array}{rcl} W_L^T \mathcal{E} V_R \dot{\tilde{x}}(t) &=& W_L^T \mathcal{A} V_R \tilde{x}(t) + W_L^T \mathcal{B} u(t), \\ y(t) &=& \mathcal{C} V_R \tilde{x}(t) \end{array}$$

where,
$$\tilde{x}(t) = W_R^T \begin{bmatrix} x_1^T & x_2^T \end{bmatrix}^T$$

MOR of Index-3 DAE

Efficient MOR of Equivalent System

Lemma

v satisfies $v = \Pi_R v$ and $v = V_R (\sigma W_L^T \mathcal{E} V_R - W_L^T \mathcal{A} V_R)^{-1} W_L^T \mathcal{B} b$ iff

$$\begin{bmatrix} \sigma I & -I & G_1 & 0 \\ -K_1 & \sigma M_1 - D_1 & 0 & G_1 \\ G_2 & 0 & 0 & 0 \\ 0 & G_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ B_1 b \\ 0 \\ 0 \end{bmatrix}$$

w satisfies $w = \Pi_L^T w$ and $w = W_L (\sigma W_L^T \mathcal{E} V_R - W_L^T \mathcal{A} V_R)^{-T} V_R^T \mathcal{C}^T c$ iff

$\int \sigma I$	—1		$\begin{bmatrix} W_1 \end{bmatrix}$	$\begin{bmatrix} C_1^T c \end{bmatrix}$
$-K_1^T$	$\sigma M_1^T - D_1^T$			
			Z_1 =	
			Z_2	

MOR of Index-3 DAE

Efficient MOR of Equivalent System

Lemma

v satisfies $v = \Pi_R v$ and $v = V_R (\sigma W_L^T \mathcal{E} V_R - W_L^T \mathcal{A} V_R)^{-1} W_L^T \mathcal{B} b$ iff

$$\begin{bmatrix} \sigma I & -I & G_1 & 0\\ -K_1 & \sigma M_1 - D_1 & 0 & G_1\\ G_2 & 0 & 0 & 0\\ 0 & G_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ y_1\\ y_2 \end{bmatrix} = \begin{bmatrix} 0\\ B_1 b\\ 0\\ 0 \end{bmatrix}$$

w satisfies $w = \Pi_L^T w$ and $w = W_L (\sigma W_L^T \mathcal{E} V_R - W_L^T \mathcal{A} V_R)^{-T} V_R^T \mathcal{C}^T c$ iff

$$\begin{bmatrix} \sigma I & -I & G_2^T & 0 \\ -K_1^T & \sigma M_1^T - D_1^T & 0 & G_2^T \\ G_1^T & 0 & 0 & 0 \\ 0 & G_1^T & 0 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} C_1^T c \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

MOR of Index-3 DAE

Efficient MOR of Equivalent System

• let
$$v = V_R(\sigma W_L^T \mathcal{E} V_R - W_L^T \mathcal{A} V_R)^{-1} W_L^T \mathcal{B} b$$
, then using $W_R^T V_R = I$, and $V_R W_R^T = \Pi_R$,
 $W_L^T (\sigma \mathcal{E} - \mathcal{A}) \Pi_R v = W_L^T \mathcal{B} b$

• Also note that
$$v = \prod_R v$$
,

$$\Pi_{L} \left((\sigma \mathcal{E} - \mathcal{A}) v - \mathcal{B} b \right) = 0.$$
• Since, $\operatorname{null}(\Pi_{L}) = \operatorname{range} \begin{pmatrix} G_{1} & 0 \\ 0 & G_{1} \end{pmatrix},$

$$\begin{pmatrix} \sigma I & -I \\ -K_{1} & \sigma M_{1} - D_{1} \end{pmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} - \begin{bmatrix} 0 \\ B_{1}b \end{bmatrix} = - \begin{bmatrix} G_{1}y_{1} \\ G_{1}y_{2} \end{bmatrix}$$

MOR of Index-3 DAE IRKA for index-3 DAE

- Make an initial selection of shifts S_m = [σ₁,...,σ_r] and tangent directions b_i, c_i, i = 1,...,r
- while (not converged)
 - Solve the linear systems for $x_{\sigma_i} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\tilde{x}_{\sigma_i} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ associated with each interpolation and corresponding tangents.

•
$$V = [x_{\sigma_1} \cdots x_{\sigma_m}]$$
 and $W = [\tilde{x}_{\sigma_i} \cdots \tilde{x}_{\sigma_i}]$

Update the interpolation points and tangent directions
Return *E* = W^TEV, *A* = W^TAV, *B* = W^TB and *C* = CV.

MOR of Index-3 DAE Structure Preserving MOR

- G(s) has a second order structure while $\tilde{G}(s)$ loses this structure.
- Let V and W be partitioned as,

$$V = \left[\begin{array}{c} \mathcal{V}_1 \\ \mathcal{V}_2 \end{array} \right], \quad W = \left[\begin{array}{c} \mathcal{W}_1 \\ \mathcal{W}_2 \end{array} \right],$$

where $\mathcal{V}_i, \ \mathcal{W}_i \in \mathbb{R}^{n_1 imes r}, \ i=1,2.$ Defining $\mathcal{V}, \mathcal{W} \in \mathbb{R}^{2n_1 imes 2r}$ as,

$$\mathcal{V} = \left[\begin{array}{cc} \mathcal{V}_1 & 0 \\ 0 & \mathcal{V}_2 \end{array} \right], \quad \mathcal{W} = \left[\begin{array}{cc} \mathcal{W}_1 & 0 \\ 0 & \mathcal{W}_2 \end{array} \right],$$

and $\tilde{H}(s) = CV(W^T(sE - A)V)^{-1}W^TB$

MOR of Index-3 DAE Structure Preserving MOR

• $\tilde{H}(s)$ has a second order structure like,

$$G(s) = \mathcal{C}V_r(W_l^T(s^2M_1 - sD_1 - K_1)V_r)^{-1}W_l^TB,$$

provided that $W_1^T V_1$ and $W_1^T V_2$ are invertible. [Vandendorpe/Van Dooren 2004]

• $\tilde{H}(s)$ also tangentially interpolates G(s) similar to $\tilde{G}(s)$

$$Im(V) \subset Im(\mathcal{V}), \quad Im(W) \subset Im(\mathcal{W})$$

•
$$\tilde{H}(s)$$
 however has degree $2r$ instead of r

Ø

Numerical Results

Example: Constrained damped mass-spring system: [Mehrmann/Stykel, 2005]

$$n = 10001, \ p = 1, \ q = 3, \ r = 20 \text{ and } \tilde{r} = 40$$

Figure : \mathcal{H}_{∞} norm of G(s), $\tilde{G}(s)$ and $\tilde{H}(s)$

Numerical Results

Example: Constrained damped mass-spring system: [Mehrmann/Stykel, 2005]

$$n = 10001, \ p = 1, \ q = 3, \ r = 20 \text{ and } \tilde{r} = 40$$

Figure : Absolute error in \mathcal{H}_{∞} norm for $\tilde{G}(s)$ and $\tilde{H}(s)$

- Special second order DAE's can be transformed to equivalent ODE systems
- Efficient reduction of the equivalent ODE sysem is possible with out computing or decomposing the oblique projectors.
- IRKA iterations can be used to select the optimal choice of interpolation points.
- Structure preserving approximation of the second order system can be computed.

Thanks for your attention