Finding the Characteristics: Radial Basis Function Interpolation for Parametric Model Order Reduction

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

2nd Workshop on Model Reduction of Complex Dynamical Systems December 12, 2013

Definition and stability

Let

- $A \in \mathbb{R}^{d \times d}$
- $B \in \mathbb{R}^d$
- $C \in \mathbb{R}^{1 \times d}$

A linear time-invariant (LTI) system

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
(1)

Fraunhofer

is called *stable* if A has eigenvalues only in the left half plane.

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Model order reduction

Model order reduction methods try to find a reduced LTI system

$$\hat{\Sigma}:\begin{cases} \dot{x}(t) = \hat{A}x(t) + \hat{B}u(t)\\ \hat{y}(t) = \hat{C}x(t) \end{cases}$$
(2)

where

▶ r ≪ d

$$\hat{A} \in \mathbb{R}^{r \times r}, \, \hat{B} \in \mathbb{R}^{r}, \, \hat{C} \in \mathbb{C}^{1 \times r}$$

and \hat{A} has eigenvalues only in the left half plane.

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Fraunhofer

Transfer function

The input-output map y(u) of (1) is characterized by the *transfer function*

$$H: \mathbb{C} \to \mathbb{C}, \quad H(\omega) = C(\omega I - A)^{-1}B$$

in frequency space. \hat{H} is defined accordingly for (2).

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Error estimate

Let y(t) and $\hat{y}(t)$ be the output of (1) and (2). Then the *error of* y(t) is bounded by

$$\max_{t>0} |y(t) - \hat{y}(t)| \le ||H - \hat{H}||_{\mathcal{H}_2} ||u||_{\mathcal{L}_2},$$

where the \mathcal{H}_2 -norm is defined as

$$\|H - \hat{H}\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\iota\omega) - \hat{H}(\iota\omega)|^2 \mathsf{d}\omega$$

\mathcal{H}_2 optimality

Given

- a stable dynamical system (1),
- a reduced order system (2).

If the reduced system (2) minimizes $||H - \hat{H}||_{\mathcal{H}_2}$, it Hermite interpolates (1) at its mirror poles $\sigma_1, \ldots, \sigma_r$.

🚧 rraunhofer

Petrov-Galerkin projection

Let

- *r* fixed, $\sigma_1, \ldots, \sigma_r$ given
- V, W such that

$$(\sigma_i I - A)^{-1} B \in \operatorname{span}(V)$$

 $(\sigma_i I - A)^{-T} C^T \in \operatorname{span}(W)$
 $V^T W = I$

Then the reduced order model by Petrov-Galerkin projection

$$\hat{A} = V^T A W, \quad \hat{B} = V^T B, \quad \hat{C} = C W$$

Hermite interpolates (1) at $\sigma_1, \ldots, \sigma_r$.

Remark

Â is unique up to matrix similarity

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

ModRed, December 12, 2013

10fer SCAI

Iterative Rational Krylov Algorithm (IRKA)

- *Problem:* Find $\sigma_1, \ldots, \sigma_r$ for (1)
- Solution by IRKA: Local optimum
 - ▶ Initial $\sigma_1, \ldots, \sigma_r$ given
 - Fixed-point iteration
 - Locally convergent if local optimum is attractive (e.g. for state-space-symmetric systems)

Parametric LTI system

Given a compact domain $\Omega \subset \mathbb{R}^n$. Let

- A, B and C as in (1)
- ► A, B and C depend (smoothly) on some $p \in \Omega$

Then

• A(p), B(p) and C(p) define a parametric LTI system

$$\Sigma: \begin{cases} \dot{x}(t) = A(p) x(t) + B(p) u(t), \\ y(t) = C(p) x(t). \end{cases}$$

 Each value of p defines an LTI system, which can be reduced as before

Fraunhofer

Parametric LTI system

Transfer function of a parametrized LTI system for different choices of p (elastic beam):

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Parametric model order reduction

- ► Goal: Fast computation of $\hat{A}(p), \hat{B}(p), \hat{C}(p) \forall p$
- General ideas:
 - ► Relax H₂-optimality slightly
 - Apply well-established approximation methods ...such as radial basis function interpolation
- to be effective, smoothness is absolutely essential!

Approximation of parametric dependency

Candidates for approximation are

 $\hat{A}(p), \hat{B}(p), \hat{C}(p)$

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Approximation of parametric dependency

Candidates for approximation are

• $\hat{A}(p), \hat{B}(p), \hat{C}(p) \rightarrow \text{non-unique, matrix similarity}!$

Approximation of parametric dependency

Candidates for approximation are

- $\hat{A}(p), \hat{B}(p), \hat{C}(p) \rightarrow \text{non-unique, matrix similarity}!$
- $\sigma_1(p), \ldots, \sigma_r(p)$

Approximation of parametric dependency

Candidates for approximation are

- $\hat{A}(p), \hat{B}(p), \hat{C}(p) \rightarrow \text{non-unique, matrix similarity}!$
- $\sigma_1(p), \ldots, \sigma_r(p) \rightarrow$ eigenvalue crossings and splittings, non-smooth!

Imaginary parts of two eigenvalues of a matrix depending on two parameters:

lofer

Approximation of parametric dependency

Candidates for approximation are

- $\hat{A}(p), \hat{B}(p), \hat{C}(p) \rightarrow \text{non-unique, matrix similarity}!$
- $\sigma_1(p), \ldots, \sigma_r(p) \rightarrow$ eigenvalue crossings and splittings, non-smooth!

Imaginary parts of two eigenvalues of a matrix depending on two parameters:

Coefficients of the characteristic polynomial ∏^r_{i=1}(s − σ_i(p)) → smooth enough?

10fer

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Smoothness of the characteristic polynomial

Let

- π map a matrix to its characteristic polynomial
- Q map a polynomial to its coefficients
- λ map a matrix to its eigenvalues

Then

$$\hat{A}(\cdot) \in C^{\infty}(\mathbb{R}^{n}; \mathbb{R}^{r \times r}) \implies Q(\pi(\hat{A}(\cdot))) \in C^{\infty}(\mathbb{R}^{n}; \mathbb{R}^{r+1})$$

$$\hat{A} \text{ stable } \implies \begin{cases} Q(\pi(\hat{A}(p))) \ge 0 \\ \Re \lambda(\hat{A}(p)) \le 0 \end{cases}$$

$$\forall P \in \mathbb{R}^{r \times r}, \det P \neq 0 : \begin{cases} \pi(\hat{A}(p)) = \pi(P\hat{A}(p)P^{-1}) \\ \lambda(\hat{A}(p)) = \lambda(P\hat{A}(p)P^{-1}) \end{cases}$$

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

ModRed, December 12, 2013

nofer

Smoothness of the characteristic polynomial

Let

- ρ map a set of *r* roots to their polynomial
- Q map the resulting polynomial to its coefficients

Then

- ► *Q* is linear, hence *Q*⁻¹, too
- ρ^{-1} maps a polynomial to its roots
 - ▶ closed form representations for $r \le 5$
 - computation unstable for r > 5

Smoothness of the characteristic polynomia

Let $r \leq 5$. Assume IRKA converges

- locally
- to a local optimum
- returns $\Sigma(p) = (\sigma_1(p), ..., \sigma_r(p))$

Moreover, assume that a *perturbation of p* is small enough to not leave the region of

- convergence
- attraction to the local minimum

Then

- $f = Q \circ \rho \circ \Sigma(\cdot)$ is smooth
- standard RBF interpolation is applicable

Smoothness of the characteristic polynomial

Assume IRKA converges as before, $r \le 5$. Moreover, assume again that *a perturbation of p* is small enough to not leave the region of

- convergence
- attraction to the local minimum

Let

•
$$\tilde{f} \approx f = Q \circ \rho \circ \Sigma(\cdot)$$

$$\Sigma = \rho^{-1} \circ Q^{-1} \circ \tilde{f}$$

Then $\tilde{\Sigma}$

- approximates the results of IRKA
- can be computed stably
- \rightsquigarrow find those smooth regions!

Fraunhofer

Smoothness of the characteristic polynomial

Let $f = Q \circ \rho \circ \Sigma(\cdot)$.

- We are looking for *discontinuities* of f(p)
- Simple *criterion* for *k*-means or spectral clustering (Ng et al.): tuple (*p*, *f*(*p*))

→ How to determine the number of clusters?

Definition

Let

- $\Omega \subset \mathbb{R}^n$ a domain
- F a class of functions f : Ω → C that form a Hilbert space H with inner product (·, ·)

The function $\kappa : \Omega \times \Omega \to \mathbb{C}$ is called *reproducing kernel* if

$$\forall y \in \Omega : \quad \kappa(\cdot, y) \in F, \\ \forall f \in F, y \in \Omega : \quad f(y) = (f(\cdot), \kappa(\cdot, y)) \quad (\text{reproducing property}).$$

Properties

Let $\xi_i \in \mathbb{C}, x_i, x, y, z \in \Omega, i, j = 1, ..., N, N \in \mathbb{N}$ arbitrary

Positive definiteness

$$\sum_{i,j}\xi_i\overline{\xi}_j\kappa(x_j,x_i)\geq 0$$

 $\kappa(y,z) = (\kappa(x,z),\kappa(x,y)), \ \kappa(x,y) = \overline{\kappa(y,x)}, \ \kappa(x,x) \ge 0, \dots$

Reproducing Kernels

Given: $\mathcal{H}(\Omega)$ with inner product (\cdot, \cdot)

Existence

Necessary and sufficient condition: A continuous evaluation functional

$$\delta_x: \mathcal{H} \to \mathbb{C}, \ f \to f(x)$$

exists on ${\boldsymbol{\mathcal H}}$

Uniqueness

• Assumption: A reproducing kernel κ exists for $\mathcal H$

Then the reproducing kernel κ of \mathcal{H} is *unique* and, therefore, characterizes \mathcal{H} .

Reproducing Kernels

Native space of κ

Given

- $\kappa : \Omega \times \Omega \rightarrow C$, positive definite
- $F = \operatorname{span} \{ \kappa(\cdot, x) : x \in \Omega \}$

Moreover, define

$$(f,g)_{\kappa} \equiv \sum_{i,j} \alpha_i \overline{\beta}_j \kappa(x_j,x_i)$$

for arbitrary $f, g \in F$ with

- $f = \sum_i \alpha_i \kappa(\cdot, x_i)$
- $g = \sum_j \beta_j \kappa(\cdot, x_j)$

Then

- $\mathcal{H} = clF$ with respect to $||f||_{\kappa}^2 \equiv (f, f)_{\kappa}$ has reproducing kernel κ
- \mathcal{H} is called the *native space* of κ

Fraunhofer

Examples

Let $x, y \in \Omega = \mathbb{R}^n$.

Positive definite functions

$$\kappa(x, y) = \phi(x - y),$$
 invariant to $T(n)$

Radial basic functions (RBF)

 $\kappa(x, y) = \phi(||x - y||_2),$ invariant to SE(*n*)

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Reproducing Kernels

RBF examples

Let $\epsilon > 0$, $\tau > n/2$. Denote by

- K_v the modified Bessel function of 2nd kind,
- $\mathcal{F}f$ the Fourier transform of f.

Popular RBF choices are

Sobolev splines

$$\phi(x) = \frac{K_{\tau-n/2}(||x||_2)||x||_2^{\tau-n/2}}{2^{\tau-1}\Gamma(\tau)}, \qquad \mathcal{H} = \mathsf{W}_2^{\tau}(\mathbb{R}^n)$$

Gaussians

$$\phi(x) = e^{-\epsilon^2 ||x||_2^2}, \qquad \mathcal{H} = \left\{ f \in L_2(\mathbb{R}^n) \cap C^{\infty}(\mathbb{R}^n) : e^{\frac{\|f\|_2^2}{8\epsilon^2}} \mathcal{F} f \in L^2(\mathbb{R}^n) \right\}$$

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

ModRed, December 12, 2013

Fraunhofer

RBF interpolation

Given a function $f \in \mathcal{H}$, select

- ▶ sampling $X = \{x_1, \cdots, x_N\} \subset \Omega, N = |X| < \infty$
- ansatz

$$\tilde{f}(x) = \sum_{i=1}^{N} \xi_i \kappa(x, x_i).$$

Then \tilde{f} is an *interpolant* to f on X if (ξ_1, \dots, ξ_N) is a solution of

$$\forall j = 1...N : \tilde{f}(x_j) = f(x_j). \tag{3}$$

Fraunhofer

 \rightsquigarrow offline phase (sampling, IRKA) \leftrightarrow online phase (metamodel, reduced model)

Given f, \tilde{f}, X as before.

Optimality of RBF interpolation

- $\blacktriangleright \forall \tilde{\mathbf{s}} \in \{\mathbf{s} \in \mathcal{H} : (\mathbf{3})\} : \|\tilde{f}\|_{\kappa} \le \|\tilde{\mathbf{s}}\|_{\kappa}$
- $\forall \tilde{\mathbf{s}} \in \{\sum_{i} \xi_{i} \kappa(\cdot, \mathbf{x}_{i}) : \xi_{i} \in \mathbb{C}\} : \|f \mathbf{s}\|_{\kappa} \le \|f \tilde{\mathbf{s}}\|_{\kappa}$

Define the *fill-distance* of X as $h \equiv \sup_{y \in \Omega} \max_{x \in X} ||x - y||_2$

Sampling inequalities

Let

- α a multi-index
- σ the sampling order

Then $\exists C_1 > 0$: $\|D^{\alpha}f\|_{L_q(\Omega)} \leq C_1 \left(h^{\sigma}\|f\|_{\kappa} + h^{-|\alpha|}\|f(X)\|_{\ell_{\infty}(\mathbb{R}^{|X|})}\right)$

Error estimates

Assume a continuous embedding of \mathcal{H} into $W_2^p, 0 .$ $Then <math>\exists C > 0 : ||f - \tilde{f}||_{L_q(\Omega)} \leq Ch^{p-n\max\left(0, \frac{1}{2} - \frac{1}{q}\right)}||f||_{\kappa}$

ofer

Remarks

- Gaussians, multi-quadrics: spectral approximation orders
- ► *Sobolev* functions ↔ ansatz with Gaussians: polynomial approximation orders
- Conditionally positive functions: polynomial detrending
- Native space norm: indicator for problems (e.g. discontinuities)
- → employ Gaussians (or multiquadrics)
- → use low-order polynomial detrending
- \rightsquigarrow determine number of clusters by norm of the native space

Medium size model

- Reuse results from offline phase
- Galerkin projection for system matrices in affine form (medium size)
- Project *medium-size model* to $\tilde{\Sigma}$ in online phase

For details, see Sara Grundel's talks at MoRePas II, Nonlinear MOR Workshop, and Overton's "60th birthday" Workshop.

→ speed-up without additional cost

Examples

- Parametric beam model (d = 240)
- ► Anemometer (*d* = 29,008, *n* = 1 and *n* = 3)
- Synthetic model (to exhibit more challenging problems)

Timoshenko beam

Transfer function of a parametrized LTI system for different choices of *p*:

Anemometer (1D)

Transfer function of a parametrized LTI system for different choices of *p*:

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Synthetic example

Transfer function of a parametrized LTI system for different choices of *p*:

Fraunhofer

SCAI

Error evaluation, Timoshenko beam

 H_2 error of the reduced parametrized system using IRKA (no interpolation), IRKA with RBF (intperolation), IRKA and medium-size model with RBF – three vs. five interpolation points:

Error evaluation, Anemometer (1D)

 H_2 error of the reduced parametrized system of size 4 using IRKA (no interpolation), IRKA and medium-size model with RBF – five interpolation points:

Error evaluation, Anemometer (3D)

 H_2 error of the reduced parametrized system using IRKA (no interpolation), IRKA and medium-size model with RBF – different reduced sized (*r*) and number of interpolation points (*N*):

	<i>r</i> = 4, <i>N</i> = 5	<i>r</i> = 8, <i>N</i> = 5	<i>r</i> = 8, <i>N</i> = 10
RBF-IRKAm	3.21 × 10 ^{−5}	1 × 10 ⁻⁶	1 × 10 ⁻⁸
IRKA	$3.19 imes 10^{-5}$	3×10^{-8}	2×10^{-8}

Error evaluation, synthetic example

 H_2 error of the reduced parametrized system using IRKA (no interpolation), IRKA with RBF – several *p*:

Numerical results

Clustering, synthetic example

Eigenvalues $\Sigma(p)$ of the reduced system matrix, for r = 4 and several p (dots):

Clustering, synthetic example

Coefficients f(p) of the corresponding characteristic polynomial, for r = 4 and several p (colored dots), and approximation $\tilde{f}(p)$ (black line):

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)

Parametric model order reduction

- Parametric linear time-invariant systems
- H₂ optimal model order reduction (IRKA)
- RBF interpolation of Σ(p) using coefficients of the characteristic polynomial
- Clustering guided by the norm of the reproducing kernel Hilbert space innate to a radial basis
- Medium-size model and projection to interpolated $\Sigma(p)$
- Numerical results (synthetic as well as simple practical test problems)

Open problems

- Stable root finding (minimum polynomial?)
- Nonlinear systems (*bilinear* systems)
- Transfer RBF error bounds to reduced model

Thank you for your attention!

Nils Hornung (Fraunhofer SCAI), Sara Grundel (MPI Magdeburg)