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Introduction

Context

Various problematics arise in aeronautics

I fault detection and reconfiguration

I actuators allocation

I structured H2 and H∞ control

I ...

BProblem : the tools available for addressing these problematics are often limited by the
size of the models

⇓
Considered solution : Model approximation
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Â

Ĉ
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Introduction

Problem statement

H2,Ω approximation problem

Given a continuous LTI dynamical system H of order n, the problem consists in finding a
stable r-th order (r � n) model Ĥ that minimizes the frequency-limited H2-norm of the
approximation error JH2,Ω , i.e.

Ĥ = arg min
Gr stable

JH2,Ω(Gr) = arg min
Gr stable

‖H −Gr‖2H2,Ω
(1)

Why considering the approximation over a bounded frequency interval ?

I sensors/actuators limited bandwith → some frequencies might not be useful for
control purpose.

I in aeronautics, a common specification for controller is that they act on a specific
frequency interval only so that they do not impact other control laws.
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Frequency-limited model approximation

H2,Ω-norm

H2,Ω-norm

Given a frequency interval Ω = [0, ω], the H2,Ω-norm of a model H, denoted ‖H‖H2,Ω , is
defined as the restriction of the H2-norm over [−ω, ω], i.e.

‖H‖2H2,Ω
:=

1

2π

∫ ω

−ω
tr
(
H(jν)H(−jν)T

)
dν (2)

I Suggested for frequency analysis of unstable systems 1

I Strongly connected to the frequency-limited gramians 2

I Robustness analysis 3

1. M.R. Anderson, A. Emami-Naeni and J.H. Vincent, ”Measures of merit for multivariable flight
control”, Technical report, 1991.

2. W. Gawronski and J. Juang, ”Model reduction in limited time and frequency intervals”, International
Journal of Systems Science, 1990.

3. A. Masi, R. Wallin, A. Garulli and A. Hansson, ”Robust finite-frequency H2 analysis”, CDC, 2010.
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Frequency-limited model approximation

H2,Ω-norm

‖H‖H2,Ω can be computed :

I with the frequency-limited gramians Pω and Qω as

‖H‖2H2,Ω
= tr

(
CPωCT

)
= tr

(
BTQωB

)
(3)

→ This formulation has been used (in parallel of this work) to perform optimal H2,Ω

model approximation 4.

I if H has semi-simple poles only, then 5

‖H‖2H2,Ω
=

n∑
i=1

−tr
(
φiH(−λi)T

) 2

π
atan

(
ω

λi

)
, (4)

where λi, φi (i = 1, . . . , n) are the poles and associated residues of H(s) and
atan(z) is the principal value of the complex arctangent of z 6= ±j.

4. D. Petersson, ”A Nonlinear Optimization Approach to H2-Optimal Modeling and Control”, PhD
thesis, Linköping University, 2013.

5. P. Vuillemin, C. Poussot-Vassal and D. Alazard, ”A Spectral Expression for the Frequency-Limited
H2-norm”, Available as http ://arxiv.org/abs/1211.1858, 2012.
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Frequency-limited model approximation

H2,Ω-norm

Some remarks :

I Given Ω = [0, ω], if H is stable, then

lim
ω→∞

‖H‖H2,Ω = ‖H‖H2 . (5)

I If Ω = Ω1 ∩ Ω2 where Ω1 = [0, ω1] and Ω2 = [0, ω2] with ω1 < ω2 then

‖H‖2H2,Ω
= ‖H‖2H2,Ω2

− ‖H‖2H2,Ω1
(6)

I Similar expressions exist for models with a direct feedthrough D.

P. Vuillemin, C. Poussot-Vassal & D. Alazard 11 / 24 H2,Ω model approximation
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Frequency-limited model approximation

H2,Ω-norm

Two upper bounds on the H∞-norm

‖H‖H∞ ≤ max
ω∈R

(
π
‖H‖2H2,[0,ω]

dω

) 1
2

= max
ω∈R
‖H(jω)‖F (7)

Grounded on the poles/residues formulation of the H2,Ω-norm 6,

‖H‖H∞ ≤

(
max
ω∈R

n∑
i=1

gi(ω)

) 1
2

︸ ︷︷ ︸
Γ(H)

≤

(
n∑
i=1

max
ω∈R

gi(ω)

) 1
2

︸ ︷︷ ︸
Γ̄(H)

(8)

where gi(ω) (i = 1, . . . , n) are rational functions of ω.

I computing Γ(H) requires to find the maximum of a sum of rational functions

I Γ̄(H) can be found analytically

6. P. Vuillemin, C. Poussot-Vassal and D. Alazard, ”Two upper bounds on the H∞-norm of LTI
dynamical systems”, Submitted, 2013.
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Frequency-limited model approximation

H2,Ω error and first-order optimality conditions 8

H2,Ω approximation error
Assuming that H and Ĥ are stables and have semi-simple poles only, i.e.

H(s) =

n∑
i=1

φi
s− λi

and Ĥ(s) =
r∑
k=1

φ̂k

s− λ̂k
. (9)

Then the approximation error JH2,Ω is given by

JH2,Ω = ‖H‖2H2,Ω
+ ‖Ĥ‖2H2,Ω

− 2

π

n∑
i=1

r∑
k=1

tr
(
φiφ̂

T
k

)
λi + λ̂k

(
atan

(
ω

λi

)
+ atan

(
ω

λ̂k

))
(10)

(Very similar to the H2 case 7)

7. S. Gugercin, A.C. Antoulas and C. Beattie, ”H2 Model Reduction for Large-Scale Linear Dynamical
Systems”, SIAM Journal on Matrix Analysis and Applications, 2008.

8. P. Vuillemin, C. Poussot-Vassal and D. Alazard, ”Poles Residues Descent Algorithm for Optimal
Frequency-Limited H2 Model Approximation”, Submitted, 2013.
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Frequency-limited model approximation

H2,Ω error and first-order optimality conditions

Some remarks :

I to handle MIMO cases, the reduced-order model residues φ̂k (k = 1, . . . , r) must be
written as an outer product, i.e.

φ̂k = ĉTk b̂k, k = 1, . . . , r (11)

where ĉk ∈ C1×ny and b̂k ∈ C1×nu .

I ‖Ĥ‖2H2,Ω
is infinite when some poles of Ĥ cross the imaginary axis → the imaginary

axis acts as a natural barrier

P. Vuillemin, C. Poussot-Vassal & D. Alazard 14 / 24 H2,Ω model approximation
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Frequency-limited model approximation

H2,Ω error and first-order optimality conditions

Grounded on the previous formulation, the optimal H2,Ω approximation problem can be
formulated similarly to the H2 case 9.

H2,Ω approximation problem

Given a n-th order stable MIMO LTI dynamical system H with only semi-simple poles,
the optimal H2,Ω approximation problem consists in finding the reduced-order poles and
associated residues λ̂k, ĉk and b̂k (k = 1, . . . , r) that minimizes JH2,Ω

I JH2,Ω is not convex

I JH2,Ω is a real function of complex variables and their conjugate → the CR (or

Wirtinger) calculus is used to derive the first-order optimality conditions 10

I there are r (1 + ny + nu) variables → the problem is overparametrized

9. C. Beattie and S. Gugercin, ”A Trust Region Method for Optimal H2 Model Reduction”, CDC,
2009.

10. L. Sorber, M. Van Barel and L. De Lathauwer, ”Unconstrained optimization of real functions in
complex variables”, SIAM J. Optim, 2012.
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Frequency-limited model approximation

H2,Ω error and first-order optimality conditions

The conjugate cogradients
∂JH2,Ω

∂λ̂∗m
,
∂JH2,Ω

∂ĉ∗m
,
∂JH2,Ω

∂b̂∗m
, m = 1, . . . , r (and

∂JH2,Ω

∂D̂
) have

been derived 11 but they have not (yet) clearly been formulated as interpolation
conditions.

11. P. Vuillemin, C. Poussot-Vassal and D. Alazard, ”Poles Residues Descent Algorithm for Optimal
Frequency-Limited H2 Model Approximation”, Submitted, 2013.
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∂D̂
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been derived 11 but they have not (yet) clearly been formulated as interpolation
conditions.
For instance, for m = 1, . . . , r

∂JH2,Ω

∂b̂m
=

r∑
i=1

b̂Ti ĉiĉ
T
m

λ̂i + λ̂m

(
atan

(
ω

λ̂i

)
+ atan

(
ω

λ̂m

))
−

n∑
i=1

bTi ciĉ
H
m

λi + λ̂m

(
atan

(
ω

λi

)
+ atan

(
ω

λ̂m

)) (12)

11. P. Vuillemin, C. Poussot-Vassal and D. Alazard, ”Poles Residues Descent Algorithm for Optimal
Frequency-Limited H2 Model Approximation”, Submitted, 2013.
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∂JH2,Ω

∂b̂m
= ĉm

[
Ĥω(−λ̂m)− Ĥ(−λ̂m)atan

(
ω

λ̂m

)]
−ĉm

[
Hω(−λ̂m)−H(−λ̂m)atan

(
ω

λ̂m

)]
(12)

where

Hω(s) =
n∑
i=1

φi
s− λi

atan

(
ω

λi

)
and Ĥω(s) =

r∑
k=1

φ̂k

s− λ̂k
atan

(
ω

λ̂k

)
(13)
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Frequency-limited model approximation

Optimization scheme

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, Ω = [0, ω] with ω > 0 and r ∈ N∗.

1: Compute the eigenvalues and associated eigenvectors of A to determine λi, ci and bi
i = 1, . . . , n

2: Choose an initial point z0 composed of λ̂
(0)
i , ĉ

(0)
i , b̂

(0)
i , i = 1, . . . , r corresponding to

a stable model.
3: k ← 0.
4: while not converged do

5: Compute the error JH2,Ω(zk) and the associated gradient
∂JH2,Ω

∂z∗ |z=zk .

6: Choose the descent direction pk = −2
∂JH2,Ω

∂z∗ |z=zk (BFGS in practice).
7: Choose the step length αk such that JH2,Ω(zk + αkpk) satisfies the strong Wolfe

conditions and such that the poles do not cross the imaginary axis.
8: Set zk+1 = zk + αkpk.
9: k ← k+1.

10: end while
11: Use λ̂

(k)
i , ĉ

(k)
i , b̂

(k)
i , i = 1, . . . , r to construct Â, B̂ et Ĉ.

12: [Optional] Compute Γ(H − Ĥ) and Γ̄(H − Ĥ)
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P. Vuillemin, C. Poussot-Vassal & D. Alazard 17 / 24 H2,Ω model approximation



Introduction H2,Ω model approx. Applications Conclusions

Frequency-limited model approximation

Optimization scheme

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, Ω = [0, ω] with ω > 0 and r ∈ N∗.
1: Compute the eigenvalues and associated eigenvectors of A to determine λi, ci and bi
i = 1, . . . , n

2: Choose an initial point z0 composed of λ̂
(0)
i , ĉ

(0)
i , b̂

(0)
i , i = 1, . . . , r corresponding to

a stable model.
3: k ← 0.
4: while not converged do

5: Compute the error JH2,Ω(zk) and the associated gradient
∂JH2,Ω

∂z∗ |z=zk .

6: Choose the descent direction pk = −2
∂JH2,Ω

∂z∗ |z=zk (BFGS in practice).
7: Choose the step length αk such that JH2,Ω(zk + αkpk) satisfies the strong Wolfe

conditions and such that the poles do not cross the imaginary axis.
8: Set zk+1 = zk + αkpk.
9: k ← k+1.

10: end while
11: Use λ̂

(k)
i , ĉ

(k)
i , b̂

(k)
i , i = 1, . . . , r to construct Â, B̂ et Ĉ.

12: [Optional] Compute Γ(H − Ĥ) and Γ̄(H − Ĥ)
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Applications

Simple benchmark

LAH model, r = 20, Ω = [0,∞], 100
JH2,Ω

‖H‖2H2,Ω

goes from 17% to 7.8%.
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Applications

Simple benchmark

LAH model, r = 8, Ω = [0, 10], 100
JH2,Ω

‖H‖2H2,Ω

goes from 5.5% to 0.47%.
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Applications

Industrial use-case

Joint work between Onera and Dassault Aviation 12
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12. C. Poussot-Vassal, C. Roos, P. Vuillemin, O. Cantinaud and J.P. Lacoste, ”Control-oriented aeroelastic
BizJet low-order LFT modeling”, To appear in Control-oriented modeling and identification : theory and practice,
M. Lovera (Ed).
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Conclusions & perspectives

Conclusions

Proposed approach :

I ⊕ Extension of a previous approach to the frequency-limited H2 case.

I ⊕ Ensure the decrease of the H2,Ω-error and the stability of the reduced-order
model.
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Conclusions & perspectives

Conclusions

Proposed approach :

I ⊕ Extension of a previous approach to the frequency-limited H2 case.

I ⊕ Ensure the decrease of the H2,Ω-error and the stability of the reduced-order
model.

I 	 Requires the eigenvalues/eigenvectors of the initial model → dedicated to
medium-scale models.

I 	 Local optimization algorithm → the result strongly depends on the initialization.
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Conclusions & perspectives

The approach is available in the MORE Toolbox (matlab toolbox) :

http://w3.onera.fr/more/
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Conclusions & perspectives

Perspectives

Concerning the algorithm :

I Implementation of a trust-region approach for (a real) constraints management

I New initialization strategy

I Sparse case ?

Then,

I Using uncertainties to model the approximation error (LFR) for control purposes.

I Combining the approximation and interpolation steps for multiples LTI models
approximation (already addressed by D.Petersson with the gramian-based
formulation).
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Thank you for your attention !
Vielen Dank für Ihre Aufmerksamkeit !
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