

A parametric ROM for the linear frequency domain approach to time-accurate CFD

Ralf Zimmermann, AG Numerik, TU-BS

Model Reduction of Complex Dynamical Systems ModRed, MPI Magdeburg Dec. 11-13

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

Key idea of subspace based reduced order modeling:

- Construct low-dimensional subspace
- Restrict computations to low-dimensional subspace (e.g. via projection)

Examples:

- Reduced Bases methods
- Krylov subspace methods
- Proper Orthogonal Decomposition

In this talk:

Parameter dependent large-scale linear systems:

$$A(p,q)W = b(p,q), A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$$

- Parameters q determine operating points
- Parameters p are considered as examination parameters

Standard order reduction ansatz: use subspace of dim $m \ll n$

$$W(p,q_0) = U_{q_0}a(p), \quad U_{q_0} \in \mathbb{R}^{n \times m}$$

Determine coefficient vector $a(p) \in \mathbb{R}^m$ via

Orthogonal residual condition

$$U_{q_0}{}^T SAU_{q_0}a = U_{q_0}{}^T Sb \in \mathbb{R}^m$$

Minimum residual condition

$$U_{q_0}{}^T A^T S A U_{q_0} a = U_{q_0}{}^T A^T S b \in \mathbb{R}^m$$

inner product: $\langle \cdot, \cdot \rangle = (\cdot)^T S (\cdot)$

Standard order reduction ansatz: use subspace of dim $m \ll n$

$$W(p,q_0) = U_{q_0}a(p), \quad U_{q_0} \in \mathbb{R}^{n \times m}$$

Standard order reduction ansatz: use subspace of dim $m \ll n$

$$W(p,q_0) = U_{q_0}a(p), \quad U_{q_0} \in \mathbb{R}^{n \times m}$$

Determine coefficient vector $a(p) \in \mathbb{R}^m$ via

Orthogonal residual condition

$$U_{q_0}{}^T SAU_{q_0} a = U_{q_0}{}^T Sb \in \mathbb{R}^m$$
• Minimum residual condition
$$A_{\min} a = b_{\min}$$

$$U_{q_0}{}^T A^T SAU_{q_0} a = U_{q_0}{}^T A^T Sb \in \mathbb{R}^m$$
inner product: $\langle \cdot, \cdot \rangle = (\cdot)^T S(\cdot)$

Suppose that at r operating points, we have computed bases

$$U_{q_1}, \ldots, U_{q_r}$$

- Objective: Construct ROM at new operating point $W(p,q_*) = U_{q_*}a(p), \quad U_{q_*} \in \mathbb{R}^{n \times m}$
- Required: Parametrized **trajectory** of projection bases $U: q \mapsto U_q$
- Idea: Interpolate given bases ^{[1] [2]}

^[1] D. Amsallem, C. Farhat, 2008

^[2] Nguyen T.S., 2012

Challenges:

- ROM subspace spanned by orthogonal reduced-order basis (ROB)
- Ensure that parametric variation always gives orthogonal bases

Reduced bases matrices **must** be considered as points in the Grassmann manifold of k-dimensional subspaces or the Stiefel manifold of "tall-skinny" orthonormal matrices^[3]

^[3]A. Edelman, T.A. Arias, S.T. Smith, 1998

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

Interpolating data on manifolds (A): basic principle

Matrix manifolds

Stiefel manifold

$$V(n,m) = \{Y \in \mathbb{R}^{n \times m} | Y^T Y = I_{m \times m}\}$$

Grassmann manifold

 $G(n,m) = \{S \le \mathbb{R}^n | \dim(S) = m\}$

=> each point is a subspace of dimension *m*, equivalence class of matrices spanning a given subspace may be represented by point in Stiefel manifold

Interpolating data on manifolds (A): basic principle

Interpolating data on manifolds (B): Matrix Manifolds

...and here numerical linear algebra comes in

Grassmann exponential mapping

Interpolating data on manifolds (B): Matrix Manifolds

...and here numerical linear algebra comes in

Grassmann logarithmic mapping

$$[U] \in G(n,m), \quad U^{T}U = I_{m \times m} :$$

$$\log_{[U_{0}]}([U]) = [T] \in T_{[U_{0}]}G(n,m),$$

$$T = W \tan^{-1}(\Sigma),$$

$$W\Sigma Q^{T} = (I_{n \times n} - U_{0}U_{0}^{T})U(U^{T}U_{0})^{-1}$$

Isometric mapping: manifold to tangent space

Challenges

It cannot be taken for granted that the interpolation's result stays in the tangential space!

>There are interpolation schemes, that are not admissible in this regard!

Tangential vectors are represented by (n × m)-matrices:
 Entry-by-entry interpolation may require millions of interpolation procedures

x = 2 s², y = s+s², z = s-s²

Conclusion

- Let $T^1 = T(q_1), ..., T^k = T(q_k)$ be vectors in a Grassmann tangent space, represented by $n \times m$ matrices
- An admissible interpolator must be of the form

$$T^*(q) = \sum_{l=1}^k f_l(q)T^l$$

- In 1D, e.g. linear interpolation and Lagrange interpolation fulfill this requirement
- In multiple D, radial basis function interpolation is feasible

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

The linear frequency approach to CFD

Underlying assumption

- Flow to be simulated is periodic and approximately harmonic
 - Valid for pitching motions of small amplitude

Flow state vector given by mean flow + time-dependent fluctuations

 $W(t) = \overline{W} + \widetilde{W}(t) \in \mathbb{R}^N$, N = #(flow vars) #(grid points)

Same applies to grid coordinates and grid cell volumes

The linear frequency approach to CFD

First-order Taylor and transition to Fourier space give complex linear system:

$$(DR_W + i\omega\overline{M})\widehat{W} = b_1 + i\omega b_2 \in \mathbb{C}^N$$

(\overline{M} = temporal mean of grid cell volumes, ω = frequency)

The linear frequency approach to CFD

First-order Taylor and transition to Fourier space give complex linear system:

$$(DR_W + i\omega\overline{M})\widehat{W} = b_1 + i\omega b_2 \in \mathbb{C}^N$$

$$A(\omega, Ma)\widehat{W} = b(\omega, Ma) \in \mathbb{C}^N$$

(\overline{M} = temporal mean of grid cell volumes, ω = frequency)

Parametric dependency:

- Mach number determines operating point (mean value) q = Ma
- Frequency varies at each operating point $p = \omega$ $\widehat{W} = \widehat{W}(\omega, Ma) \in \mathbb{C}^N$

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

Offline stage

- Select operating points (**OPs**) q_1, \ldots, q_r
- At each **OP**, compute projection basis U_{q_k} via **snapshot POD**

Offline stage

- Select operating points (**OPs**) q_1, \ldots, q_r
- At each **OP**, compute projection basis U_{q_k} via **snapshot POD**
- For any **OP** q_* of interest, assess the trajectory

$$U: q \mapsto U_q$$

via Grassmann Interpolation to obtain $U_{q_*} = U(q_*) \in \mathbb{C}^{N \times m}$

Semi-offline stage

- At operating point q_* , project full order system onto U_{q_*}
- Exploit **separable** parameter dependency:

$$\begin{aligned} A_{min}(\omega, q_*) \\ &= U_{q_*}^{T} (DR_W + i\omega \overline{M})^T S (DR_W + i\omega \overline{M}) U_{q_*} \\ &= E(q_*) + \omega^2 G(q_*) + i\omega H(q_*) \in \mathbb{C}^{m \times m} \end{aligned}$$

$$\begin{split} b_{min}(\omega, q_*) \\ &= \beta_{min,1}(q_*) + \omega^2 \beta_{min,2}(q_*) + i\omega \beta_{min,3}(q_*) \in \mathbb{C}^m \end{split}$$

Semi-offline stage

- At operating point q_* , project full order system onto U_{q_*}
- Exploit **separable** parameter dependency:

$$\begin{aligned} A_{min}(\omega, q_*) \\ &= U_{q_*}^{T} (DR_W + i\omega \overline{M})^T S (DR_W + i\omega \overline{M}) U_{q_*} \\ &= E(q_*) + \omega^2 G(q_*) + i\omega H(q_*) \in \mathbb{C}^{m \times m} \end{aligned}$$

```
\begin{aligned} b_{min}(\omega, q_*) \\ &= \beta_{min,1}(q_*) + \omega^2 \beta_{min,2}(q_*) + i\omega \beta_{min,3}(q_*) \in \mathbb{C}^m \end{aligned}
```


Semi-offline stage

- At operating point q_* , project full order system onto U_{q_*}
- Exploit **separable** parameter dependency: precompute

$$E(q_*), \qquad G(q_*), \qquad H(q_*) \in \mathbb{C}^{m \times m}$$

$$\beta_{min,1}(q_*), \ \beta_{min,2}(q_*), \ \beta_{min,3}(q_*) \in \mathbb{C}^m$$

Online stage

• For any frequency ω compute reduced system and right hand side $A_{min}(\omega, q_*) = E(q_*) + \omega^2 G(q_*) + i\omega H(q_*) \in \mathbb{C}^{m \times m}$

$$b_{min}(\omega, q_*) = \beta_{min,1}(q_*) + \omega^2 \beta_{min,2}(q_*) + i\omega \beta_{min,3}(q_*)$$

Solve the (m x m) system

$$A_{min}(\omega, q_*)a = b_{min}(\omega, q_*)$$

• Effort: $O(m^3)$ independent of full scale dimension = real time online stage!

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

Grassmann interpolation of ROBs for LFD approach to CFD

NACA64A010 airfoil:

Snapshots in transonic

Regime

2-parameter model:

Computational grid, size: 10,727 points

 $Ma \in \{0.80, 0.802, 0.804, 0.806, 0.808, 0.81\}, \quad \kappa \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$ $\overline{\alpha} \in 0^{\circ}, \text{ Re} \in 7.5 mio \text{ fixed}$

Technische Universität Braunschweig

The "orthogonal residual" approach is non-competitive

The "global 2D POD basis" approach is non-competitive

$$\langle \cdot, \cdot \rangle = (\cdot)^T \overline{M}^{-1}(\cdot)$$

Dec 12, 2013 | Ralf Zimmermann | A parametric ROM for the LFD approach to CFD | Page 39

Technische Universität Braunschweig

 $\langle \cdot, \cdot \rangle = (\cdot)^T \overline{M}^{-1}(\cdot)$

...any "global basis" approach lacks the interpolation property!

Computational effort

- **Full order dimension:** 5*2*#(grid points) = 107,270
- Reduced order dimension: 5(complex) = 10 (real) at each OP

Timing results						
Offline						
	Mean flow	Full-order LFD	Complex POD	total		
CPU time	~300s	5*35s	~0.26s	~475s (7min)		
Semi-offline						
	Grassmann interp.	Reading system	Order reduction			
CPU time	~0.66s	~10.0s	~0.15s	~11s		
Online						
	Set up ROM	Solve ROM	Build flow state			
CPU time	Below measure acc.	Below measure	0.01s	~0.01s		
Sallage Taskaisska						

Computational effort

- **Full order dimension:** 5*2*#(grid points) = 107,270
- Reduced order dimension: 5(complex) = 10 (real) at each OP

Timing results						
Offline						
	Mean flow	Full-order LFD	Complex POD	total		
CPU time	~300s	5 [*] 35s	~0.26s	~475s (7min)		
Semi-offline						
	Grassmann interp.	Reading system	Order reduction			
CPU time	~0.66s	~10.0s	~0.15s	~11s		
Online						
	Set up ROM	Solve ROM	Build flow state			
CPU time	Below measure acc.	Below measure	0.01s	~0.01s		
Technische						
Universität Braunschweig						

A parametric ROM for the LFD approach to CFD

- Motivation: Parametric reduced-order models
- Interpolating data on manifolds
- The Linear Frequency Domain (LFD) approach to CFD
- Offline, semi-offline and online ROM stages
- A practical example
- Conclusions & Outlook

Conclusions & Outlook

- Parametric ROM for LFD solver introduced
- Parameters of major interest (Mach, frequency) allow for a natural division into operation points and examination parameters
- **ROM** splits into **three** stages
 - Offline

(provide snapshot data, compute projection bases)

Semi-Offline

(precompute frequency-independent system parts,

separable parameter dependency renders an interpolation of reduced systems as in ^[4,5] unnecessary)

Online

(solve reduced system, real-time performance)

^[4] Degroote J. et al., 2010

^[5] Panzer, H. et al., 2010

Conclusions & Outlook

- Metric proves to be essential in order to obtain good results (requires minor technical modifications, not shown here)
- Minimum residual approach outperforms orthogonal residual approach
- Reduced global basis approach gives satisfactory results, but underperforms when compared to Grassmann interpolation, (Necessarily lacks interpolation property)
- Next step: geometrically optimized reduced order basis

Thank you for your attention!

Radial basis functions (RBF) in a nutshell

- Given:
 - Sample points $p^1, ..., p^k \in \mathbb{R}^d$
 - Sample values $y_1 = y(p^1), ..., y_k = y(p^k) \in R$

Application to Grassmann tangent vectors

- Given:
 - Sample points $p^1,...,p^k \in R^d$
 - Sample values $T^{1} = T(p^{1}), ..., T^{k} = T(p^{k}) \in R^{n \times m}$

Application to Grassmann tangent vectors

RBF interpolator:

$$\left(T_{i,j}^{*}(p)\right)_{i\leq n,j\leq m} = \left((T_{i,j}^{1},...,T_{i,j}^{k}) \Psi^{-1} \psi(p)\right)_{i\leq n,j\leq m}$$

$$= \left((T_{:,j}^1, \dots, T_{:,j}^k) \Psi^{-1} \psi(p) \right)_{j \le m}$$

$$= \left(\sum_{l=1}^{k} (\Psi^{-1} \, \psi(p))_{l} T_{:,1}^{l}, \dots, \sum_{l=1}^{k} (\Psi^{-1} \, \psi(p))_{l} T_{:,m}^{l} \right)$$

$$= \sum_{l=1}^{k} \left(e_{l}^{T} \Psi^{-1} \psi(p) \right) T^{l} = \sum_{l=1}^{k} f_{l}(p) T^{l}$$

- Conclusion
 - RBF interpolation is admissible (so is e.g. linear interpolation)
 - ➤ Entry-by-entry RBF interpolation tangent matrices ⇔ interpolating coefficients of linear expansion
 - Associated computational effort:

nm interpolation procedures, each for *k* sample points

- VS.
- *k* interpolation procedures, each for *k* sample points

