Implicit-IMOR method for linear Differential Algebraic Equations

Wil Schilders, Nicodemus Banagaaya, Giuseppe Ali

ModRed2013 Magdeburg, December 11-13, 2013

Mathematics for Industrial Innovation Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Work of PhD student Nicodemus Banagaaya

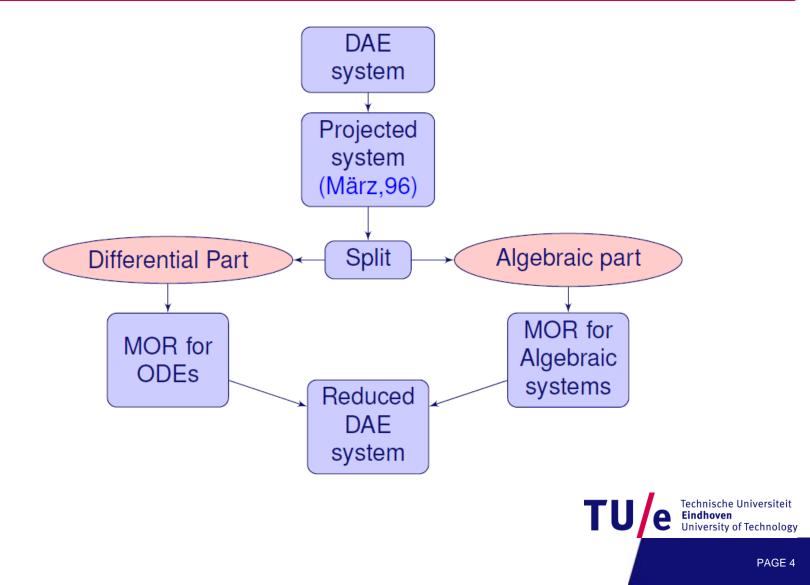


Eindhoven, Magdeburg: dull,

foggy, 0-5 centigrade

Introduction -Review of IMOR method

General idea of Index-aware Model Order Reduction (IMOR)



Differential algebraic systems

 $\mathbf{E}x' = \mathbf{A}x + \mathbf{B}u, \quad x(0) = x_0,$

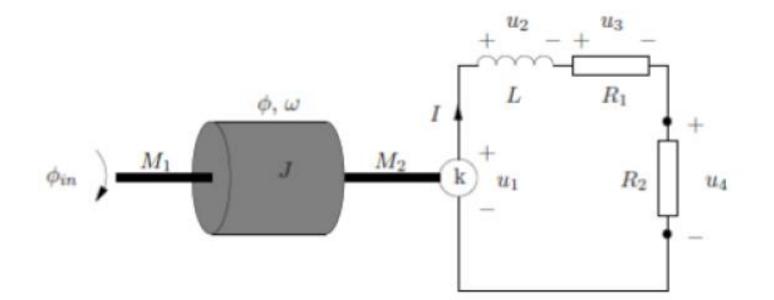
with **E** singular.

Assumptions:

- Solvability: det $(\lambda \mathbf{E} \mathbf{A}) \neq 0$ for some $\lambda \in \mathbb{C}$.
- Input vector: u must be smooth enough.
- Initial conditions: $x(0) = x_0$ must be consistent.

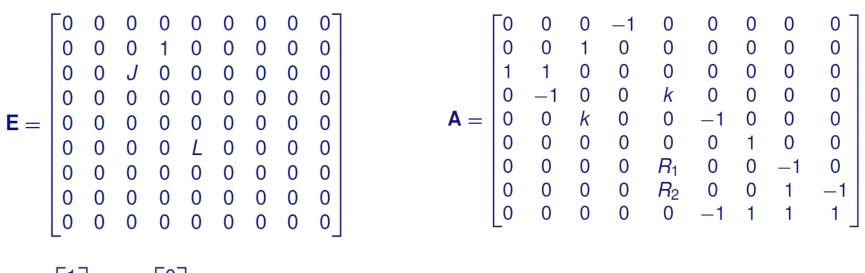
Why did we develop "IMOR"?

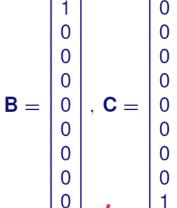
Model of a generator

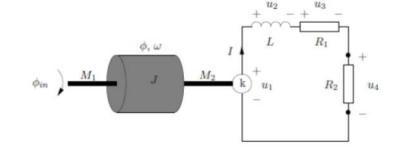


Model of a generator

Find
$$\mathbf{x} = \begin{bmatrix} M_1 & M_2 & \omega & \phi & I & u_1 & u_2 & u_3 & u_4 \end{bmatrix}^T$$







e Technische Universiteit Eindhoven University of Technology

PRIMA reduced order generator model

System is solvable: det $(\lambda \mathbf{E} - \mathbf{A}) = -R_1 - R_2 - \lambda L \neq 0 \forall \lambda \in \mathbb{C}$. Setting $J = 1, k = -1, R_1 = 1, R_2 = 1, L = 1$.

PRIMA reduced-order model $\mathbf{E}_{r} = \mathbf{V}_{r}^{T} \mathbf{E} \mathbf{V}_{r} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -0.2774 & 0.4615 & -0.1155 & 0.0665 \\ -0.0595 & -0.2227 & 0.0557 & -0.0321 \\ -0.2637 & -0.1197 & 0.0299 & -0.0172 \end{bmatrix},$ $\mathbf{A}_{r} = \mathbf{V}_{r}^{T} \mathbf{A} \mathbf{V}_{r} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -0.2774 & 0.1538 & -0.7175 & 0 \\ -0.8326 & 0.0330 & 0.2944 & -0.0278 \\ 0.4795 & 0.1463 & 0.0962 & -0.0483 \end{bmatrix},$ $\mathbf{B}_r = \mathbf{V}_r^T \mathbf{B} = \begin{bmatrix} 0 & 0.2774 & 0.8326 & -0.4795 \end{bmatrix}^T$ and $\mathbf{C}_r = \mathbf{V}_r^T \mathbf{C} = \begin{bmatrix} 0 & 0.2774 & 0.0595 & 0.2637 \end{bmatrix}^T$.

 $det(\lambda \mathbf{E}_r - \mathbf{A}_r) = 0 \Rightarrow PRIMA \text{ model is unsolvable.}$

January 2010 PAGE 8

Technische Universiteit **Eindhoven** University of Technology

TU/e

Index-aware MOR needed

- PRIMA may run into problems for higher index systems
- Besides, we feel that it is always good to mimic the structure and properties of the original problem
- Mimetic methods are gaining popularity, but have been developed for a long time:
 - Exponentially fitted schemes for singularly perturbed and stiff differential equations
 - Modified ICCG method for iterative solution of linear systems
 - MOR for port-Hamiltonian systems
- As the basis for our IMOR method, we use a method developed in the 1990's

11 October 2011 PAGE 9

März decoupling procedure

Tractability index

Set $\mathbf{E}_0 := \mathbf{E}$, $\mathbf{A}_0 := \mathbf{A}$, then

$$\mathbf{E}_{j+1} = \mathbf{E}_j - \mathbf{A}_j \mathbf{Q}_j, \quad \mathbf{A}_{j+1} := \mathbf{A}_j \mathbf{P}_j, \quad j \ge 0,$$

where we choose projector \mathbf{Q}_j such that $\text{Im}\mathbf{Q}_j = \text{Ker}\mathbf{E}_j$, $\mathbf{P}_j = \mathbf{I} - \mathbf{Q}_j$. $\exists \mu$ such that $\det(\mathbf{E}_{\mu}) \neq 0$ and all $\det(\mathbf{E}_j) = 0$ for all $0 \leq j < \mu$. μ =tractability index.

January 2010

PAGE 10

März decoupling procedure

Projected DAE system

$$\mathbf{P}_{\mu-1}\cdots\mathbf{P}_{0}\mathbf{x}'+\mathbf{Q}_{0}\mathbf{x}+\cdots+\mathbf{Q}_{\mu-1}\mathbf{x}=\mathbf{E}_{\mu}^{-1}\left(\mathbf{A}_{\mu}\mathbf{x}+\mathbf{B}\mathbf{u}\right),$$

with constraint: $\mathbf{Q}_{j}\mathbf{Q}_{i} = 0, j > i$, for $\mu > 1$.

Modification of decoupling procedure

Basic idea: Rank-Nullity theorem.

Index 1 systems

Let
$$n_p = \text{rank}(\mathbf{E}_0), k_0 = n - n_p$$
. $(\mathbf{p}, \mathbf{q}) = (\mathbf{p}_1, \dots, \mathbf{p}_{n_p}, \mathbf{q}_1, \dots, \mathbf{q}_{k_0}) \in \mathbb{R}^n$.
 $(\mathbf{p}, \mathbf{q})^{-1} = (\mathbf{p}^*, \mathbf{q}^*)^T$, where $\mathbf{q}^{*T} \in \mathbb{R}^{k_0, n}$ and $\mathbf{p}^{*T} \in \mathbb{R}^{n_p, n}$.

Modified index-1 system

$$\mathbf{E}\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y} = \mathbf{C}^T \mathbf{x}.$$
$$\boldsymbol{\xi}'_p = \mathbf{A}_p \boldsymbol{\xi}_p + \mathbf{B}_p \mathbf{u}, \ \boldsymbol{\xi}_p(0) = \mathbf{p}^{*T} \mathbf{x}(0),$$
$$\boldsymbol{\xi}_{q,0} = \mathbf{A}_{q,0} \boldsymbol{\xi}_p + \mathbf{B}_{q,0} \mathbf{u},$$
$$\mathbf{y} = \mathbf{C}_p^T \boldsymbol{\xi}_p + \mathbf{C}_{q,0}^T \boldsymbol{\xi}_{q,0}.$$

Output-Transfer function

$$\mathbf{Y}(s) = \left[\mathbf{H}_{\rho}(s) + \mathbf{H}_{q,0}(s)\right] \mathbf{U}(s) \Rightarrow \mathbf{Y}(s) = \mathbf{H}(s)\mathbf{U}(s).$$

IMOR-1 method – descriptor form

$$\underbrace{\begin{bmatrix} \mathbf{I}_{n_{p}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{E}}} \begin{bmatrix} \xi_{p} \\ \xi_{q,0} \end{bmatrix}' = \underbrace{\begin{bmatrix} \mathbf{A}_{p} & \mathbf{0} \\ \mathbf{A}_{q,0} & -\mathbf{I}_{k_{0}} \end{bmatrix}}_{\tilde{\mathbf{A}}} \begin{bmatrix} \xi_{p} \\ \xi_{q,0} \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B}_{p} \\ \mathbf{B}_{q,0} \end{bmatrix}}_{\tilde{\mathbf{B}}} \mathbf{u},$$
$$\mathbf{y} = \underbrace{\begin{bmatrix} \mathbf{C}_{p}^{T} & \mathbf{C}_{q,0}^{T} \end{bmatrix}}_{\tilde{\mathbf{C}}^{T}} \begin{bmatrix} \xi_{p} \\ \xi_{q,0} \end{bmatrix}.$$

Approximate solutions of IMOR:

$$\begin{bmatrix} \xi_{p} \\ \xi_{q,0} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{p_{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{q_{\tau_{0}}} \end{bmatrix} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}, \quad \mathbf{V}_{q_{\tau_{0}}} = \operatorname{orth}(\operatorname{span}\{\mathbf{B}_{q,0}, \mathbf{A}_{q,0}\mathbf{V}_{p_{r}}\})$$

IMOR-1 method – reduced order form

$$\underbrace{\begin{bmatrix} \mathbf{I}_{n_{p_{r}}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{E}}_{r}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}^{'} = \underbrace{\begin{bmatrix} \mathbf{A}_{p_{r}} & \mathbf{0} \\ \mathbf{A}_{q_{\tau_{0}}} & -\mathbf{I}_{\tau_{0}} \end{bmatrix}}_{\tilde{\mathbf{A}}_{r}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B}_{p_{r}} \\ \mathbf{B}_{q_{\tau_{0}}} \end{bmatrix}}_{\tilde{\mathbf{B}}_{r}} \mathbf{U},$$
$$\mathbf{y}_{r} = \underbrace{\begin{bmatrix} \mathbf{C}_{p_{r}}^{T} & \mathbf{C}_{q_{\tau_{0}}}^{T} \end{bmatrix}}_{\tilde{\mathbf{C}}_{r}^{T}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}.$$

Modified index-2 system

$$\mathbf{E}\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ \mathbf{x}(0) = \mathbf{x}_{0}$$
$$\mathbf{y} = \mathbf{C}^{T}\mathbf{x}.$$
$$\xi'_{p} = \mathbf{A}_{p}\xi_{p} + \mathbf{B}_{p}\mathbf{u}, \ \xi_{p}(0) = \mathbf{z}_{p}^{*T}\mathbf{p}^{*T}\mathbf{x}(0)$$
$$\xi_{q,1} = \mathbf{A}_{q,1}\xi_{p} + \mathbf{B}_{q,1}\mathbf{u},$$
$$\xi_{q,0} = \mathbf{A}_{q,0}\xi_{p} + \mathbf{B}_{q,0}\mathbf{u} + \mathbf{A}_{q,01}\xi'_{q,1},$$
$$\mathbf{y} = \mathbf{C}_{p}^{T}\xi_{p} + \mathbf{C}_{q,1}^{T}\xi_{q,1} + \mathbf{C}_{q,0}^{T}\xi_{q,0}.$$

TUe Technische Universiteit Eindhoven University of Technology

Modified index-2 system

$$\xi_{\rho}^{'} = \mathbf{A}_{\rho}\xi_{\rho} + \mathbf{B}_{\rho}\mathbf{u}, \quad \xi_{\rho}(0) = \mathbf{z}_{\rho}^{*T}\mathbf{p}^{*T}\mathbf{x}(0),$$

 $\begin{aligned} \xi_{q,1} &= \mathbf{A}_{q,1}\xi_{p} + \mathbf{B}_{q,1}\mathbf{u}, \\ \xi_{q,0} &= \mathbf{A}_{q,0}\xi_{p} + \mathbf{B}_{q,0}\mathbf{u} + \mathbf{A}_{q,01}\xi_{q,1}^{'}, \end{aligned}$

$$\mathbf{y} = \mathbf{C}_{p}^{T} \xi_{p} + \mathbf{C}_{q,1}^{T} \xi_{q,1} + \mathbf{C}_{q,0}^{T} \xi_{q,0}.$$

Output-Transfer function

 $\mathbf{Y}(s) = \left[\mathbf{H}_{\rho}(s) + \mathbf{H}_{q,1}(s) + \mathbf{H}_{q,0}(s)\right] \mathbf{U}(s) - \mathbf{C}_{q,0}^{T} \mathbf{A}_{q,01} \mathbf{B}_{q,1} \mathbf{u}(0),$

If $\mathbf{A}_{q,01}\mathbf{B}_{q,1} = 0 \Rightarrow \mathbf{Y}(s) = \mathbf{H}(s)\mathbf{U}(s)$. Conventional MOR methods fail if $\mathbf{H}_{q,1} \neq 0$

Technische Universiteit Eindhoven University of Technology

January 2010 PAGE 17

IMOR-2 method – descriptor form

$$\underbrace{\begin{bmatrix} \mathbf{I}_{np} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{A}_{q,01} & \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{E}}} \begin{bmatrix} \xi_{p} \\ \xi_{q,1} \\ \xi_{q,0} \end{bmatrix}^{'} = \underbrace{\begin{bmatrix} \mathbf{A}_{p} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{q,1} & -\mathbf{I}_{k_{1}} & \mathbf{0} \\ \mathbf{A}_{q,0} & \mathbf{0} & -\mathbf{I}_{k_{0}} \end{bmatrix}}_{\tilde{\mathbf{A}}} \begin{bmatrix} \xi_{p} \\ \xi_{q,0} \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B}_{p} \\ \mathbf{B}_{q,1} \\ \mathbf{B}_{q,0} \end{bmatrix}}_{\tilde{\mathbf{B}}} u,$$

$$\mathbf{y} = \underbrace{\begin{bmatrix} \mathbf{C}_{p}^{T} & \mathbf{C}_{q,1}^{T} & \mathbf{C}_{q,0}^{T} \\ \tilde{\mathbf{C}}^{T} \end{bmatrix}}_{\tilde{\mathbf{C}}^{T}} \begin{bmatrix} \xi_{p} \\ \xi_{q,1} \\ \xi_{q,0} \end{bmatrix}.$$

 $V_{q_{\tau_1}}$ and $V_{q_{\tau_0}}$ are orthonormal basis matrix of subspaces:

$$\mathcal{V}_{q,1} = \operatorname{span}\{\mathbf{B}_{q,1}, \mathbf{A}_{q,1} V_{p_r}\},\$$

$$\mathcal{V}_{q,0} = \operatorname{span}\{\mathbf{B}_{q,0}, \mathbf{A}_{q,01} V_{q_{\tau_1}}, \mathbf{A}_{q,0} V_{p_r}\}.$$

$$\begin{bmatrix} \xi_p \\ \xi_{q,1} \\ \xi_{q,0} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{p_r} & 0 & 0 \\ 0 & \mathbf{V}_{q_{\tau_1}} & 0 \\ 0 & 0 & \mathbf{V}_{q_{\tau_0}} \end{bmatrix} \begin{bmatrix} \xi_{p_r} \\ \xi_{q_{\tau_1}} \\ \xi_{q_{\tau_0}} \end{bmatrix}$$

TU/e Technische Universiteit Eindhoven University of Technology

IMOR-2 method – reduced order form

$$\underbrace{\begin{bmatrix} \mathbf{I}_{n_{r}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{A}_{q_{\tau_{01}}} & \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{E}}_{r}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{1}}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}^{\prime} = \underbrace{\begin{bmatrix} \mathbf{A}_{p_{r}} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{q_{\tau_{1}}} & -\mathbf{I}_{\tau_{1}} & \mathbf{0} \\ \mathbf{A}_{q_{\tau_{0}}} & \mathbf{0} & -\mathbf{I}_{\tau_{0}} \end{bmatrix}}_{\tilde{\mathbf{A}}_{r}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}^{\prime} + \underbrace{\begin{bmatrix} \mathbf{B}_{p_{r}} \\ \mathbf{B}_{q_{\tau_{1}}} \\ \mathbf{B}_{q_{\tau_{0}}} \end{bmatrix}}_{\tilde{\mathbf{B}}_{r}} U,$$
$$\mathbf{y}_{r} = \underbrace{\begin{bmatrix} \mathbf{C}_{p_{r}}^{T} & \mathbf{C}_{q_{\tau_{1}}}^{T} & \mathbf{C}_{q_{\tau_{0}}}^{T} \end{bmatrix}}_{\tilde{\mathbf{C}}_{r}^{T}} \begin{bmatrix} \xi_{p_{r}} \\ \xi_{q_{\tau_{0}}} \end{bmatrix}}.$$

January 2010 PAGE 19

Why a new method IIMOR?

- The IMOR method leads to algebraic systems that are **explicit** in the algebraic variables
- This is due to the way the decoupling method is described/constructed
- Not attractive in practice: if we start with a large resistor network (purely algebraic), IMOR would need the inverse of the system matrix
- Question: can we develop a projection method that leads to implicit algebraic systems?
 - so that we can use the methods we developed for the reduction of purely algebraic systems

Januarv 2010

PAGE 20

The Implicit IMOR method

PAGE 21

Delaying the inversion in the decoupling

Original DAE problem

$$\mathbf{E}\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \ \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y} = \mathbf{C}^T \mathbf{x}.$$

Projected DAE system with no inversion

$$\mathbf{E}_{\mu}\left[\mathbf{P}_{\mu-1}\cdots\mathbf{P}_{0}\mathbf{x}'+\mathbf{Q}_{0}\mathbf{x}+\cdots+\mathbf{Q}_{\mu-1}\mathbf{x}\right]=\mathbf{A}_{\mu}\mathbf{x}+\mathbf{B}\mathbf{u},$$

with constraint: $\mathbf{Q}_{j}\mathbf{Q}_{i} = 0, j > i$, for $\mu > 1$.

January 2010 PAGE 22

Implicit index-1 decoupled system

$$\mathbf{E}\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},$$

$$\mathbf{y} = \mathbf{C}^{T}\mathbf{x}.$$

$$\mathbf{E}_{\boldsymbol{\rho}}\boldsymbol{\xi}_{\boldsymbol{\rho}}' = \mathbf{A}_{\boldsymbol{\rho}}\boldsymbol{\xi}_{\boldsymbol{\rho}} + \mathbf{B}_{\boldsymbol{\rho}}\mathbf{u},$$

$$\mathbf{E}_{\boldsymbol{q},0}\boldsymbol{\xi}_{\boldsymbol{q},0} = \mathbf{A}_{\boldsymbol{q},0}\boldsymbol{\xi}_{\boldsymbol{\rho}} + \mathbf{B}_{\boldsymbol{q},0}\mathbf{u},$$

$$\mathbf{y} = \mathbf{C}_{\boldsymbol{\rho}}^{T}\boldsymbol{\xi}_{\boldsymbol{\rho}} + \mathbf{C}_{\boldsymbol{q},0}^{T}\boldsymbol{\xi}_{\boldsymbol{q},0}.$$

where $\mathbf{E}_{\rho} = \hat{\mathbf{p}}^{T} \mathbf{E} \mathbf{p}$, $\mathbf{A}_{\rho} = \hat{\mathbf{p}}^{T} \mathbf{A} \mathbf{p}$, $\mathbf{B}_{\rho} = \hat{\mathbf{p}}^{T} \mathbf{B}$, $\mathbf{E}_{q,0} = -\hat{\mathbf{q}}^{T} \mathbf{A} \mathbf{q}$, $\mathbf{A}_{q,0} = \hat{\mathbf{q}}^{T} \mathbf{A} \mathbf{p}$, $\mathbf{B}_{q,0} = \hat{\mathbf{q}}^{T} \mathbf{B}$ and $\operatorname{span}(\hat{\mathbf{p}}) = \operatorname{Ker} \mathbf{q}^{T} \mathbf{A}^{T}$, $\operatorname{span}(\hat{\mathbf{q}}) = \operatorname{Ker} \mathbf{E}^{T}$. We note that $\hat{\mathbf{q}} = \mathbf{q}$ if \mathbf{E} is symmetric, \mathbf{E}_{ρ} and $\mathbf{E}_{q,0}$ are non-singular.

University of Technology

Descriptor form

Descriptor form

$$\underbrace{\begin{bmatrix} \mathbf{E}_{\rho} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\tilde{\mathbf{E}}} \begin{bmatrix} \xi_{\rho} \\ \xi_{q,0} \end{bmatrix}' = \underbrace{\begin{bmatrix} \mathbf{A}_{\rho} & \mathbf{0} \\ \mathbf{A}_{q,0} & -\mathbf{E}_{q,0} \end{bmatrix}}_{\tilde{\mathbf{A}}} \begin{bmatrix} \xi_{\rho} \\ \xi_{q,0} \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{B}_{\rho} \\ \mathbf{B}_{q,0} \end{bmatrix}}_{\tilde{\mathbf{B}}} \mathbf{u},$$
$$\mathbf{y} = \underbrace{\begin{bmatrix} \mathbf{C}_{\rho}^{T} & \mathbf{C}_{q,0}^{T} \end{bmatrix}}_{\tilde{\mathbf{C}}^{T}} \begin{bmatrix} \xi_{\rho} \\ \xi_{q,0} \end{bmatrix}.$$

Implicit-IMOR reduced order model

 $\tilde{\mathbf{E}}_r = \mathbf{W}^T \tilde{\mathbf{E}} \mathbf{V}, \ \tilde{\mathbf{A}}_r = \mathbf{W}^T \tilde{\mathbf{A}} \mathbf{V}, \ \tilde{\mathbf{B}}_r = \mathbf{W}^T \tilde{\mathbf{B}} \ \text{and} \ \tilde{\mathbf{C}}_r = \mathbf{V}^T \tilde{\mathbf{C}}, \ \text{where}$

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_{p_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_{q_{\tau_0}} \end{bmatrix}, \quad \mathbf{W} = \begin{bmatrix} \mathbf{V}_{p_r} & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_{q_{\tau_0}} \end{bmatrix}$$

$$\begin{split} \mathbf{W}_{q_{\tau_0}} &= \operatorname{orth}(\operatorname{span}\{\mathbf{B}_{q,0}, \mathbf{A}_{q,0}\mathbf{V}_{p_r}\}), \\ \mathbf{V}_{q_{\tau_0}} &= \operatorname{orth}(\operatorname{span}\{\mathbf{E}_{q,0}^{-1}\mathbf{B}_{q,0}, \mathbf{E}_{q,0}^{-1}\mathbf{A}_{q,0}\mathbf{V}_{p_r}\}) \end{split}$$

Construction of bases for projector

The numerical computation of these projectors and their respective bases is feasible and can be done using the sparse LU decomposition- base routine called LUQ. This routine decomposes a singular sparse matrix E_0 , into

$$\mathbf{E}_0^T = \mathbf{L}_0 \begin{bmatrix} \mathbf{U}_0 & 0\\ 0 & 0 \end{bmatrix} \mathbf{R}_0$$

where \mathbf{L}_0 , $\mathbf{R}_0 \in \mathbb{R}^{n \times n}$ are nonsingular matrices, $\mathbf{U}_0 \in \mathbb{R}^{r \times r}$ is a nonsingular upper triangular matrix, *r* is the rank \mathbf{E}_0 .

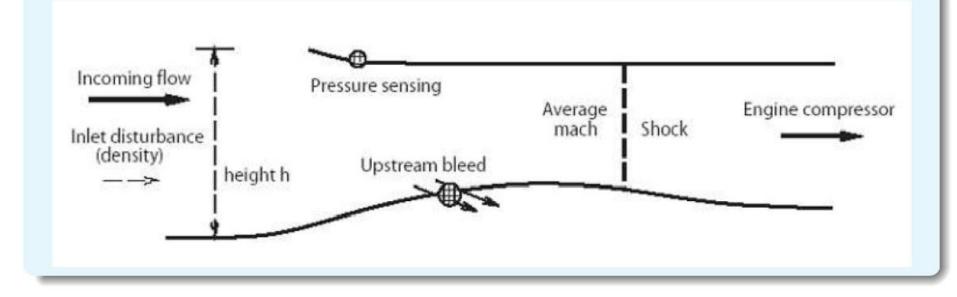
¹P. Kowal (2006, May), Null space of a sparse Matrix. MATLAB Central, http://www.mathworks.co.uk/matlabcentral/fileexchange/11120.

¹Z. Zhang, N. Wong, An Efficient Projector-Based Passivity Test fot Descriptor Systems, IEEE Trans. On Computer Aided Design of Integrated Circuits And Systems 29(2010) pp 1203-1214.

Numerical results for IIMOR method

PAGE 26

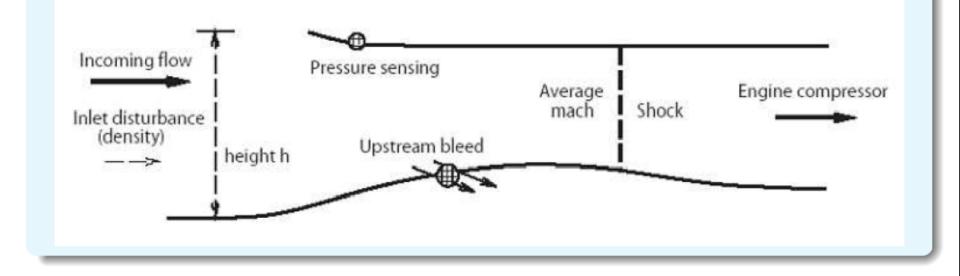
Active Control of a Supersonic Engine Inlet (index-1 problem)



¹G. Lassaux and K. Willcox, Model reduction of an actively controlled supersonic diffuser, In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, Dimension Reduction of Large- Scale Systems, volume 45 of Lecture Notes in Computational Science and Engineering, pages 357-361. Springer-Verlag, Berlin, Heidelberg, Germany, 2005.

Applications

Active Control of a Supersonic Engine Inlet (index-1 problem)



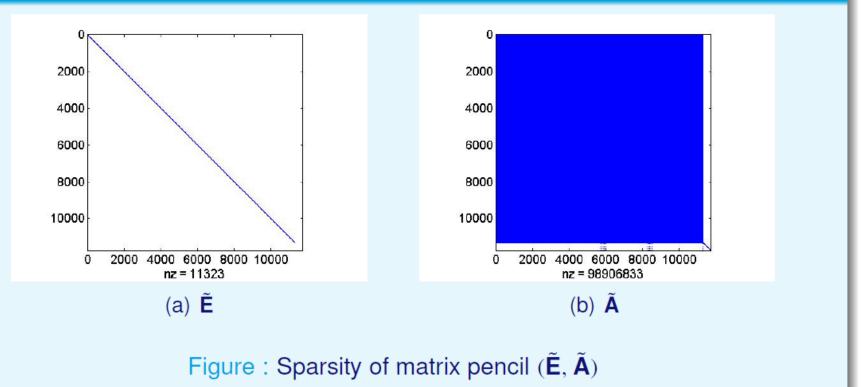
$$\mathbf{E} = \begin{bmatrix} \mathbf{E}_{11} & \mathbf{E}_{12} \\ 0 & 0 \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \end{bmatrix}.$$

¹G. Lassaux and K. Willcox, Model reduction of an actively controlled supersonic diffuser, In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, Dimension Reduction of Large- Scale Systems, volume 45 of Lecture Notes in Computational Science and Engineering, pages 357-361. Springer-Verlag, Berlin, Heidelberg, Germany, 2005.

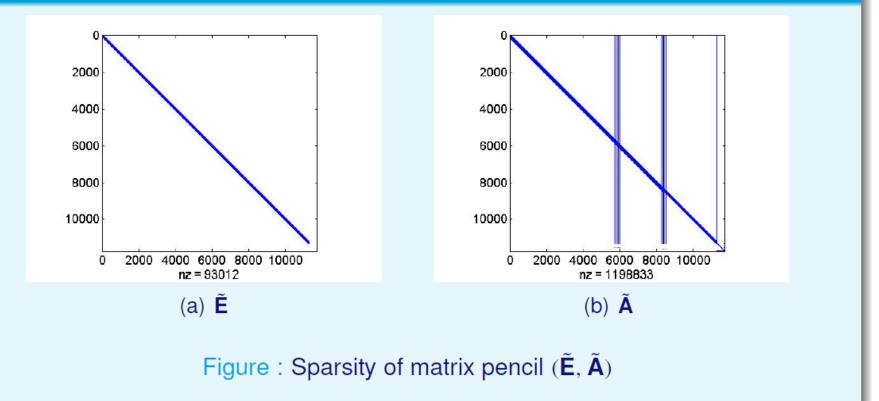
Table : Dimension of decoupled system (n=11730)

Models	Dimension	
	# differential eqns	# Algebraic eqns
Explicit Decoupled Model	11323	407
Implicit Decoupled Model	11323	407

Explict Decoupled Model



Implicit Decoupled Model



Reduced-order model

Models	Dimension		
	# differential eqns	# Algebraic eqns	
Original Model	11323	407	
IMOR/IIMOR reduced Model	15	16	

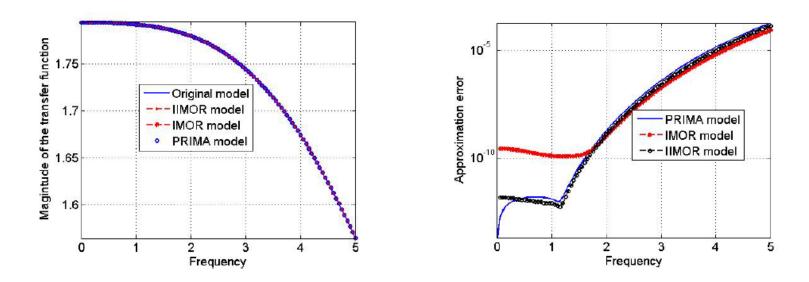


Figure : Transfer function from bleed actuation to average throat Mach number for supersonic diffuser.

Reduced-order model

Models	Dimension		
	# differential eqns	# Algebraic eqns	
Original Model	11323	407	
IMOR/IIMOR reduced Model	15	16	

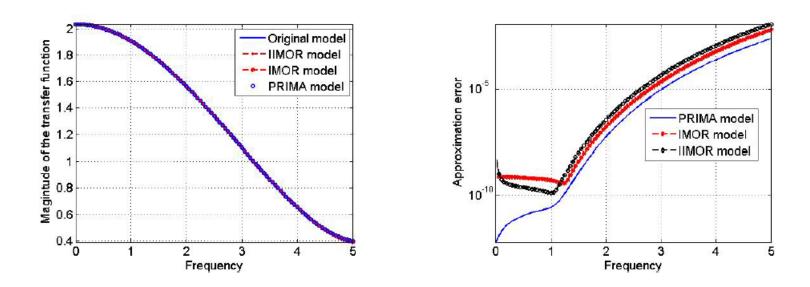
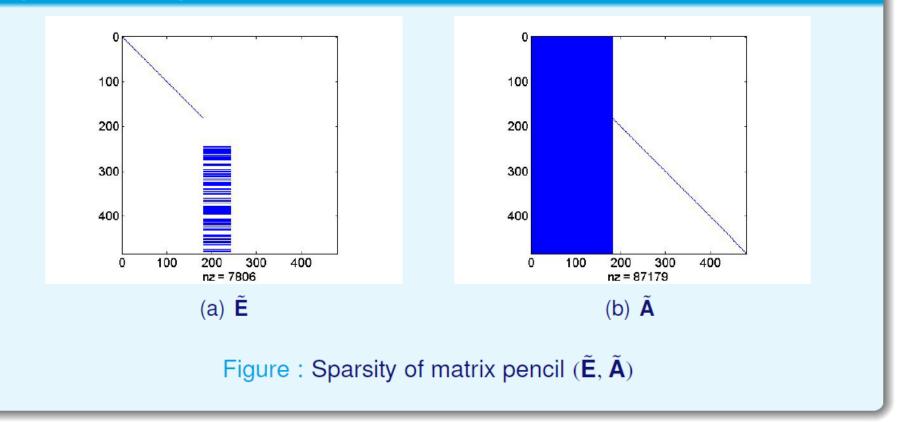


Figure : Transfer function from incoming flow disturbance to average throat Mach number for supersonic diffuser.

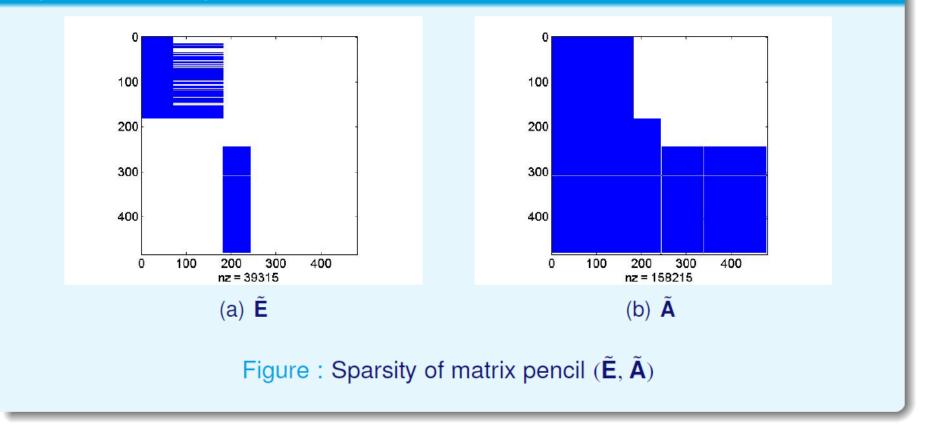
Table : Dimension of decoupled system (n=480)

Models	Dimension		
	# differential eqns	# 1st Algebraic eqns	# 2nd Algebraic eqns
Explicit Decoupled Model	181	61	238
Implicit Decoupled Model	181	61	238

Explict Decoupled Model



Implicit Decoupled Model



Models	Dimension		
	# differential eqns	# 1st Algebraic eqns	# 2nd Alegbraic eqns
Original Model	181	61	238
IMOR/IIMOR reduced Model	100	2	100

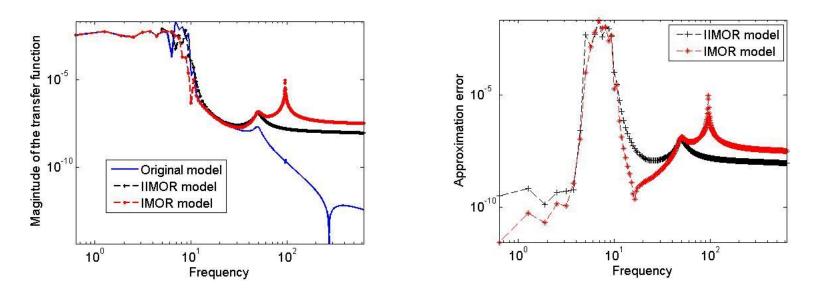


Figure : Comparison of the transfer functions.

Models	Dimension		
	# differential eqns	# 1st Algebraic eqns	# 2nd Alegbraic eqns
Original Model	181	61	238
IMOR/IIMOR reduced Model	100	2	100

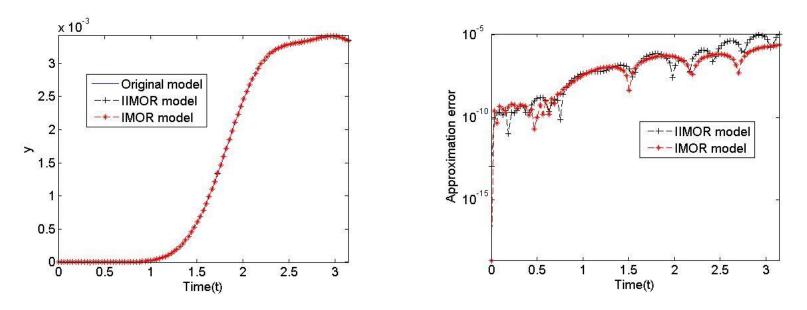


Figure : Comparison of the output solution, u(t) = sin(t).

Other MOR methods which also first split the DAE into differential and algebraic parts:

- Serkan Gugercin, Tatjana Stykel, and Sarah Wyatt, Model Reduction of Descriptor Systems by Interpolatory Projection Methods (2013).
- M. Heinkenschloss, D.C. Sorensen, K. Sun. Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30(2):1038-1063, 2008.
- F. D. Freitas, N. Martins, S. L. Varrichio, J. Rommes and F. C. Véliz, Reduced-Order Tranfer Matrices From Network Descriptor Models of Electric Power Grids, IEEE transactions on power systems, 26 (2011), pp. 1905–1919.

Conclusions

Conclusions

- Both decoupling procedure preserves the mathematical properties of the DAE system.
- Implicit-MOR is computationally cheaper and sparser than IMOR method.
- The decoupling techniques developed can also be used to solve DAEs in a robust manner, different from existing methods.

Needed (future work):

Use the methods we developed for purely algebraic systems also in this IIMOR context

(cf paper by Schilders, Marcotte, Shontz in COMPEL, 2012)

January 2010 PAGE 41

References

- W. H. A. Schilders, H. A. Van der Vorst and J. Rommes Model Order Reduction: Theory, Research Aspects and Applications Springer-Verlag, Berlin Heidelberg, 2008.
- G. Alì, N. Banagaaya, W. H. A. Schilders and C. Tischendorf Implicit-IMOR method for index-1 and index-2 linear constant DAEs, In preparation.
- N. Banagaaya and W. H. A. Schilders Simulation of electromagnetic descriptor models using projectors, Journal of Mathematics in Industry 2013, 3:1.

