

A survey about moment matching model order reduction in computational electromagnetism

Institut Computational Mathematics, AG Numerik

André Bodendiek, Matthias Bollhöfer, 11th December 2013

Acknowledgement

SPONSORED BY THE

Federal Ministry of Education and Research

- Time period: 1st October 2010 30th September 2013.
- Six different institutes in Germany.
- Four industrial partners. (CST, X-FAB, ...)

Maxwell's equations

$$\begin{pmatrix} M_{\epsilon} & 0\\ 0 & M_{\mu} \end{pmatrix} \dot{x}(t) = \begin{pmatrix} -M_{\sigma} & C_{H}\\ -C_{E} & 0 \end{pmatrix} x(t) + \mathcal{B}u(t), \ y(t) = \mathcal{C}x(t)$$

- Block structure with respect to electric and magnetic field strength.
- Discretization leads to high-dimensional model problem.
- For model order reduction.
 - Structure-preserving reduced order model.
 - · Efficient solution technique for shifted linear systems.

Maxwell's equations

$$\begin{pmatrix} M_{\epsilon} & 0\\ 0 & M_{\mu} \end{pmatrix} \dot{x}(t) = \begin{pmatrix} -M_{\sigma} & C_{H}\\ -C_{E} & 0 \end{pmatrix} x(t) + \mathcal{B}u(t), \ y(t) = \mathcal{C}x(t)$$

- Block structure with respect to electric and magnetic field strength.
- Discretization leads to high-dimensional model problem.
- For model order reduction.
 - Structure-preserving reduced order model.
 - Efficient solution technique for shifted linear systems.

Outline

- Moment matching methods in model order reduction
- Efficient offline-stage of moment matching methods
 - Modified adaptive-order rational Arnoldi method
 - Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Outline

Moment matching methods in model order reduction

- Efficient offline-stage of moment matching methods
 - Modified adaptive-order rational Arnoldi method
 - Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Moment matching in a nutshell

Taylor expansion Let $\mathcal{H}(s) = \sum_{j=0}^{\infty} C X^{(j)}(s_i)(s-s_i)^j$ denote the transfer function at $s_i \in \mathbb{C}$, where $X^{(j)}(s_i) = \left[-(s_i \mathcal{E} - \mathcal{A})^{-1} \mathcal{E}\right]^{j-1} (s_i \mathcal{E} - \mathcal{A})^{-1} \mathcal{B}.$

Moment matching in a nutshell

Moment matching in a nutshell

Padé approximation

Galerkin projection leads to $\mathcal{H}^{(j)}(\mathbf{s}_i) = \tilde{\mathcal{H}}^{(j)}(\mathbf{s}_i)$ for all $j = 0, \dots, j_i - 1$.

Let $\mathbf{Y}^{(j)}(\mathbf{s}_i) \equiv \mathbb{C}\mathbf{X}^{(j)}(\mathbf{s}_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Let $\mathbf{Y}^{(j)}(\mathbf{s}_i) \equiv \mathbb{C}\mathbf{X}^{(j)}(\mathbf{s}_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_l$.

Let $\mathbf{Y}^{(j)}(\mathbf{s}_i) \equiv \mathfrak{C}\mathbf{X}^{(j)}(\mathbf{s}_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Let $Y^{(j)}(s_i) \equiv C X^{(j)}(s_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Let $Y^{(j)}(s_i) \equiv C X^{(j)}(s_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Let $\mathbf{Y}^{(j)}(\mathbf{s}_i) \equiv \mathbb{C}\mathbf{X}^{(j)}(\mathbf{s}_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Let $Y^{(j)}(s_i) \equiv C X^{(j)}(s_i)$ denote the output moments.

• Note that $r_j(s) = -(s\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{j-1}(s)$ for all $s \in S_j$.

Lemma ([B., B., 2013]) Let $\mathcal{P}(s) = s\mathcal{E} - \mathcal{A}$ and $\tilde{\mathcal{P}}(s) = s\mathcal{\tilde{E}} - \mathcal{\tilde{A}}$. $|\mathbf{Y}^{(0)}(s) - \mathbf{\tilde{Y}}^{(0)}(s)| \leq |\mathcal{C}\mathcal{P}(s)^{-1}| \cdot |\mathbf{h}_n(s)| > 1000$

Lemma ([B., B., 2013])
Let
$$\mathcal{P}(s) = s\mathcal{E} - \mathcal{A}$$
 and $\tilde{\mathcal{P}}(s) = s\mathcal{\tilde{E}} - \mathcal{\tilde{A}}$.
 $|Y^{(0)}(s) - \tilde{Y}^{(0)}(s)| \leq |\mathcal{CP}(s)^{-1}| \cdot |h_n(s)| \approx 10$

$$h_n(\boldsymbol{s}_{m+1}) = \mathcal{B} - \mathcal{P}(\boldsymbol{s}_{m+1}) V \tilde{\mathcal{P}}(\boldsymbol{s}_{m+1})^{-1} \tilde{\mathcal{B}}$$

Lemma ([B., B., 2013])
Let
$$\mathcal{P}(s) = s\mathcal{E} - \mathcal{A}$$
 and $\tilde{\mathcal{P}}(s) = s\mathcal{\tilde{E}} - \mathcal{\tilde{A}}$.
 $|Y^{(0)}(s) - \tilde{Y}^{(0)}(s)| \leq |\mathbb{CP}(s)^{-1}| \cdot |h_n(s)| \simeq 1$

$$h_n(s_{m+1})\mathbf{u} = \mathcal{B}\mathbf{u} - \mathcal{P}(s_{m+1})V\tilde{\mathcal{P}}(s_{m+1})^{-1}\tilde{\mathcal{B}}\mathbf{u}$$

Lemma ([B., B., 2013])
Let
$$\mathcal{P}(s) = s\mathcal{E} - \mathcal{A}$$
 and $\tilde{\mathcal{P}}(s) = s\tilde{\mathcal{E}} - \tilde{\mathcal{A}}$.
 $|Y^{(0)}(s) - \tilde{Y}^{(0)}(s)| \leq |\mathcal{CP}(s)^{-1}| \cdot |h_n(s)| \approx 1000$

$$h_n(\boldsymbol{s}_{m+1})\mathbf{u} = \mathcal{B}\mathbf{u} - \mathcal{P}(\boldsymbol{s}_{m+1})V\tilde{\mathcal{P}}(\boldsymbol{s}_{m+1})^{-1}\tilde{\mathcal{B}}\mathbf{u}$$

$$\mathcal{P}(\boldsymbol{s}_{m+1}) \boldsymbol{V} \tilde{\mathcal{P}}(\boldsymbol{s}_{m+1})^{-1} \tilde{\mathcal{B}} \mathbf{u} \approx \boldsymbol{\mathcal{B}} \mathbf{u}$$

Lemma ([B., B., 2013]) Let $\mathcal{P}(s) = s\mathcal{E} - \mathcal{A}$ and $\tilde{\mathcal{P}}(s) = s\mathcal{\tilde{E}} - \mathcal{\tilde{A}}$. $|Y^{(0)}(s) - \tilde{Y}^{(0)}(s)| \leq |\mathcal{CP}(s)^{-1}| \cdot |h_n(s)| \approx |\mathcal{\tilde{CP}}(s)^{-1}| \cdot |h_n(s)|,$

$$h_n(s_{m+1})\mathbf{u} = \mathcal{B}\mathbf{u} - \mathcal{P}(s_{m+1})V\tilde{\mathcal{P}}(s_{m+1})^{-1}\tilde{\mathcal{B}}\mathbf{u}$$

$$\mathcal{P}(\boldsymbol{s}_{m+1}) \boldsymbol{V} \tilde{\mathcal{P}}(\boldsymbol{s}_{m+1})^{-1} \tilde{\mathcal{B}} \mathbf{u} ~\approx~ \mathcal{B} \mathbf{u}$$

AORA-RK method

Determine $s_{i+1} \in \mathbb{C}$ such that

$$s_{i+1} = \arg\max_{s\in\mathbb{S}} |\tilde{\mathbb{C}}\tilde{\mathbb{P}}(s)^{-1}| \cdot |h_n(s)| \text{ with } \mathbb{S} \subset \iota[f_{\min}, f_{\max}].$$

Outline

Moment matching methods in model order reduction

Efficient offline-stage of moment matching methods

- Modified adaptive-order rational Arnoldi method
- Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Outline

Moment matching methods in model order reduction

Efficient offline-stage of moment matching methods

- Modified adaptive-order rational Arnoldi method
- Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

 $S_1 = \{\boldsymbol{s}_1\}$

Shifted linear system:
$$(s_1 \mathcal{E} - \mathcal{A})r_j(s_1) = r_{j-1}(s_1)$$
.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

ç	$s_1 = \{s_1\}$	
	$v_1(s_1)$	
	$v_2(s_1)$	
	÷	
	$v_{n_r}(s_1)$	

h

$$(\boldsymbol{s}_1 \mathcal{E} - \mathcal{A})\boldsymbol{r}_j(\boldsymbol{s}_1) = \boldsymbol{r}_{j-1}(\boldsymbol{s}_1)$$

$$(\boldsymbol{s}_2 \mathcal{E} - \mathcal{A})\boldsymbol{r}_j(\boldsymbol{s}_2) = \boldsymbol{r}_{j-1}(\boldsymbol{s}_2)$$

Expensive approach due to repeated solution of linear systems.

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

 $v_{n_r}(s_2)$

ĉ	$B_1 = \{s_1\}$	8 ₂	$s_2 = \{s_1, s_2\}$	2
	$v_1(s_1)$		$v_1(s_1)$	
	<i>v</i> ₂ (<i>s</i> ₁)		v ₂ (s ₂)	
	÷		<i>v</i> ₃ (<i>s</i> ₂)	
	$v_{n_r}(s_1)$		<i>v</i> ₄ (<i>s</i> ₁)	

$$(\mathbf{s}_2 \mathcal{E} - \mathcal{A})\mathbf{r}_j(\mathbf{s}_2) = \mathbf{r}_{j-1}(\mathbf{s}_2)$$

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

$S_1 = \{\boldsymbol{s}_1\}$	Sz	$s_2 = \{s_1, s_2\}$	<u>}</u> }
<i>v</i> ₁ (<i>s</i> ₁)		<i>v</i> ₁ (<i>s</i> ₁)	
<i>v</i> ₂ (<i>s</i> ₁)		v ₂ (s ₂)	
÷		<i>v</i> ₃ (<i>s</i> ₂)	
$v_{n_r}(s_1)$		$v_4(s_1)$	
		:	
		$v_{n_r}(s_2)$	

$$(\mathbf{s}_2 \mathcal{E} - \mathcal{A})\mathbf{r}_j(\mathbf{s}_2) = \mathbf{r}_{j-1}(\mathbf{s}_2)$$

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

Modified generic rational Arnoldi method

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

11th December 2013 A. Bodendiek, M. Bollhöfer Moment matching in computational electromagnetism Page 11

Modified generic rational Arnoldi method

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

$$(\boldsymbol{s}_2 \mathcal{E} - \mathcal{A}) \boldsymbol{r}_j(\boldsymbol{s}_2) = \boldsymbol{r}_{j-1}(\boldsymbol{s}_2)$$

Modified generic rational Arnoldi method

Simplified example for two expansion points $s_1 \in \mathbb{C}$ and $s_2 \in \mathbb{C}$.

$S_1 = \{S_1\}$	Sz	$s_2 = \{s_1, s_2\}$	}
$v_1(s_1)$]	$v_1(s_1)$	
$v_2(s_1)$		v ₂ (s ₂)	
:		v ₃ (s ₂)	
$v_{n_r}(s_1)$		$v_4(s_1)$	
		÷	
		$v_{n_r}(s_2)$	

$$(\boldsymbol{s}_2 \mathcal{E} - \mathcal{A}) \boldsymbol{r}_j(\boldsymbol{s}_2) = \boldsymbol{r}_{j-1}(\boldsymbol{s}_2)$$

- Significantly smaller number of solutions to linear systems.
- Consideration of the order of previous orthonormal vector sequence.
- Extension to multiple expansion points straightforward.

Compute sequence of reduced order models with $S_{i+1} = S_i \cup \{s_{i+1}\}, s_{i+1} \in \mathbb{C}$.

11th December 2013 A. Bodendiek, M. Bollhöfer Moment matching in computational electromagnetism Page 12

Compute sequence of reduced order models with $S_{i+1} = S_i \cup \{s_{i+1}\}, s_{i+1} \in \mathbb{C}$.

11th December 2013 A. Bodendiek, M. Bollhöfer Moment matching in computational electromagnetism Page 12

Compute sequence of reduced order models with $S_{i+1} = S_i \cup \{s_{i+1}\}, s_{i+1} \in \mathbb{C}$. Si S_{i+1} $r_i = -(s_{i+1}\mathcal{E} - \mathcal{A})^{-1}\mathcal{E}r_{i-1}$ $v_1(s_1)$ $V_1(S_1)$ $r_1(s_{i+1})$ $V_2(S_2)$ $v_2(s_{i+1})$ $r_2(s_{i+1})$ $V_3(S_3)$ $V_3(s_{i+1})$ $r_3(s_{i+1})$ $\operatorname{argmax}_{s}|Y^{(j)}(s) - \tilde{Y}^{(j)}(s)|$

Compute sequence of reduced order models with $S_{i+1} = S_i \cup \{s_{i+1}\}, s_{i+1} \in \mathbb{C}$.

• Additionally consider expansion points $s_l \in S_i$ with $j_{l,i+1} > j_{l,i}$.

Outline

Moment matching methods in model order reduction

Efficient offline-stage of moment matching methods

- Modified adaptive-order rational Arnoldi method
- Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Schur complement with J-symmetry:

 $S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$ with $S_i^{\mathrm{T}} J = J S_i$ and J = I.

Schur complement with J-symmetry:

$$S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$$
 with $S_i^{\mathrm{T}} J = J S_i$ and $J = I$.

Krylov subspace methods

$$x_k = x_0 + \mathcal{K}_k(S_i, r_0)$$
 such that $r_k = f - S_i x_k \perp \mathcal{L}_k$

Either employ $\mathcal{L}_k \equiv \mathcal{K}_k(S_i, r_0)$ or $\mathcal{L}_k \equiv \mathcal{K}_k(S_i^{\mathrm{T}}, \tilde{r}_0)$.

SQMR method

Determine $x_k = x_0 + V_k y_k$ with minimization

$$\|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}_k\| = \min_{\boldsymbol{v}} \|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}\|.$$

Unsym. Lanczos method.

$$S_i V_k = V_{k+1} \underline{I}_k$$
$$S_i^{\mathrm{T}} W_k = W_{k+1} \underline{\tilde{I}}_k$$

Schur complement with J-symmetry:

$$S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$$
 with $S_i^{\mathrm{T}} J = J S_i$ and $J = I$.

Krylov subspace methods

$$x_k = x_0 + \mathcal{K}_k(S_i, r_0)$$
 such that $r_k = f - S_i x_k \perp \mathcal{L}_k$

Either employ $\mathcal{L}_k \equiv \mathcal{K}_k(S_i, r_0)$ or $\mathcal{L}_k \equiv \mathcal{K}_k(S_i^{\mathrm{T}}, \tilde{r}_0)$.

SQMR method

Determine $x_k = x_0 + V_k y_k$ with minimization

$$\|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}_k\| = \min_{\boldsymbol{u}} \|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}\|.$$

Unsym. Lanczos method.

$$S_{i}V_{k} = V_{k+1}\underline{T}_{k}$$
$$S_{i}^{\mathrm{T}}W_{k} = W_{k+1}\underline{\widetilde{T}}_{k}$$

Schur complement with J-symmetry:

$$S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$$
 with $S_i^{\mathrm{T}} J = J S_i$ and $J = I$.

Krylov subspace methods

$$x_k = x_0 + \mathcal{K}_k(S_i, r_0)$$
 such that $r_k = f - S_i x_k \perp \mathcal{L}_k$

Either employ
$$\mathcal{L}_k \equiv \mathcal{K}_k(S_i, r_0)$$
 or $\mathcal{L}_k \equiv \mathcal{K}_k(S_i^{\mathrm{T}}, \tilde{r}_0)$.

Determine
$$x_k = x_0 + V_k y_k$$
 with minimization

$$\|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}_k\| = \min_{\boldsymbol{v}} \|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}\|.$$

Unsym. Lanczos method.

$$S_i V_k = V_{k+1} \underline{T}_k$$
$$S_i^{\mathrm{T}} W_k = W_{k+1} \underline{\tilde{T}}_k$$

11th December 2013 A. Bodendiek, M. Bollhöfer Moment matching in computational electromagnetism Page 14

Schur complement with J-symmetry:

$$S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$$
 with $S_i^{\mathrm{T}} J = J S_i$ and $J = I$.

Krylov subspace methods

$$x_k = x_0 + \mathcal{K}_k(S_i, r_0)$$
 such that $r_k = f - S_i x_k \perp \mathcal{L}_k$

Either employ $\mathcal{L}_k \equiv \mathcal{K}_k(S_i, r_0)$ or $\mathcal{L}_k \equiv \mathcal{K}_k(S_i^{\mathrm{T}}, \tilde{r}_0)$.

SQMR method

Determine $x_k = x_0 + V_k y_k$ with minimization

$$\|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}_k\| = \min_{\boldsymbol{y}} \|\rho_0 \boldsymbol{e}_1 - \underline{T}_k \boldsymbol{y}\|.$$

J-symmetry:
$$S_i^{T}J = JS_i$$
, i.e. $W_k = JV_k$.

Unsym. Lanczos method.

$$S_i V_k = V_{k+1} \underline{T}_k$$
$$S_i^{\mathrm{T}} W_k = W_{k+1} \underline{\widetilde{T}}_k$$

Schur complement with J-symmetry:

$$S_i = (s_i M_{\epsilon} + M_{\sigma}) + C_E (s_i M_{\mu})^{-1} C_H$$
 with $S_i^{\mathrm{T}} J = J S_i$ and $J = I$.

Krylov subspace methods

 $x_k = x_0 + \mathcal{K}_k(S_i, r_0)$ such that $r_k = f - S_i x_k \perp \mathcal{L}_k$

Either employ $\mathcal{L}_k \equiv \mathcal{K}_k(S_i, r_0)$ or $\mathcal{L}_k \equiv \mathcal{K}_k(S_i^{\mathrm{T}}, \tilde{r}_0)$.

SQMR method Determine $x_k = x_0 + V_k y_k$ with minimization $\|\rho_0 e_1 - \underline{T}_k y_k\| = \min_y \|\rho_0 e_1 - \underline{T}_k y\|$. J-symmetry: $S_i^T J = JS_i$, i.e. $W_k = JV_k$. Inefficient for multiple solution to different shifted linear systems and multiple right hand sides.

$$S_i V_k = V_{k+1} \underline{T}_k$$

$$S_i^{\mathrm{T}} W_k = W_{k+1} \underline{\widetilde{T}}_k$$

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Solution update:

$$x_k = x_0 + V_k y_k + U_j z$$

- Arnoldi-/Lanczos-type method: $(I - C_j (\tilde{C}_j^{\mathrm{T}} C_j)^{-1} \tilde{C}_j^{\mathrm{T}}) S_j V_k = V_{k+1} \underline{I}_k$
- Biorthogonality condition:
 - $\left[\tilde{C}_{j}, W_{k} \right] \perp_{b} \left[C_{j}, V_{k} \right]$

Recycling subspace $C_j = S_j U_j$ and $\tilde{C}_j = S_j^{\mathrm{T}} \tilde{U}_j$

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Recycling Krylov subspace methods

Solution update:

$$x_k = x_0 + V_k y_k + U_j z$$

- Arnoldi-/Lanczos-type method: $(I - C_j (\tilde{C}_j^{\mathrm{T}} C_j)^{-1} \tilde{C}_j^{\mathrm{T}}) S_j V_k = V_{k+1} \underline{I}_k$
- Biorthogonality condition:

 $\left[\tilde{C}_{j}, W_{k}
ight] \perp_{b} \left[C_{j}, V_{k}
ight]$

Recycling subspace $C_j = S_j U_j$ and $\tilde{C}_j = S_j^{\mathrm{T}} \tilde{U}_j$

Employing (Harmonic) Ritz values, it follows that $U_i = [U_{i-1}, \bar{V}_k].$

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Solution update:

$$x_k = x_0 + V_k y_k + U_j z$$

- Arnoldi-/Lanczos-type method: $(I - C_j (\tilde{C}_j^T C_j)^{-1} \tilde{C}_j^T) S_j V_k = V_{k+1} \underline{T}_k$
- Biorthogonality condition: $\begin{bmatrix} \tilde{C}_j, W_k \end{bmatrix} \perp_b [C_j, V_k]$

Recycling subspace $C_j = S_j U_j$ and $\tilde{C}_j = S_j^{\mathrm{T}} \tilde{U}_j$

Recall:
$$S_j^T J = JS_j$$
 and $J = I$
• $J = J^T$: $\tilde{U}_j = JU_j$, $\tilde{C}_j = JC_j$
• $x_k = x_0 + (I - U_j \tilde{C}_j^T S_j) V_k y_k$

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Solution update:

$$x_k = x_0 + V_k y_k + U_j z$$

- Arnoldi-/Lanczos-type method: $(I - C_j (\tilde{C}_j^T C_j)^{-1} \tilde{C}_j^T) S_j V_k = V_{k+1} \underline{T}_k$
- Biorthogonality condition: $\begin{bmatrix} \tilde{C}_j, W_k \end{bmatrix} \perp_b [C_j, V_k]$

 $\begin{array}{l} \textbf{Recycling subspace} \\ C_{j} = S_{j}U_{j} \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \tilde{C}_{j} = S_{j}^{\mathrm{T}}\tilde{U}_{j} \end{array}$

Recall:
$$S_j^{T}J = JS_j$$
 and $J = I$
• $J = J^{T}$: $\tilde{U}_j = JU_j$, $\tilde{C}_j = JC_j$
• $N_k = N_0 + (I - U_j \tilde{C}_j^{T} S_j) V_k y_k$

Multiple solution to linear system $S_j x_j = f_j$ with $f_j \in \mathbb{C}^{n \times p}$ and j = 1, ..., I.

Solution update:

$$x_k = x_0 + V_k y_k + U_j z$$

- Arnoldi-/Lanczos-type method: $(I - C_j (\tilde{C}_j^T C_j)^{-1} \tilde{C}_j^T) S_j V_k = V_{k+1} \underline{T}_k$
- Biorthogonality condition: $\begin{bmatrix} \tilde{C}_j, W_k \end{bmatrix} \perp_b [C_j, V_k]$

Recycling subspace $C_j = S_j U_j$ and $\tilde{C}_j = S_j^{\mathrm{T}} \tilde{U}_j$

Recall:
$$S_j^T J = JS_j$$
 and $J = I$
• $J = J^T$: $\tilde{U}_j = JU_j$, $\tilde{C}_j = JC_j$
• $x_k = x_0 + (I - U_j \tilde{C}_j^T S_j) V_k y_k$

Outline

- Moment matching methods in model order reduction
- Efficient offline-stage of moment matching methods
 - Modified adaptive-order rational Arnoldi method
 - Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

PCB circuit

- Frequency range: $[f_{min}, f_{max}] = [7.5, 10.0]$ GHz.
- Electric conductivity: $\sigma\equiv$ 0.
- Dimension of original model problem: *n* = 226458.

AORA-RK vs. AORA-MAX vs. AORA-H2

Figure: PCB circuit: $n = 226458 \rightarrow n_r = 20(80)$.

PCB circuit: mAORA method

(b)

Figure: PCB circuit: Modified adaptive-order rational Arnoldi method. $(n_r = 20)$

PCB circuit: mAORA method with rSQMR

Expansion point	# rSQMR	# SQMR
<i>s</i> ₁ = 5.44e+10ι	-	_
<i>s</i> ₂ = 6.28e+10ι	54, 24, 25, 24, 25, 24, 24, 24, 25, 25, 25	55
<i>s</i> ₃ = 6.05e+10ι	23, 20, 19, 20, 20, 20, 20, 20, 19	50
<i>s</i> ₄ = 5.84e+10ı	16, 13, 13, 13, 13, 13, 13	35
<i>s</i> ₅ = 4.71e+10ι	23, 21, 21, 18, 21	29
<i>s</i> ₆ = 5.73e+10ι	25, 11, 11, 10, 11	26

Table: PCB circuit: Iteration steps of rSQMR method in mAORA method.

Single preconditioning technique via

 $S = (s_*M_{\epsilon} + M_{\sigma}) + C(s_*M_{\mu})^{-1}C^{\mathrm{T}}$ with $s_* = \iota\sqrt{f_{\min}f_{\max}}$.

• Significantly smaller number of matrix-vector multiplications.

Outline

- Moment matching methods in model order reduction
- Efficient offline-stage of moment matching methods
 - Modified adaptive-order rational Arnoldi method
 - Recycling Krylov subspace methods
- Numerical experiments
- Conclusion

Conclusion

- Structure preservation.
- AORA-RK method.
- Divergence preservation.

- Modified rational Arnoldi method.
- Direct solver: ATLM.
- rSQMR method.

Conclusion

Divergence preservation.

rSQMR method.

Conclusion

- Structure preservation.
- AORA-RK method.
- Divergence preservation.

- Modified rational Arnoldi method.
- Direct solver: ATLM.
- rSQMR method.

Conclusion

- Structure preservation.
- AORA-RK method.
- Divergence preservation.

- Modified rational Arnoldi method.
- Direct solver: ATLM.
- rSQMR method.

