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Reduced Basis Method

Model problem:

For v € D C RP, evaluate

s(v) = I(u(v);v).
where u(v) € X(Q) satisfies
a(u(v),v,v) ="f(v;v),Vv e X
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Reduced Basis Method

Model problem:

For v € D C RP, evaluate

s(v) = I(u(v);v).
where u(v) € X(Q) satisfies
a(u(v),v,v) ="f(v;v),Vv e X

Low order space Vj spanned by snapshots

Viy = span{u(v1), u(v2), ..., u(vn)},

which is generated by rigorous error estimators

r(5v)llx
Bue(v)
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Introduction to Reduced Basis Method
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RBM Aim

o Restrict attention to parametrically induced manifold
M = {u(v)|v € D}, which can often be represented in a low
order space.
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Introduction to Reduced Basis Method
0@00

RBM Aim

o Restrict attention to parametrically induced manifold
M = {u(v)|v € D}, which can often be represented in a low
order space.

@ Offline-Online decomposition
Large pre-processing “Offline” cost, but low “Online” cost for
each input-output evaluation.
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We consider a parameter-dependent system matrix A(v) in

where v is a parameter vector (frequency, material parameters and
geometry parameters).
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We consider a parameter-dependent system matrix A(v) in

where v is a parameter vector (frequency, material parameters and
geometry parameters).
Assume an affine parameter dependence, i.e.

Qa Qb
Alv) = ©IW)AY, br)=>_ Oiw)b,
q=1

q=1
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Introduction to Reduced Basis Method
fe1e] Yol

We consider a parameter-dependent system matrix A(v) in

where v is a parameter vector (frequency, material parameters and
geometry parameters).
Assume an affine parameter dependence, i.e.

Qa Qb
Alv) = ©IW)AY, br)=>_ Oiw)b,
q=1

q=1

which enables the Offline-Online decomposition.
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Introduction to Reduced Basis Method
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Project system onto low order space by snapshot matrix Vy as
Al = VI ATV, b = VI

which allows fast parameter evaluations by solving a system of
dimension N.
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Introduction to Reduced Basis Method
felelel ]

Project system onto low order space by snapshot matrix Vy as

Al = VI ATV, b = VI

which allows fast parameter evaluations by solving a system of
dimension N.
Allows parameter-preserving model reduction:

Qa Qb
D> OIWAY | =D OLw)by,.
g=1 q=1

In contrast to Proper Orthogonal Decomposition (POD), the RBM

uses rigorous error estimators to generate the reduced order space
V.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method ~ 6/25



Introduction to Reduced Basis Method
°

Greedy sampling

Let = denote a finite sample of D.
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Introduction to Reduced Basis Method
°

Greedy sampling

Let = denote a finite sample of D.
Set S; = {v!} and Xi = span{u(v1)}.
For N =2, ..., Nimay, find vN = arg max, .=An_1(v),

then set Sy = Sy_1 UvN,  Vy = Vy_1 + span{u(vN)}.
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Introduction to Reduced Basis Method
°

Successive Constraint Method

pr{.. du(..
Output error estimator AR, = I Gl v) e
Bre(v)

to estimate the error between a sufficiently fine FE-discretisation
and the reduced model.
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Introduction to Reduced Basis Method
°

Successive Constraint Method

pr(.. du( ..
Output error estimator AR, = I Gl v) e
Bre(v)

to estimate the error between a sufficiently fine FE-discretisation
and the reduced model.

B(v) = inf sup 2Vl _ e llalw. i 0)lxe
weX vex [[wlixllvilx — wex lwlx

Employing a Successive Constraint Method to determine lower
bounds on the stability constant

Bre(v) < B(v),

poses a significant computational obstacle.
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© Model Problems
@ Simulation of Electric Fields in Semiconductor Models
@ Geometric Variation
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Constitutive Equations

Full time-harmonic Maxwell’s equations
YV x E,V x v) + iwo(E,v) —w?e(E,v) = iwd VYveX
Exn=0 onlpec Ul conductor
VXxExn=0 onlpmc
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Full time-harmonic Maxwell’s equations
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Constitutive Equations

Full time-harmonic Maxwell’s equations
YV x E,V x v) + iwo(E,v) —w?e(E,v) = iwd VYveX
Exn=0 onlpec Ul conductor
VXxExn=0 onlpmc

(A‘u + iAy — Ae)(xreal + iXimag) =ib

Au_Ae _AO' Xreal _ 0
Ay A+ A | ximag | | —b
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Constitutive Equations

Full time-harmonic Maxwell’s equations
YV x E,V x v) + iwo(E,v) —w?e(E,v) = iwd VYveX
Exn=0 onlpec Ul conductor
VXxExn=0 onlpmc

(A‘u + iA; — Ae)(xreal + iXimag) =ib
A,u — A —As Xreal _ 0
—Ao' _A,U + AE Ximag B —b

Q
(w,v;v) Z@q )ag(w, v)

q=1
Matrices in the affine form will also be real symmetric.
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Model Problem

Full time-harmonic Maxwell’s equations
p YV x E,V x v) + iwo(E,v) — w?e(E,v) = iwd inQ
Exn=0 on l'pec Ul conductor
VXExn=0 on/lpyc

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method  10/25



Model Problems
oe

Model Problem

Full time-harmonic Maxwell’s equations
p YV x E,V x v) + iwo(E,v) — w?e(E,v) = iwd inQ
Exn=0 on l'pec Ul conductor
VXExn=0 on/lpyc

metallic striplines
|

~ discrete port

Figure: Geometry of coplanar waveguide.
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Model Problems
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Geometric Parameters

Figure: Affected subdomains by geometric parameter v.
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Geometric Parameters

Figure: Affected subdomains by geometric parameter v.
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00®@000
Given affine mappings from a reference configuration Q%(7) to the

actual configuration Q%(v)

T QK@) — QX(v) : x —» y = G(v)x + D(v),
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Model Problems
00®000

Given affine mappings from a reference configuration Q%(7) to the
actual configuration Q%(v)

T QK@) — QX(v) : x —» y = G(v)x + D(v),

the PDE can be solved by a transformation to the reference domain

p NV x E,V x v) + iwo(E, v) — w?e(E, v)
Qv)=T(2(»))

/ LG W)Y % E,V x v)G T (1)|det G(v)|
o)

1
+ G (v) (iwo(E,v) — w?e(E, v)) G(u)m
i.e. no remeshing is required.
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Branchline Coupler

output port

" input port

Figure: Geometry of branchline coupler.
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Model Problems
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Petrov-Galerkin Reduced Basis

Microstrip line models like the branchline coupler contain
resonances, i.e. frequencies at which A(v) is singular.
It holds: A(v) singular <= j(v) =0.
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Model Problems
0000®0

Petrov-Galerkin Reduced Basis

Microstrip line models like the branchline coupler contain
resonances, i.e. frequencies at which A(v) is singular.
It holds: A(v) singular <= j(v) =0.

Using the same space to project the trial and test space can result
in Bn(v) = 0 while 5(v) > 0.

T : X=X :(T"w,v)x = a(w,v;v) YveX

Vi = span{u(v1), u(r2), ..., u(vn) },

Wy = span{ T"u(v1), T"u(1»), ..., T"u(vn)},

= On(v) = B(v)
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Petrov-Galerkin Reduced Basis

Full system
A(v)x(v) = b(v)
y(v) = c"x(v)
is projected as
<W,’\’,TA(1/) VN) x(v) = WY b(v)
(V) = Vi cTx(v)
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Petrov-Galerkin Reduced Basis

Full system

is projected as
<W,’\’,TA(1/) VN) x(v) = WY b(v)
(V) = Vi cTx(v)

Qs Qs
Aw) =D 03(A7, W =Y eiwy
q=1 q=1
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Petrov-Galerkin Reduced Basis

Full system
= b(v)
y(v) = cTx(v)
is projected as
<W,’\’,TA(1/) VN) x(v) = WY b(v)
(V) = Vi cTx(v)

Qs Qs
Alv) =D BIWAT,  Wf =1 i)Wy
g=1 g=1
., Q Qs / o
An(v) = W AV =) ) 03(1)eg (n)Wy A?Vy.
q=1q'=1
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© Simulation Results
@ Reduced Simulation
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Simulation Results Coplanar Waveguide

[ H{iw)|| in dB

Figure: Transfer function in [1.3,1.6] GHz x[2.0,14.0] mm. Full model

contains 52134 dofs. Simulation with full model takes 14740s, reduced
model 10s (N=85).
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Simulation Results Coplanar Waveguide
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Figure: Convergence History.
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Simulation Results Branchline Coupler

100

[H(iw)| in dB

1

relative permeability

a.610

Figure: Transfer function in [1.0,10.0] GHz x[0.5,2.0] . Full model
contains 27679 dofs. Simulation with full model takes 8644s, reduced
model 1s (N=25).
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Simulation Results
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Figure: Convergence History.
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Taylor Reduced Basis

@ Taylor Reduced Basis
@ Numerical Results
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Taylor Reduced Basis

Taylor Reduced Basis

The Taylor Reduced Basis space takes the derivatives of snapshot
solutions into account. Thus the RB space V)y is defined as

Vn = {u(v1), Ouu(r1), Opu(rr), . . .,
u(vn), Owu(vn), Opu(vn)},

where J,, and 0, denote partial derivatives with respect to the
frequency w and the geometric parameter p.
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Taylor Reduced Basis

The linear system to be solved for a snapshot v is

with parameter-dependent system matrix A(v) and right hand side
b. This allows to compute the derivative 9,x(v) by

Ou(AW)x(v)) = 8u(b)
(QLAW))x(v) + A()(x(v)) = O

leading to the linear system

AW)(0ux(¥)) = =(9uA())x(¥).
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Taylor Reduced Basis
[ 1o}

Petrov-Galerkin Lagrange RB
103 — — — Petrov-Galerkin Taylor RB |
- —- - Ritz-Galerkin Taylor RB

1073 ! ! ! ! ! -

10 20 30 40 50 60

Figure: Mean relative RB approximation error estimator for parametric
variation of frequency from 1.3 GHz to 1.6 GHz and middle stripline
width from 2mm to 14mm.
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