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Reduced Basis Method

Model problem:
For ν ∈ D ⊂ RP , evaluate

s(ν) = l(u(ν); ν),

where u(ν) ∈ X (Ω) satisfies

a(u(ν), v ; ν) = f (v ; ν), ∀v ∈ X

Low order space VN spanned by snapshots

VN = span{u(ν1), u(ν2), ..., u(νN)},

which is generated by rigorous error estimators

‖u(ν)− uN(ν)‖X ≤ ∆N(ν) =
‖r(·; ν)‖X ′

βLB(ν)
.
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RBM Aim

Restrict attention to parametrically induced manifold
M = {u(ν)|ν ∈ D}, which can often be represented in a low
order space.

Offline-Online decomposition
Large pre-processing “Offline” cost, but low “Online” cost for
each input-output evaluation.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 4/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

RBM Aim

Restrict attention to parametrically induced manifold
M = {u(ν)|ν ∈ D}, which can often be represented in a low
order space.

Offline-Online decomposition
Large pre-processing “Offline” cost, but low “Online” cost for
each input-output evaluation.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 4/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

We consider a parameter-dependent system matrix A(ν) in

A(ν)x(ν) = b(ν)

where ν is a parameter vector (frequency, material parameters and
geometry parameters).

Assume an affine parameter dependence, i.e.

A(ν) =
Qa∑
q=1

Θq
a(ν)Aq, b(ν) =

Qb∑
q=1

Θq
b(ν)bq,

which enables the Offline-Online decomposition.
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Project system onto low order space by snapshot matrix VN as

Aq
N = V T

N AqVN , bqN = V T
N bq

which allows fast parameter evaluations by solving a system of
dimension N.

Allows parameter-preserving model reduction:

 Qa∑
q=1

Θq
a(ν)Aq

N

 xN =

Qb∑
q=1

Θq
b(ν)bqN .

In contrast to Proper Orthogonal Decomposition (POD), the RBM
uses rigorous error estimators to generate the reduced order space
VN .
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Greedy sampling

Let Ξ denote a finite sample of D.

Set S1 = {ν1} and X1 = span{u(ν1)}.

For N = 2, ...,Nmax , find νN = arg maxν∈Ξ∆N−1(ν),

then set SN = SN−1 ∪ νN , VN = VN−1 + span{u(νN)}.
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Successive Constraint Method

Output error estimator ∆o
N =

‖rpr (·; ν)‖X ′‖rdu(·; ν)‖X ′

βLB(ν)
.

to estimate the error between a sufficiently fine FE-discretisation
and the reduced model.

β(ν) = inf
w∈X

sup
v∈X

|a(w , v ; ν)|
‖w‖X‖v‖X

= inf
w∈X

‖a(w , ·; ν)‖X ′

‖w‖X
Employing a Successive Constraint Method to determine lower
bounds on the stability constant

βLB(ν) ≤ β(ν),

poses a significant computational obstacle.
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Constitutive Equations

Full time-harmonic Maxwell’s equations

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v) = iωJ ∀v ∈ X

E × n = 0 on ΓPEC ∪ Γconductor

∇× E × n = 0 on ΓPMC

(Aµ + iAσ − Aε)(xreal + iximag ) = ib

[
Aµ − Aε −Aσ
−Aσ −Aµ + Aε

] [
xreal
ximag

]
=

[
0
−b

]

a(w , v ; ν) =
Q∑

q=1

Θq(ν)aq(w , v)

Matrices in the affine form will also be real symmetric.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 9/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

Constitutive Equations

Full time-harmonic Maxwell’s equations

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v) = iωJ ∀v ∈ X

E × n = 0 on ΓPEC ∪ Γconductor

∇× E × n = 0 on ΓPMC

(Aµ + iAσ − Aε)(xreal + iximag ) = ib

[
Aµ − Aε −Aσ
−Aσ −Aµ + Aε

] [
xreal
ximag

]
=

[
0
−b

]

a(w , v ; ν) =
Q∑

q=1

Θq(ν)aq(w , v)

Matrices in the affine form will also be real symmetric.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 9/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

Constitutive Equations

Full time-harmonic Maxwell’s equations

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v) = iωJ ∀v ∈ X

E × n = 0 on ΓPEC ∪ Γconductor

∇× E × n = 0 on ΓPMC

(Aµ + iAσ − Aε)(xreal + iximag ) = ib

[
Aµ − Aε −Aσ
−Aσ −Aµ + Aε

] [
xreal
ximag

]
=

[
0
−b

]

a(w , v ; ν) =
Q∑

q=1

Θq(ν)aq(w , v)

Matrices in the affine form will also be real symmetric.

Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 9/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

Constitutive Equations

Full time-harmonic Maxwell’s equations

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v) = iωJ ∀v ∈ X

E × n = 0 on ΓPEC ∪ Γconductor

∇× E × n = 0 on ΓPMC

(Aµ + iAσ − Aε)(xreal + iximag ) = ib

[
Aµ − Aε −Aσ
−Aσ −Aµ + Aε

] [
xreal
ximag

]
=

[
0
−b

]

a(w , v ; ν) =
Q∑

q=1

Θq(ν)aq(w , v)

Matrices in the affine form will also be real symmetric.
Max Planck Institute Magdeburg Martin Hess, Reduced Basis Method 9/25



Introduction to Reduced Basis Method Model Problems Simulation Results Taylor Reduced Basis

Model Problem

Full time-harmonic Maxwell’s equations

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v) = iωJ in Ω

E × n = 0 on ΓPEC ∪ Γconductor

∇× E × n = 0 on ΓPMC

Figure: Geometry of coplanar waveguide.
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Geometric Parameters

Figure: Affected subdomains by geometric parameter ν.
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Given affine mappings from a reference configuration Ωk(ν) to the
actual configuration Ωk(ν)

T k : Ωk(ν)→ Ωk(ν) : x 7→ y = G (ν)x + D(ν),

the PDE can be solved by a transformation to the reference domain

∫
Ω(ν)=T (Ω(ν))

µ−1(∇× E ,∇× v) + iωσ(E , v)− ω2ε(E , v)

=

∫
Ω(ν)

µ−1G−1(ν)(∇× E ,∇× v)G−T (ν)|detG (ν)|

+ GT (ν)
(
iωσ(E , v)− ω2ε(E , v)

)
G (ν)

1

|detG (ν)|

i.e. no remeshing is required.
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Branchline Coupler

Figure: Geometry of branchline coupler.
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Petrov-Galerkin Reduced Basis

Microstrip line models like the branchline coupler contain
resonances, i.e. frequencies at which A(ν) is singular.
It holds: A(ν) singular ⇐⇒ β(ν) = 0.

Using the same space to project the trial and test space can result
in βN(ν) = 0 while β(ν) > 0.

T ν : X → X : (T νw , v)X = a(w , v ; ν) ∀v ∈ X

VN = span{u(ν1), u(ν2), ..., u(νN)},

W ν
N = span{T νu(ν1),T νu(ν2), ...,T νu(νN)},

=⇒ βN(ν) ≥ β(ν)
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Petrov-Galerkin Reduced Basis

Full system

A(ν)x(ν) = b(ν)

y(ν) = cT x(ν)

is projected as (
W νT

N A(ν)VN

)
x(ν) = W νT

N b(ν)

yN(ν) = V T
N cT x(ν)

A(ν) =
Qa∑
q=1

Θq
a(ν)Aq, W ν

N =
Qa∑
q=1

Θq
a(ν)W q

N

AN(ν) = W νT

N A(ν)VN =
Qa∑
q=1

Qa∑
q′=1

Θq
a(ν)Θq′

a (ν)W q′T

N AqVN .
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Simulation Results Coplanar Waveguide

Figure: Transfer function in [1.3, 1.6] GHz ×[2.0, 14.0] mm. Full model
contains 52134 dofs. Simulation with full model takes 14740s, reduced
model 10s (N=85).
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Simulation Results Coplanar Waveguide
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Simulation Results Branchline Coupler

Figure: Transfer function in [1.0, 10.0] GHz ×[0.5, 2.0] . Full model
contains 27679 dofs. Simulation with full model takes 8644s, reduced
model 1s (N=25).
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Simulation Results Branchline Coupler
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Taylor Reduced Basis

The Taylor Reduced Basis space takes the derivatives of snapshot
solutions into account. Thus the RB space VN is defined as

VN = {u(ν1), ∂ωu(ν1), ∂pu(ν1), . . . ,

u(νN), ∂ωu(νN), ∂pu(νN)},

where ∂ω and ∂p denote partial derivatives with respect to the
frequency ω and the geometric parameter p.
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The linear system to be solved for a snapshot ν is

A(ν)x(ν) = b,

with parameter-dependent system matrix A(ν) and right hand side
b. This allows to compute the derivative ∂ωx(ν) by

∂ω(A(ν)x(ν)) = ∂ω(b)

(∂ωA(ν))x(ν) + A(ν)(∂ωx(ν)) = 0

leading to the linear system

A(ν)(∂ωx(ν)) = −(∂ωA(ν))x(ν).
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Figure: Mean relative RB approximation error estimator for parametric
variation of frequency from 1.3 GHz to 1.6 GHz and middle stripline
width from 2mm to 14mm.
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