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Coupled circuit and semiconductor models; sketch
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Coupled circuit and semiconductor models [M. Günther ’01, C. Tischendorf ’03]

Kirchhoff’s’ laws (no semiconductors) read

Aj = 0, v = A>e

A: (reduced) incidence matrix.

Voltage-current relations of components:

jC =
dqC

dt
(vC, t), jR = g(vR, t), vL =

dφL

dt
(jL, t)
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Modified Nodal Analysis: join all equations to DAE system

AC
dqC

dt

(
A>C e(t), t

)
+ ARg

(
A>R e(t), t

)
+ ALjL(t) + AV jV (t) = −AI is(t),

dφL

dt
(jL(t), t)− A>L e(t) = 0,

A>V e(t) = vs(t).
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Semiconductor modeled as PDE system

PDE-model (drift-diffusion equations) for semiconductors

div (ε∇ψ) = q(n − p − C),

−q∂tn + div Jn = qR(n, p),

q∂tp + div Jp = −qR(n, p),

Jn = µnq( UT∇n − n∇ψ),

Jp = µpq(−UT∇p − p∇ψ),

on Ω× [0, T ] with Ω ⊂ Rd (d = 1, 2, 3).
Dirichlet boundary constraints at ΓO,k :

ψ(t, x), n(t, x) = ñ(x), p(t, x) = p̃(x)

and Neumann boundary constraints at ΓI :

∇ψ(t, x) · ν(x) = Jn · ν(x) = Jp(t, x) · ν(x) = 0

or mixed boundary conditions at MI contacts (MOSFETs).
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Coupling of semiconductors to the network [M. Günther ’01, C. Tischendorf ’03]

Coupling conditions:

jS,k (t) =

∫
ΓO,k

(Jn + Jp − ε∂t∇ψ) · ν dσ,

ψ(t, x) = ψbi (x) + (A>S e(t))k

for (t, x) ∈ [0, T ]× ΓO,k ,
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and add current jS to Kirchhoff’s current law:

AC
dqC

dt

(
A>C e, t

)
+ ARg

(
A>R e, t

)
+ ALjL + AV jV +AS jS = −AI is,

dφL

dt
(jL, t)− A>L e = 0,

A>V e = vs.

Add DD-equations + coupling conditions for each semiconductor.
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Full model
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AC
dqC

dt

(
A>C e(t), t

)
+ ARg

(
A>R e(t), t

)
+ALjL(t) + AV jV (t)+AS jS(t) = −AI is(t),

dφL

dt
(jL(t), t)− A>L e(t) = 0,

A>V e(t) = vs(t),

jS(t)− C1Jn(t)− C2Jp(t)− C3ġψ(t) = 0,

0

−MLṅ(t)

MLṗ(t)

0

0

0


+ AFEM



ψ(t)

n(t)

p(t)

gψ(t)

Jn(t)

Jp(t)


+ F(nh, ph, gh

ψ)− b(A>S e(t)) = 0.

first space discretization (mixed FEM), then time discretization (DASPK)
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Reduced model recoupled to the network
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AC
dqC

dt

(
A>C e(t), t

)
+ ARg

(
A>R e(t), t

)
+ALjL(t) + AV jV (t)+AS jS(t) = −AI is(t),

dφL

dt
(jL(t), t)− A>L e(t) = 0,

A>V e(t) = vs(t),

jS(t)− C1UJnγJn (t)− C2UJpγJp (t)− C3Ugψ γ̇gψ (t) = 0,

0

−γ̇n(t)

γ̇p(t)

0

0

0


+ APOD



γψ(t)

γn(t)

γp(t)

γgψ (t)

γJn (t)

γJp (t)


+ U>F(nPOD, pPOD, gPOD

ψ )− U>b(A>S e(t)) = 0.

FEM using reduced nonlocal basis obtained by Snapshot-POD
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Discrete Empirical Interpolation Method (DEIM)

Reduced nonlinearity, classical treatment

U>F (Unγn,Upγp,Ugψγgψ )

with DEIM approximated as:

(U>W (P>W )−1)︸ ︷︷ ︸
nPOD×nDEIM , block-dense

P>F︸ ︷︷ ︸
nDEIM

(Unγn︸ ︷︷ ︸
nFEM

,Upγp,Ugψγgψ )
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Gauss-Newton with Approximated Tensors (GNAT)

K. Carlberg, et. al.: The GNAT nonlinear model reduction method and its
application to fluid dynamics problems, in AIAA (2012)

I GNAT is a nonlinear model order reduction method
I Uses least-squares Petrov-Galerkin projection
I approximating the residual and Jacobian using the ”Gappy POD” method

to reduce complexity
I time discrete approach
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GNAT: Model Hierarchy

Source: K. Carlberg, et. al., The GNAT nonlinear model reduction method
and its application to fluid dynamics problems, in AIAA (2012)
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GNAT: GN Tier II-Model

ODE as result of a semidiscretization of a time-dependent (parabolic) PDE

ẏ(t) = F (y(t), t ;µ) y(0) = y0(µ).

Implicit time integration yields a sequence of nonlinear problems from Tier I
of the form

Rn(yn+1;µ) = 0 → R(y) = 0.
Solve, take snapshots, compute POD basis Φy , approximate y in the form

y = y (0) + Φy yr

Solve least-squares problem

min
y∈y(0)+Y

‖R(y)‖2

with Gauss-Newton

p(k) = arg min
a∈Rny

‖J(k)Φy a + R(k)‖2

y (k+1)
r = y (k)

r + α(k)p(k)

Classical approach: Petrov-Galerkin projection

ΦT
y R(y (0) + Φy yr ) = 0
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GNAT: Tier III-Model

Gappy POD, approximating R(k) and J(k)Φy by computing only a selection of
their rows. ·̂ denotes the restriction operator to the sample indices, ΦR,ΦJ

POD-bases
R(k) ≈ ΦRR(k)

r J(k)Φy ≈ ΦJJ(k)
r

R(k)
r = arg min

z∈RnR

‖R̂(k) − Φ̂Rz‖2

J(k)
r = arg min

z∈RnJ×ny

‖ ˆJ(k)Φy − Φ̂Jz‖2

Gauss-Newton with approximated tensors

p(k) = arg min
a∈Rny

‖Φ̂J
+ ˆJ(k)Φy a + ΦT

J ΦRΦ̂R
+

R̂(k)‖2

y (k+1)
r = y (k)

r + α(k)p(k)

·+ denotes the pseudo (left)-inverse.
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A Simple Example to Test GNAT

Semilinear heat conduction equation

ẏ−∆y +y3 = 0 in Ω = [0, 1], yx (t, 0) = yx (t, 1) = 0, y(0, x) = y0(x),

where y0 is the linear B-spline, with y0(0.5) = 1 and y0(xi ) = 0 on the other
grid points as initial condition.
As a test example for GNAT with different norms: l2-norm and H−1-norm
Time discretization: trapezoidal rule 1024 time steps
The absolute error of the 0 function would be 6.5693.

m POD GN-T2 l2 GN-T2 H−1 GNAT-T3 l2 GNAT-T3 H−1

1 3.1122 3.2468 3.1023 3.2468 3.1247
2 2.5975 2.7838 2.5671 2.7842 2.5675
3 2.2933 2.8680 2.9654 3.0028 2.1774
4 1.6844 2.1068 1.3497 2.1243 1.3429
5 1.1871 1.5485 1.1526 1.6895 0.9978
6 0.7795 0.9980 0.6094 1.0006 0.6003
7 0.5105 0.6681 0.4001 0.6719 0.3974
8 0.3278 0.4288 0.2520 0.4253 0.2518
9 0.2096 0.2771 0.1615 0.3060 0.1636
10 0.1326 0.1764 0.1026 0.1767 0.1028
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A Simple Circuit

e1(t)

ψ(t, x)
n(t, x)
p(t, x)

jV (t) e2(t)

Rvs(t)

Figure: Basic circuit with one diode.
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A Simple Circuit: GNAT Tier III vs. POD-DEIM
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Figure: POD (red), mor reduction with GNAT Tier III (black) with initialization from last
step (left), the same, but GN starts with POD solution (right), l2-Norm of the weighted
equations
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Discussion: Comparing GNAT with POD-DEIM

Time discretization:
I POD-DEIM: reduced system not discretized in time;→ can choose

appropriate solver for the ODE/DAE system, with automatic order control
and time stepping +

I GNAT:
I first discretize in time, then reduce;→ the operator R depends on

the time discretization scheme
I complex implementation if adaptive time integration with order

control is used −
I if the full system is solved with a higher order method in time, the

use of implicit Euler for the GNAT-reduced system only is slow,
because the low order of Euler requires to incorporate many time
steps to achieve a comparable accuracy;→ need to implement
complex higher order time integration
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Discussion: Comparing GNAT with POD-DEIM II

Approximation: +

I GNAT is more accurate then POD-DEIM (for the same time
discretization), because test space is not reduced, so all equations are
used, and the best approximation (in the l2-norm) is used

I for multiple equations the residual has to be weighted
+ possibility to increase the influence of important equations
− neccesarity to carefully weight in the present problem

I initial value for the GN iteration is important, if there are multiple local
minima,
(here: state from the last time step / or POD-solution (very good))
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Thank you for your attention !
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