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Coupled circuit and semiconductor models
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Coupled circuit and semiconductor models; sketch

fletwork, equatiens (1)-(3)
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Kirchhoff’s’ laws (no semiconductors) read 2y
Ai=0, v=ATe

A: (reduced) incidence matrix.

Voltage-current relations of components:

. d
Jc = qc

(Vc, t), jr = g(va, 1), v = %UL, t)

Modified Nodal Analysis: join all equations to DAE system

dgc

Acat

(AZelt),t) + Ang (AR e(t), t) + Auju(t) + Aviv(t) = —Aris(1),
SO (0, 1) — AT e(t) =

Ay e(t) = vs(t).
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Semiconductor modeled as PDE system

PDE-model (drift-diffusion equations) for semiconductors
div (V) = g(n— p — C),
—qdin+ divd, = qR(n,p),
qop + div Jp = —qR(n, p),
Jn = mnq( UrVn —nVy),
Jo = ppq(—UrVp — pVi),

on Q x [0, T] with Q C RY (d = 1,2, 3).
Dirichlet boundary constraints at I'o x:

d’(t’ X)’ n(ta X) = ﬁ(X), p(t’ X) = ﬁ(X) r

and Neumann boundary constraints at I';:

V(t, x) - v(X) = Jdn-v(x) = dp(t,x) - v(x) =0 . o

0.3

or mixed boundary conditions at Ml contacts (MOSFETS).
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Coupling of semiconductors to the network [M. Ginther '01, C. Tischendorf '03]
Coupling conditions:

Jsk(t) = (Jn + Jp — €0/ VY) - v do,
Fo,k
Y(t, X) = Pui(x) + (As e(t))x
for (t,x) € [0, T] X Toxk,

and add current js to Kirchhoff’s current law:

dqgc

A
°dt

(AE e, t) + Arg (AE e, t) + At + Avjv+Asfs = —Ails,
d
¢L (isf) — AT e = 0,
AV e = Vs.

Add DD-equations + coupling conditions for each semiconductor.
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Full model

Acdditc (AL e(t), 1) + Arg (AR e(t), 1)
HALL(E) + Aviu(D)+Asfs(t) = —Ajis(0),
SO () — AT e(t) = 0,
Ay e(t) = vs(1),

Js(t) = C1dn(t) — Cadp(t) — Cagy(t) = 0,

0 P(1)

—M, A(t) n(t)
M(L)P(t)  Arew gl:,,(g) + F(nh, p", gf}) — b(AF e(t)) = 0.

0 Jn(t)

0 Jp(1)

first space discretization (mixed FEM), then time discretization (DASPK)
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MOR of semiconductors modeled by PDEs
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Reduced model recoupled to the network

o +12V

Ac djf (AL e(t),t) + Ang (AR (), 1)

+ALL(E) + Aviv(D)+Asfs(t) = —Ais(1),
L Giu(e), ) — AT e(t) =,

Ay e(t) = vs(t),
js(t) = C1Uy,vu, (1)

- CZUJP'YJp(t) - CSUQ¢;YQ¢(t) =0,
0 Y (1)
—n(t) n(t)
Yo (t t
(1) + Arop Yo(t) + UT F(nPOP, pPOP, gPOP) _ T b(AT e(t)) = 0.
0 7Q¢(t)
0 Yoo (1)
0 4, (1)

FEM using reduced nonlocal basis obtained by Snapshot-POD
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Discrete Empirical Interpolation Method (DEIM)

Reduced nonlinearity, classical treatment
ut F(UnYns Upp, quz 7911;)
with DEIM approximated as:
T T —1 T
(U W(P W) ) ‘P F( Un")’n, UP'YP’ Ug«p"/gap)

npop X Npeiy, block-dense  MDEIM negy
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GNAT compared to POD DEIM
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Gauss-Newton with Approximated Tensors (GNAT)

K. Carlberg, et. al.: The GNAT nonlinear model reduction method and its
application to fluid dynamics problems, in AIAA (2012)

» GNAT is a nonlinear model order reduction method
Uses least-squares Petrov-Galerkin projection

approximating the residual and Jacobian using the "Gappy POD” method
to reduce complexity

time discrete approach

v
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GNAT: Model Hierarchy

I.(High—ﬁdelity model] — snapshet collection — compression

projection (reduce dimension)

II.(POD—Gauss—Newton]—- snapshot collection — compression

system approximation (reduce complexity)

III[Ga uss—Newton with Approximated Tensors (G NAT:E]

Figure 1. Model hierarchy with approximations shown in red.

Source: K. Carlberg, et. al., The GNAT nonlinear model reduction method
and its application to fluid dynamics problems, in AIAA (2012)
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GNAT: GN Tier II-Model

ODE as result of a semidiscretization of a time-dependent (parabolic) PDE

y() = Fly(), ) y(0) = yo(n)-
Implicit time integration yields a sequence of nonlinear problems from Tier |
of the form

R'y"™im)=0 — Ry =0.
Solve, take snapshots, compute POD basis ®,, approximate y in the form

y=y9+ o
Solve least-squares problem

min |[R(y)ll2
yeyO+y

with Gauss-Newton
p* = argmin ||JXd,a+ RH ||,
acRY

yr(k+1) _ }/r(k) + a(k)p(k)

Classical approach: Petrov-Galerkin projection
SR + @) =0
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GNAT: Tier [lI-Model

Gappy POD, approximating R*) and J®) &, by computing only a selection of
their rows. * denotes the restriction operator to the sample indices, ®g, ®,
POD-bases

RY ~ opRY  JWo, x o "

RY = argmin ||R% — $rz]|2
ZER"R

JH = argmin ||J¥®, — &,z||2
ze]RnJ Xny
Gauss-Newton with approximated tensors
p% = argmin |6, JK b a+ dTdadr AW,
acR"Y

yr(k+1)

-* denotes the pseudo (left)-inverse.

_ J/r(k) + a(k)p(k)
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A Simple Example to Test G

Semilinear heat conduction equation

y_Ay+y3 =0 inQ= [071]7 yX(t,O) = yX(t,1) =0, y(O,X) = }’O(X),

where y; is the linear B-spline, with y,(0.5) = 1 and yo(x;) = 0 on the other
grid points as initial condition.

As a test example for GNAT with different norms: /2-norm and H~"-norm
Time discretization: trapezoidal rule 1024 time steps

The absolute error of the 0 function would be 6.5693.

m__ POD GN-T2/2 GN-T2H~' GNAT-T3/2 GNAT-T3 H—'
1 3.1122  3.2468 3.1023 3.2468 3.1247
2 25975 27838 2.5671 2,7842 2.5675
3 22933 2.8680 2.9654 3.0028 2.1774
4 1.6844  2.1068 1.3497 2.1243 1.3429
5 1.1871  1.5485 1.1526 1.6895 0.9978
6 07795 0.9980 0.6094 1.0006 0.6003
7 05105 0.6681 0.4001 0.6719 0.3974
8  0.3278 0.4288 0.2520 0.4253 0.2518
9 02096 0.2771 0.1615 0.3060 0.1636
10 0.1326 0.1764 0.1026 0.1767 0.1028
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A Simple Circuit

ex(t) dv(t) (1)

vs(t)

Figure: Basic circuit with one diode.
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A Simple Circuit: GNAT Tier Ill vs. POD-DEIM
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Figure: POD (red), mor reduction with GNAT Tier IlI (black) with initialization from last
step (left), the same, but GN starts with POD solution (right), /2-Norm of the weighted
equations
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Discussion: Comparing GNAT with POD-DEIM

Time discretization:

» POD-DEIM: reduced system not discretized in time; — can choose
appropriate solver for the ODE/DAE system, with automatic order control
and time stepping +

» GNAT:

» first discretize in time, then reduce; — the operator R depends on
the time discretization scheme

» complex implementation if adaptive time integration with order
control is used —

» if the full system is solved with a higher order method in time, the
use of implicit Euler for the GNAT-reduced system only is slow,
because the low order of Euler requires to incorporate many time
steps to achieve a comparable accuracy; — need to implement
complex higher order time integration
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Discussion: Comparing GNAT with POD-DEIM II

Approximation: +

» GNAT is more accurate then POD-DEIM (for the same time
discretization), because test space is not reduced, so all equations are
used, and the best approximation (in the /2-norm) is used

» for multiple equations the residual has to be weighted
+ possibility to increase the influence of important equations
— neccesarity to carefully weight in the present problem
» initial value for the GN iteration is important, if there are multiple local
minima,
(here: state from the last time step / or POD-solution (very good))
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Thank you for your attention !
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