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Wednesday, July 05
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15:40 - 16:00 Welcome (Garetnzimmer)

16:00 - 17:00 Jack Dongarra p. 5
A Look at Energy Saving on the Intel Knights Landing for Linear
Algebra Computations

17:00 - 17:40 Matthias Bolten p. 5
Increasing efficiency of multigrid methods

17:40 - 18:30 Guided castle tour

18:30 - 20:00 Dinner

Thursday, July 06

09:00 - 10:00 Laura Grigori p. 6
Communication avoiding algorithms for linear algebra kernels

10:00 - 10:30 Coffee Break

10:30 - 11:00 Sue Thorne p. 11

11:00 - 11:30 Krzysztof Rojek p. 17

11:30 - 12:00 Ernesto Dufrechou p. 21

12:00 - 12:30 Julio Ortega p. 27

13:00 - 18:30 Lunch box pickup & Wallberg trip

18:30 - 20:00 Conference dinner
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Friday, July 07

09:00 - 10:00 Ulrich Rüde p. 6
Algorithmic efficiency and the energy wall

10:00 - 10:30 Coffee Break

10:30 - 11:00 Martin Köhler p. 33

11:00 - 11:30 Maŕıa Barreda p. 39

11:30 - 12:00 José I. Aliaga p. 45

12:00 - 12:30 Carolin Penke p. 51

12:30 - 14:00 Lunch break

14:00 - 15:00 Axel Klawonn p. 7
Avoiding communication by nonlinear domain decomposition
methods

15:00 - 15:40 Hartwig Anzt p. 8
Compute more, expend less. . . energy?

15:40 - 16:00 Coffee Break

16:00 - 16:30 Anamika Chowdhury p. 57

16:30 - 17:00 Christian Himpe p. 63

17:00 - 17:40 Markus Geveler p. 9
Hardware/algorithm co-design for energy efficient scientific com-
puting

17:40 - 18:30 Open discussion and closing

18:30 - 20:00 Dinner
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A Look at Energy Saving on the Intel Knights
Landing for Linear Algebra Computations

Jack Dongarra1

In this talk we will look at the current state of high performance computing and look
to the future toward exascale. In addition, we will examine some issues that can help in
reducing the power consumption for linear algebra computations.

Increasing efficiency of multigrid methods

Matthias Bolten2

While multigrid methods show an excellent scaling behavior depending on the num-
ber of cores only logarithmically. This logarithmic behavior is due to the global nature of
the underlying PDE, requiring communication between all parts of the domain and thus
on the whole machine. On large-scale supercomputers this logarithmic dependency is
visible, moreover, communication costs much more energy than computation and should
be avoided as much as possible. To reduce influence of this dependence, the amount of
work being carried out on the coarse levels has to be reduced. This can be achieved by
applying aggressive coarsening, effectively reducing the number of coarse levels. While
this is easily possible in a geometric multigrid setting, the overall performance of the
method will deteriorate, as the size of the coarse space is reduced. To retain a good con-
vergence rate, the smoothing procedure has to be improved. We propose to use block
smoothers to accomplish this, at the same time this results in a higher locality of the op-
erations performed and thus in a better exploitation of modern computer architectures
requiring less energy.

1Electrical Engineering and Computer Science Dept., Univ. of Tennessee, Knoxville, TN 37996-
3450,
dongarra@cs.utk.edu

2Faculty of Mathematics and Natural Sciences, Univ. of Wuppertal, Gaußstraße 20, 42119
Wuppertal, Germany,
bolten@math.uni-wuppertal.de
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Communication avoiding algorithms for linear
algebra kernels

Laura Grigori3

In this talk we discuss one of the challenges we face in high performance computing
which is the increased communication cost, the fact that the time needed to communicate
a floating-point number between two processors exceeds by huge factors the time required
to perform a single floating point operation by one of the processors. Several works
have shown that this gap has been increasing exponentially and it is predicted that it
will continue to do so in the foreseeable future! Motivated by this trend, we describe
novel algorithms for linear algebra computational kernels that drastically reduce the
communication cost with respect to classic algorithms.

Algorithmic efficiency and the energy wall

Ulrich Rüde4

In the ongoing race to exascale, energy has been identified as a critical resource.
While it is important to reduce the energy consumption on the system level, we must be
aware that the dissipation of energy is eventually caused by executing digital operations
and data transfers and is thus primarily a challenge for designing efficient algorithms.
In this light, the energy wall can also be seen as a performance abyss, i.e. it is created
by our failure to implement efficient algorithms so that they also execute fast. For
example it is known that the fastest algorithm to solve the discrete Poisson’s equation
in 2D requires 30 N operations. Thus, e.g. on a Petaflop system, we might expect that
the solution of a moderately large system with a billion unknowns (N=109) should run
in 30 microseconds. Current computational practice misses this prediction by several
orders of magnitude, creating a performance deficit that cannot be explained by parallel
communication overhead or an unfavorable behavior of the memory hierarchy alone.
The talk will try to shed some light on this situation. As a test bed, we will use the
Hierarchical Hybrid Grids (HHG) multigrid prototyping software that can solve systems
with up to 1013 degrees of freedom for PDE problems.

3Universite Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France,
laura.grigori@inria.fr

4Fiedrich-Alexander Univ. at Erlangen-Nürnberg, Cauerstrasse 11, 91058 Erlangen, Germany,
ulrich.ruede@fau.de
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Avoiding communication by nonlinear domain
decomposition methods

Axel Klawonn5

Parallel Newton-Krylov domain decomposition (Newton-Krylov-DD) methods are
fast and robust solvers, e.g., for nonlinear implicit problems in solid and fluid mechan-
ics. In these methods, the nonlinear problem is first linearized and then each linearized
problem is decomposed, i.e., is solved by a Krylov space method using a domain de-
composition preconditioner. In nonlinear domain decomposition methods, by changing
the order of these operations, first the nonlinear problem is decomposed and then the
nonlinearly decomposed problem is linearized. This allows for the design of new parallel
nonlinear FETI-DP and BDDC domain decomposition methods with increased locality
and reduced communication. Such nonlinear domain decomposition methods have been
successful in reducing the time to solution for different nonlinear problems compared
to Newton-Krylov-DD approaches. Since the nonlinear domain decomposition methods
are based on a decomposition of the global nonlinear problem into many local nonlinear
problems, strongly local nonlinearities can be resolved by a small number of local non-
linear problems or computational cores, respectively. The remaining cores which are not
busy with those local, strongly nonlinear effects can wait and save energy. In classical
Newton-Krylov-DD approaches, this is not possible since all nonlinear effects, whether
local or global, interfere with the global convergence of Newton’s method and keep all
cores busy all the time.

5Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany,
klawonn@math.uni-koeln.de
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Computing more for saving energy?

Hartwig Anzt6

The cost of moving data between different memory levels and/or processors is typ-
ically dominating the energy balance of numerical algorithms. Precisely, the energy
needed for communication and data access is much larger than the energy needed for
computations. With the shrinking transistor size and no disruptive paradigm change in
memory technology in sight, this gap in resource requirements is expected to widen in
future. In this talk we evaluate the potential of trading data movement against com-
putations. We specifically focus on iterative linear algebra. Based on the observation
that the convergence of iterative methods typically depends on how fast information gets
propagated via the system, the idea is to accept some convergence delay and additional
computations in favor of reduced communication volume.

6Electrical Engineering and Computer Science Depti., Univ. of Tennessee, Knoxville, TN 37996-
3450,
anzt@cs.utk.edu
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Hardware/algorithm co-design for energy efficient
scientific computing

Markus Geveler7

The energy crisis is approaching a showdown: Energy consumption due to computing
is expected to increase much faster than the entire world’s total energy production which
will be exceeded in the 2030ies. Even based on extrapolating current technology to a
hypothetical future level (mainly based on improved manufacturing processes leading to
smaller transistors) this would lead to only an insignificant delay of this point in time.

Performance is a function of hardware and code. Energy to solution is determined
by performance. In an ideal scenario scientific software as well as the compute hardware
used in scientific workflows should not follow a design paradigm that is oblivious of the
respective other.

Today however, scientific computing is still somewhat ’blind on the energy eye’:
Commodity compute hardware in HPC centers has substantial energy requirements so
that the associated expenses over the lifetime of a system may exceed the initial acqui-
sition costs. In addition, the energy supply for supercomputers is not always an integral
part of its overall design – consumers (such as the compute cluster, cooling, networking,
management hardware) are often developed independently from the key technologies of
the energy revolution, e.g. renewable energy sources, battery and power grid techniques.
Scientific software on the other hand requires knowledge of the specific target hardware
architecture which implies adjustments of numerical methods and their implementation.
Otherwise efficiency losses are inevitable and always imply too much energy spent. In
the performance engineering studies for decades energy efficiency has been eclipsed by
computational performance and only recently power and energy metrics started being
included into performance models for numerical software.

This talk explores the possibilities of a system integration approach that brings
together an unconventional compute cluster (based on Tegra line mobile GPUs) with
a modern photovoltaic energy supply and hardware-oriented algorithms. We exemplify
how a combination of market-available hardware that fits to a specific class of numerical
workloads and specially tailored, hardware-oriented numerics can be combined to tackle
the energy crisis: by lowering energy consumption as well as building the energy supply
alongside its demand.

7TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany,
markus.geveler@math.tu-dortmund.de
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Energy consumption of the Jacobi method: shared
memory and single/double precision

Sue Thorne1 Andrew Taylor2

Software developers frequently endeavor to ensure that the resulting
code is efficient, where efficiency is normally measured by considering
the wall clock execution time of the code. In the future, it is likely that
HPC resources will be charged by the number of energy units consumed.
Additionally, the reduction in power usage and energy consumption is
of great importance when moving from petascale to exascale computing.
Hence, there is now an increasing desire for codes to be energy efficient,
that is, to minimise the amount of energy consumed whilst the code is
run.
In this report, we consider three different architectures (ARMv8, Blue
Gene/Q and Intel Xeon IvyBridge-based nodes) and compare how ex-
ecution time, power usage and energy consumption changes as we in-
crease the number of OpenMP threads being used within our benchmark
code, the Jacobi Test Code, which implements the Jacobi method ap-
plied to a 3D Poisson problem. We will also compare what happens
to the timings, energy consumption and power usage when we run the
code in single and double precision. The different architectures all ex-
hibit very different behaviours both in terms of what happens when
we switch between single and double precision, and also what happens
when we alter the number of threads. For two of the architectures, the
energy consumption is not proportional to wall clock execution times
and, for one of them, we demonstrate that halving the execution time
can have minimal effect on the energy consumption.

1 Background and motivation

In software development, a large amount of work is done to ensure that the resulting code
is efficient. Efficiency is normally measured by considering the wall clock execution time
of the code and software developers often strive for their codes to scale well as the number
of processes/threads increases. This is normally driven by the desire to “get a quicker
answer” or “solve a larger problem in a given time-frame”. Note that the generally used
method for charging users of HPC resources is based on the number of node hours or core
hours used. In the future, it is likely that HPC resources will be charged by the number
of energy units consumed [5]. Additionally, the reduction in power usage and energy
consumption is of great importance when moving from petascale to exascale computing.

1The Hartree Centre, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Har-
well Campus, Didcot, United Kingdom, OX11 0QX ,
sue.thorne@stfc.ac.uk

2The Hartree Centre, Science and Technology Facilities Council, Daresbury Laboratory, Sci-Tech Dares-
bury, Daresbury, Warrington, United Kingdom, WA4 4AD,
andrew.d.taylor@stfc.ac.uk

1



PACO 2017 Extended Abstract

More specifically, the number of floating point operations per second needs to increase by
a factor of 1000 but the power consumption of the required supercomputer is limited to
just a factor of 10 increase [3]. Thus, vendors are producing new energy efficient chips
but different types of chip can have very different energy consumption and power usage
behaviours.

In this report, we will consider three different architectures and compare how execution
time, power usage and energy consumption changes as we increase the number of OpenMP
threads being used and also alter the problem size within the Jacobi Test Code [2]. We
will also compare what happens when we run the code in single and double precision. It
is important to note that it is not uncommon for codes to be run with double precision
accuracy when the underlying problem is of much lower accuracy and, hence, time and
energy may have been wasted by computing a solution to many more significant figures
than necessary. Additionally, it may be possible to use mixed-precision within a code,
i.e., some components can be run in single precision and techniques are used to recover
double precision accuracy.

2 Jacobi Test Code

The Jacobi Test Code (JTC) contains a number of implementations of the Jacobi algo-
rithm for solving a simple 3D partial differential equation (Poisson’s equation on a cuboid)
[2]. In this report, we will concentrate on the baseline-opt implementation and will refer
to this as JTC CORE. The baseline implementation of the Jacobi algorithm consists of three
nested loops with basic loop optimisations and, in addition, the version used for the tests
in this report uses an optimised form of the inner loop to enable the compiler to vectorise
the loop.

At the i-th iteration in JTC CORE, each entry in a vector vi is computed by averaging the
values in vi−1 at neighbouring grid points. This stencil-type approach is found in many
application codes and, hence, the JTC is a good representation of the work performed in
the kernel of many codes.

In all of our tests, we set nruns = 10 and niter = 50, that is, JTC CORE is run 10 times
and 50 iterations used in each run. We consider cubic problems with Nx grid points in
the x, y and z directions, and, in this paper, we set Nx = 502 and 892. The total problem
size is (Nx − 2)3.

3 Architectures considered

We ran the JTC on three different architectures, which are summarised in Table 1. These
resources were provided by STFC’s The Hartree Centre [1]. In all of our results, we use
the term execution time to refer to the wall clock time for running the test problem. The
number of threads, nthr, used will be architecture dependent. We always repeat our tests
five times for each problem size with each configuration and report the mean values. We
cannot do direct comparisons of the energy usage on these different architectures because
the domains over which we could measure the power usage varied. On ACE, we were
able to obtain a trace of the power consumption for the whole of the node being used; for
Bantam, the trace was over the whole of the node board (traces over subdomains of the
node board were available but not over an individual node); for Neale, the trace was over
the A2 node power domain (CPU execution units and memory) on the individual node
being used.

2

PACO 2017
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Name ACE Bantam Neale
ISA ARMv8.1 PowerPC x86

Processor Cavium ThunderX IBM A2 PowerPC Intel (IvyBridge) Xeon ES-2650v2
Processors/Cores per node 2/96 1/16 2/8 (16 threads)

Clockspeed 2.1GHz 1.6GHz 2.6GHz (3.6 GHz Max)
L1 Cache 78(I) + 32(D) kB 16 kB 32 kB
L2 Cache 16 MB 32 MB 256 kB
L3 Cache - - 20 MB

Memory per node 132 GB 16 GB 64 GB
Compiler GNU gcc (6.1.0) XL mpicc (12.1) Intel icc (5.0.3)

Flags -mcpu=thunderx+lse -03 -std=c99 -fopenmp -03 -std=c99 -static -fopenmp
-03 -std=c99 -static -fopenmp

Power domain node node board A2 node

Table 1: Summary of the three different architectures.

Nx = 502 Nx = 892

precision nthr time(s) energy(kJ) power(W) time(s) energy(kJ) power(W)

single 12 140.6 32.8 233.3 881.3 205.6 233.7
24 86.5 20.9 241.5 469.9 114.9 244.9
48 50.7 13.0 255.4 266.1 69.8 262.5
96 31.3 8.6 275.3 169.7 48.3 284.7

double 12 260.6 60.8 233.8 1382.2 324.8 236.9
24 161.3 39.0 240.5 898.7 221.2 242.7
48 97.7 25.0 255.7 482.3 128.2 259.4
96 59.9 16.5 276.3 324.8 93.7 290.1

Table 2: Average execution time, energy consumption and power usage on ACE for the
JTC run in single and double precision with different numbers of threads and
Nx = Ny = Nz = 502 or 892.

4 Numerical Results

In Table 2, we compare the execution time, energy consumption and power usage of a
node on ACE when nthr = 12, 24, 48 and 96. We also compare the single and double
precision versions of the JTC. We start by observing that as we increase the number of
threads, the power usage steadily increases. Hence, for Nx = 502 and single precision,
switching from 12 to 96 threads decreases the execution time by a factor of 4.49 but
the energy consumption is only decreased by a factor of 3.81. Thus, on the ARMv8.1,
increasing the number of threads has a greater affect on the execution time than the
energy consumption. Switching from double precision to single precision has little affect
on the power usage but the execution time drops by between 35 and 50%.

We compare the execution time, energy consumption and power usage of a node board
on Bantam for nthr = 1, 2, 4, 8 and 16 in Table 3. We start by noting that the behaviour
is different to that of ACE. In particular, the power usage stays almost static when the
number of threads increases and, hence, increasing the number of threads decreases the
execution time and energy consumption by similar factors. For the double precision ver-
sion, increasing the number of threads from 8 to 16 has little affect on the execution time.
This is due to increased data traffic causing a large increase in the number of L2 cache
misses [4]. The more interesting observations come from comparing the single and double
precision versions. For nthr = 1, 2 and 4, the single precision version is slower than the

3

PACO 2017
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Nx = 502 Nx = 892

precision nthr time(s) energy(MJ) power(kW) time(s) energy(MJ) power(kW)

single 1 597.8 1.047 1.751 3339 5.846 1.751
2 267.1 0.455 1.702 1482 2.540 1.714
4 139.5 0.245 1.753 781.3 1.365 1.747
8 72.6 0.128 1.766 419.4 0.735 1.752
16 41.9 0.074 1.761 239.0 0.420 1.758

double 1 480.5 0.825 1.716 2698 4.644 1.721
2 210.9 0.371 1.759 1146 2.008 1.752
4 105.8 0.185 1.753 602.9 1.062 1.762
8 77.0 0.136 1.769 428.5 0.762 1.778
16 76.2 0.134 1.761 421.2 0.730 1.733

Table 3: Average execution time, energy consumption and power usage on Bantam for
the JTC run in single and double precision with different numbers of threads
and Nx = Ny = Nz = 502 or 902.

double precision version. For these values of nthr, the low levels of parallelism mean that
the execution time is dominated by the time to perform the float point operations and
the time spent doing data movement is a secondary consideration. The Blue Gene/Q
uses Quad-Process eXtension, which means that single precision arithmetic is performed
by converting the single precision input data to double precision, performing the floating
point operation in double precision and converting the result back to single precision.
Therefore, each single precision operation takes longer than a double precision operation
(and requires more energy), which accounts for the single precision version taking longer
for nthr ≤ 4. However, data movement between threads should be faster for single preci-
sion reals compared to double precision reals. For nthr = 8 and 16, the extra parallelism
means that data movement now dominates. For nthr = 8, this domination means that the
single precision version is marginally faster than the double precision version. Switching
to nthr = 16, the data movement becomes even more dominant and the gains in using
single precision over double precision for the larger test problems result in the execution
time (and energy consumption) of the single precision version being roughly 55% of that
of the double precision version.

Finally, in Table 4, we compare the execution time, energy consumption and power
usage by the A2 node domain on Neale for nthr = 1, 2, 4, 8 and 16. We start by noting
that switching from 8 to 16 threads generally increases the execution times. As with
ACE, increasing the number of threads increases the power usage but the increase is a
lot more dramatic for the Intel Xeon IvyBridge chip. Indeed, the large increase in power
usage when moving from 8 to 16 threads means that the increase in energy consumption
is more pronounced than the increase in execution time. Also switching from one to
two threads almost halves the execution time, the energy consumption only has a small
decrease because the power usage almost doubled. The double precision variant takes
roughly twice the time of the single precision variant and, since the power usage is the
same for both versions, we see a similar drop in the energy consumption.

4
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Nx = 502 Nx = 892

precision nthr time(s) energy(kJ) power(W) time(s) energy(kJ) power(W)

single 1 72.7 1.875 25.9 431.7 11.14 25.8
2 36.9 1.621 43.8 219.0 9.63 43.8
4 20.4 1.044 50.8 162.6 8.19 50.1
8 16.2 0.967 59.5 110.0 6.62 60.5
16 17.9 1.344 75.5 97.4 7.36 75.9

double 1 134.9 3.482 25.8 1088 28.13 25.9
2 68.4 3.069 44.9 549.5 24.55 44.7
4 41.1 2.128 52.5 354.0 18.09 51.1
8 35.2 2.191 62.3 233.4 14.19 60.8
16 41.2 4.036 73.7 235.0 17.26 73.5

Table 4: Average execution time, energy consumption and power usage on Neale for the
JTC run in single and double precision with different numbers of threads and
Nx = Ny = Nz = 502 or 902.

5 Conclusions

We have compared the behaviour of the execution time, energy consumption and power
usage of the JTC for varying numbers of threads and precisions on three different archi-
tectures. None of the architectures exhibited the same behaviour. On the Blue Gene/Q,
the energy consumption was directly related to the execution time but we only saw gains
in using single precision over double precision when the data movement dominated the
computation. For the ARMv8.1 architecture, increasing the number of threads resulted
in the power usage increasing and, hence, reductions in energy consumption were not as
big as any reductions in execution times. The popular Intel Xeon IvyBridge architecture
had much more dramatic increases in power usage as the number of threads increased
and, hence, although the execution times can be large, the energy consumption barely
dropped.

We therefore conclude that, for a code that is going to be run on differing architectures,
it will be difficult to produce a code that scales well with respect to execution time and
energy consumption on all of the architectures. We also observe that, if single precision
can be used effectively within a mixed precision code then, on some architectures, there
may be benefits in both execution time and energy consumption.

Code Availability

The source code of the implementations used to compute the presented results can be
obtained from:

https://ccpforge.cse.rl.ac.uk/gf/project/asearchtest/ and is authored by: A. Taylor,
V. Szeremi, L. Anton and M. Mawson

5
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Improving energy efficiency of MPDATA on GPU-based
supercomputers using mixed precision arithmetic

Krzysztof Rojek1 Roman Wyrzykowski2

In this work, we propose a method that allows us to decrease the en-
ergy consumption in supercomputing centers. Our method is based on
applying the mixed precision arithmetic, and its use is demonstrated
for a real-life scientific application called MPDATA. All the tests are
executed on two GPU-based clusters. The first one, the Piz Daint su-
percomputer ranked 8th at the TOP500 list (Nov. 2016), is equipped
with the most powerful GPU accelerators - NVIDIA Tesla P100 that
are based on the NVIDIA Pascal GPU architecture. The second one,
the MICLAB cluster, is equipped with the most advanced Kepler based
GPUs - NVIDIA Tesla K80.
Our research show that using the proposed technique we are able to
provide a very high accuracy of computation and significantly decrease
the energy consumption. The correctness and accuracy of our imple-
mentation are examined in a standard 3D solid body rotation test case.

1 Introduction

The energy consumption is a critical issue due to the significant increase of operation costs
in modern computer systems [2]. In consequence, reducing the energy consumption turns
into the primary objective for scientific and industrial environments, which are related
to large-scale calculations. It is estimated that reducing the energy consumption by one
megawatt could save about 1 million $ per year. Given the rapidly climbing power bills,
as well as the negative impact of energy production technologies on the environment,
achieving power and energy efficiency of parallel systems and applications has become
one of the most challenging issues.

In this work, we focus on reducing the energy consumption in big supercomputing
centers. We would like to propose to consider this issue from the point of view of average
users. Therefore, we need to face with a common problem for users of such centers. A lot
of approaches to reducing the energy consumption require some special user authorizations
to apply techniques required to modify the hardware configuration (frequency, switching
nodes off, powering cores down). However, an average user does not have access to change
such characteristics while executing his/her time and energy consuming simulations.

2 Problem Overview

We propose to apply the mixed precision arithmetic [10, 4] under some constraints to
reduce the energy consumption. The constraints are related to the accuracy of simula-
tions expressed by three types of errors: diffusion error, phase error, and L2 norm. The

1Czestochowa University of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland,
krojek@icis.pcz.pl

2Czestochowa University of Technology,
roman@icis.pcz.pl
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correctness of our technique is examined based on a real-life scientific applications, Mul-
tidimensional Positive Definite Advection Transport Algorithm (MPDATA) [9], with a
standard 3D solid body rotation test case.

The 3D MPDATA application corresponds to an iterative algorithm that solves the
continuity equation describing the advection of a nondiffusive quantity Ψ in a flow field:

∂Ψ

∂t
+ div(VΨ) = 0, (1)

where V is the velocity vector that is stored in three separate arrays v1, v2, and v3; each
of them stores the velocity in one direction: i, j, and k, respectively.

MPDATA is the main module of the multiscale fluid model EULAG [5]. The model is an
innovative solver in the field of numerical modeling of multiscale atmospheric flows. The
algorithm is positive defined and by appropriate flux correction can be also monotonic.
This is a desirable feature for advection of positive definite variables such as specific
humidity, cloud water, cloud ice, rain, snow, aerosol particles, and gaseous substances.
The spatial discretization of MPDATA is based on finite difference approximations. The
algorithm is iterative and fast convergent.

In fact, to implement this algorithm we use 11 arrays: v1, v2, v3, f1, f2, f3 represents
velocities in each direction (f1, f2, f3 are required to store intermediate results); x, xP
correspond to the scalar quantity Ψ (xP - output of the odd iteration or time step of
MPDATA, and input of the even time step; x - vice versa); h represents the vector of
density, while cp, cn store intermediate results. Our current GPU implementation [6]
consists of 4 GPU kernels which perform a sequence of stencil computations.

The proposed implementation of MPDATA is examined using the standard 3D solid-
body rotation test [8], in which a sphere of radius R is advected with a constant angular
velocity ω = 0.1 around the domain diagonal axis. The velocity field is stationary and
divergent free. The initial distribution of the tracer inside the sphere is defined as Ψ(r) =
4(1 − r/R), where r is the distance from the center of the sphere.

Our numerical simulations have been performed at regular grids (∆x = ∆y = ∆z)
with different resolution, namely 413, 813, 1213. The size of time step depends on the grid
resolution. Assuming the grid spacing equal to 2 (∆x,∆y,∆z = 2) and the time increment
∆t = 0.2, we estimate the maximum value of the Courant number as Cr = 0.29.

To quantify the accuracy of numerical results we use the following statistical measures:

• phase error defined as the distance between the exact maximum position (at t = 0)
and that computed after one full rotation:

Rphase =
√

(istart − iend)2 + (jstart − jend)2 + (kstart − kend)2 (2)

• diffusion error (q represents the quantity Ψ):

Rdiff = max(qstart) −max(qend) (3)

• L2-norm:

RL2 =

√√√√ 1

N

N∑
i

(qstarti − qendi )2 (4)
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3 Main Contribution

This approach is aiming at reducing the energy consumption beyond using hardware-
dependent methods. The advantage of our method is that it does not require any special
user authorizations. Thanks to that it can be widely applied to most advanced supercom-
puting centers by all the users with the standard access. The proposed method minimizes
the energy consumption by selecting the precision for each of the MPDATA arrays. De-
creasing the precision from double to float decreases the size of an array by the factor of
two, as well as memory traffic, while the execution time is reducing by a factor depending
on hardware platforms, since the single precision arithmetic is twice faster than the double
one using NVIDIA Tesla P100 GPUs and three times faster for Kepler-based GPUs.

Our assumptions are as follows:

• reducing the precision for an array reduces the simulation accuracy;

• reducing the precision for an array decrease the energy consumption;

• reducing the precision for a number of arrays at once has different impact on the
simulation accuracy and energy consumption compared to separate reductions.

The constraints are presented below:

• the phase error Rphase should not exceed the distance between two nodes in the
computational grid;

• the diffusion error Rdiff should be lower than Rdouble
diff + ∆Rdiff ;

• the value RL2 of L2-norm should be lower than Rdouble
L2 + ∆RL2.

As a rule of thumb, we propose to increase the values of errorsRdiff , RL2 by ∆Rdiff ,∆RL2 =
0.15 in relation to the errors Rdouble

diff , Rdouble
L2 achieved using the double precision format.

To implement the proposed method, the following procedure is executed for MPDATA:

1. Execute the test run using the double precision arithmetic for all the arrays.

2. Execute 11 tests: for each test set one array to float.

3. Run an estimator to select a near optimal solution.

4. If errors are too high, then increase the precision for the last array changed by the
estimator; otherwise, decrease the precision for the first array unchanged by the
estimator.

5. Repeat steps 3-4 until two consecutive iterations return the same set of precisions.

The estimator collects data from the tests, including the values of energy consumption
and errors, and calculates the ratio r = δE/δRL2 for each array, where δE and δRL2 are
differences between respectively the energy consumption and L2-norm measured for the
double and float formats. Then the estimator sorts the arrays by the ratio r, from the
highest to the lowest. Finally, it sets the arrays (in the sorted order) to float until the
adopted constraints are satisfied, and executes a new test using the new precisions for the
selected arrays.

The preliminary tests were performed using the CUDA+MPI environment on the
Piz Daint supercomputer [1] equipped with NVIDIA P100 GPUs, and MICLAB cluster
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[3] containing NVIDIA K80 GPUs. These tests show that our method allows reducing the
energy consumed by the application from 25% to 35% on Piz Daint and from 33% to 43%
on MICLAB, considering only the energy consumed by the graphic cards. Furthermore, it
allows users to decrease the energy consumption resulted from their simulations without
any special access to machines such as the superuser account. Using the mixed precision
arithmetic, our approach based permits us to achieve the energy reduction at the similar
level as the DVFS technique investigated in paper [7]. What is also important, unlike the
DVFS technique, the proposed method reduces the execution time of MPDATA.
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Studying mixed precision techniques for the solution of
algebraic Riccati equations

Peter Benner1 Ernesto Dufrechou2 Pablo Ezzatti3 Alfredo Remón4

We evaluate different algorithms and the use of a mixed-precision ap-
proach for the solution of Algebraic Riccati Equations (AREs). The
mixed-precision method obtains an approximation to the solution us-
ing single-precision arithmetic and then, this approximation is improved
via a cheap iterative refinement. Some numerical results show that the
mixed-precision solver reports time and energy savings and also pro-
vides similar or even more accurate solutions than well-known methods
like the Sign Function or SDA on CPU-GPU platforms.

1 Introduction

We consider the solution of the algebraic Riccati equation (ARE)

0 = Rc (X) := Q+ ATX +XA−XGX, (1)

where A, Q and G ∈ Rn×n are given, and X ∈ Rn×n is the sought-after solution. Un-
der certain conditions [8], the ARE (1) has a unique c-stabilizing solution Xc, which is
symmetric positive semidefinite. (Here, Xc c-stabilizing means that Ac := A − GXc is
c-stable; i.e., it has all its eigenvalues in the open left half plane.)

The solution of AREs is required in some scientific and engineering applications, e.g.,
in linear quadratic optimal control (LQOC) and model order reduction problems. It
is a computationally intensive operation that involves O(n3) floating-point operations
(flops) and therefore, the use of high performance computing techniques and hardware is
necessary whenever n takes moderate to large values (n > 1, 000). Software packages as
MESS[1], PLiC[2] or the MATLAB Control System ToolboxTM provide support for the
solution of AREs.

2 Solution of AREs

A number of methods have been proposed for the solution of AREs (e.g., see [6]). In this
section we briefly review two of the more popular, the Sign Function and the Structure-
Preserving Doubling Algorithm (SDA) methods. Additionally, we review an iterative
refinement scheme that mixes single precision (SP) and double precision (DP) arithmetic
computations to get the maximum performance of the underlying hardware.

1Max Planck Institute for Dynamics of Complex Technical Systems, 30.106-Magdeburg, Germany,
benner@mpi-magdeburg.mpg.de

2Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay,
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3Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay,
pezzatti@fing.edu.uy

4Max Planck Institute for Dynamics of Complex Technical Systems, 30.106-Magdeburg, Germany,
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2.1 The Sign Function method

The solution of an ARE (1) can be defined by the invariant subspaces of the pencil

H − λI2n, where H is the Hamiltonian matrix defined as H =

[
A G
−Q −AT

]
. Addition-

ally, it can be shown that from a basis of the H-invariant subspace corresponding to the
n eigenvalues in the open left half of the complex plane, the c-stabilizing solution of the
associated ARE [4] can be obtained. This solution can be computed by the Sign Function

of H, sign(H) = Y =

[
Y00 Y01
Y10 Y11

]
, and then solving an overdetermined system (e.g., via

the least squares method). The procedure is summarized in Algorithm GECRSG.

Algorithm GECRSG

H0 :=

[
A G
−Q −AT

]
for k = 0, 1, 2, . . . until convergence

Hk+1 := 1
2

(
Hk +H−1

k

)
(16n3 flops)

Solve

[
Y11

Y12 + In

]
X =

[
In − Y10
−Y00

]
(13n3 flops)

Note that the dimension of H doubles that of A and hence, a high performance matrix
inversion kernel is mandatory to enable the solution of large problems. However, GECRSG
exhibits a remarkable convergence rate that makes it very appealing. The variant here
evaluated employs a highly tuned CPU-GPU matrix inversion kernel, see [5] for details.

2.2 The Structure-Preserving Doubling Algorithm (SDA)

In the last years, the SDA has received considerable attention as an ARE solver because
of its simplicity, efficiency, and convergence properties [7].

Algorithm GESDA reflects a basic implementation of the SDA for the solution of an ARE.
The major operations (from the computational point of view) are annotated to their right
with the cost of a basic implementation. Let us consider only the iterative loop:

• The cost of the algorithm is (2/3 + 16)n3 flops per iteration. Its high cost can be
partially compensated by the parallel efficiency of the operations involved in the
routine, namely, matrix-matrix products and linear system solves.

• A practical convergence criterion is to check during the iteration for

‖Yk‖F
‖Xk+1‖F

< τS, (2)

with τS =
√
ε · n, and perform then 2 additional steps. The convergence of the iter-

ation is asymptotically quadratic, which ensures the maximum attainable accuracy.

2
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Algorithm GESDA

γ := max(1, 2 ‖A‖F )

Â := A− γIn
Q̂ := QÂ−1 ((2/3 + 2)n3 flops)

Ŵ := (ÂT + Q̂G)−1 (4n3 flops)

A0 := In + 2γŴ T

G0 := 2γ(Â−1G)Ŵ ((2/3 + 4)n3 flops)

X0 := 2γŴ Q̂ (2n3 flops)
for k = 0, 1, 2, . . . until convergence

Ŵ := GkXk (2n3 flops)

Â := (In + Ŵ )−1Ak ((2/3 + 2)n3 flops)

Yk := ÂXkAk (4n3 flops)
Xk+1 := Xk + Yk
if not convergence

Gk+1 := Gk + AkGk(In + Ŵ T )−1AT
k (6n3 flops)

Ak+1 := AkÂ (2n3 flops)
end if

The implementation evaluated in this work executes the most time consuming oper-
ations in the GPU while operations that exhibit a fine-grain parallelism are performed
in the CPU. Whenever it is possible, both processors concurrently perform their tasks,
reporting significant time savings. Finally, the computation of inverses is replaced by the
use of the LU factorization of the related matrix.

3 A mixed-precision ARE solver

In Benner et al. [3], the authors describe a Newton-like method for the solution of an
ARE. Given an approximation to the solution of the ARE, X0, the procedure (Algorithm
GEIR) performs an iterative refinement that successively approximates the solution X
until the desired precision is reached. At every step, GEIR solves a Lyapunov equation.

Algorithm GEIR:

for k = 0, 1, 2, . . . until convergence

Pk := Q+ ATXk +XkA−XkGXk

Solve
(
AT −GXk

)
Nk +Nk

(
AT −GXk

)
= Pk

Xk+1 := Xk +Nk

In practice, provided a relatively accurate X0, a few steps of algorithm GEIR are enough
to get the desired solution as this procedure is a variant of Newton’s method for AREs,
indicating quadratic convergence. The suitability of GEIR requires of a cheap method to
compute X0 and an efficient Lyapunov solver. The initial approximation, X0, can be
efficiently obtained executing some steps of GESDA, which can even be performed using SP
arithmetic. This way, the solver benefits from the larger performance that the hardware
offers in SP arithmetic computations (Intel CPUs are 2× faster and this factor is larger
for NVIDIA GPUs). An economic Lyapunov solver was presented in [5]. The solver
implements the Sign Function and relies on a tuned CPU-GPU matrix inversion kernel.
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Mojigata Hetfield
Processor NVIDIA K40 “Kepler” GK110B NVIDIA TitanX “Maxwell” GM220
# Cores 2,880 3,072

G
P

U
Memory 12 GB GDDR5 12 GB GDDR5

C
P

U
Processor i7-4770 i7-6700
# Cores 4 4
Frequency 3.40 GHz 3.40 GHz
Main memory 16 GB DDR3 64 GB DDR3
Compiler icc 14.0.0 icc 14.0.0

S
W

CUDA Version 6.5 8.0

Table 1: Platforms employed in the evaluation

4 Experimental evaluation

The evaluation focuses on two aspects, the time to solution and the energy consumption.
The test-cases evaluated were extracted from the Oberwolfach5 benchmark collection. In
particular, two instances of the steel profile (with n = 1, 357 and 5, 177) and another
from the flow meter problem (n = 9, 669). Although the three cases permit the use of
a low-rank solver, only the Sign Function implementation takes advantage of this feature.
Table 1 describes the hardware employed in this evaluation. A remarkable difference
between both platforms is that the performance of the GPU in Hetfield is 32× larger
when using SP arithmetic than using DP, while this factor reduces to 3× in Mojigata.
However, when using hybrid (CPU-GPU) variants these ratios can be smoothed.

Power/energy was measured via RAPL to gauge the consumption from the server’s
package and DRAM, and the NVML library to obtain the dissipation from the GPU.

We first evaluate the computational performance of the Sign Function and the SDA
fixing the number of iterations of each solver so that they reach comparable accuracy
results. The residual error is computed as

RRes = ‖Rc (X∗)‖F /(‖Q‖F + 2 ‖A‖F ‖X
∗‖F + ‖G‖F ‖A‖

2
F ). (3)

The results summarized in Tables 2 and 3 show that both solvers behave differently
in the two platforms. While in Hetfield the Sign Function solver is clearly faster,
Mojigata seems to slightly favor the SDA solver. This behavior is explained by noting
that the implementation in SDA is more suitable to the GPU architecture, and the GPU
in Mojigata is more powerful (when using DP arithmetic). On the other hand, the Sign
Function implementation features a better CPU-GPU load-balance.

Mojigata Hetfield
problem # steps sign func. solver total sign func. solver total rel. res.

rail 1357 10 3.63 0.37 4.05 4.78 0.30 5.09 1.51E-17
rail 5177 11 71.81 10.45 82.81 154.52 11.76 166.55 4.96E-17
flow 9669 13 411.34 74.90 488.19 1093.64 72.59 1167.12 2.12E-10

Table 2: Run-times (in sec.) of the Sign Function solver.

For the mixed-precision scheme, we execute the proposal modifying the number of SDA
and iterative refinement and steps. At every step of the iterative refinement, a Lyapunov
equation is solved via the Sign Function method. Once again we fixed the parameters so
that a comparable accuracy is reached. The results, summarized in Table 4, demonstrate

5Available at https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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problem # steps Mojigata Hetfield rel. res.

rail 1357 24 1.85 6.37 4.96E-16
rail 5177 27 75.89 316.67 4.61E-16
flow 9669 24 401.79 1805.26 7.99E-12

Table 3: Run-times (in sec.) of the SDA solver.

that the mixed-precision strategy is more effective in Hetfield, where the GPU exhibits
a higher performance in SP arithmetic. But it also outperforms the DP solvers (except for
the small case of SDA) on Mojigata. Regarding the parametrization of the solver, the
experiments show that the effect of the number of steps performed by the SP solver on the
accuracy reached diminishes as the dimension of the problem grows. As a consequence,
the refinement steps have a strong impact on the final accuracy. This is specially relevant
in the larger instance.

#steps Mojigata Hetfield
problem GESDA Newton Lyap. GESDA It. ref. total GESDA It. ref. total Rel. res.

rail 1357

10 1 10 0.7 1.5 2.2 0.5 1.9 2.4 1.75E-14
10 2 8 0.7 2.1 2.9 0.6 2.6 3.2 1.62E-14
15 1 9 0.9 1.3 2.3 0.6 1.8 2.4 9.10E-15
15 2 8 0.9 2.2 3.2 0.7 3.0 3.8 1.78E-15
20 1 9 1.2 1.3 2.5 0.8 2.0 2.8 6.92E-16
20 2 8 1.1 2.2 3.3 0.9 3.2 4.1 3.70E-16

rail 5177

10 1 10 19.8 30.1 50.0 13.0 61.0 74.0 6.53E-15
10 2 9 19.0 42.4 61.41 12.6 104.3 117.0 4.99E-15
15 1 10 26.6 23.7 50.08 17.4 61.8 79.1 1.44E-15
15 2 9 26.4 44.2 70.60 17.3 104.9 122.3 1.00E-15
20 1 10 33.3 30.2 63.56 21.8 62.0 83.8 7.42E-16
20 2 9 33.3 39.4 72.66 21.8 105.2 127.0 1.31E-16

flow 9669

10 1 7 111.4 113.7 225.12 72.9 291.5 364.4 2.44E-09
10 2 7 107.6 167.4 275.0 70.7 527.4 598.1 3.94E-13
15 1 7 149.1 100.4 249.5 99.7 291.7 391.4 2.15E-09
15 2 7 151.5 164.0 315.5 101.0 529.5 630.6 3.73E-13
20 1 10 189.1 149.8 339.0 130.5 374.7 505.2 5.39E-10
20 2 8 178.9 187.0 365.9 129.4 585.3 714.8 7.21E-15

Table 4: Run-times (in sec.) and relative residuals reported by the mixed-precision solver.

In a second experiment, we measure the energy consumption related with the best
configuration of each method in Mojigata. Tables 5 and 6 show the energy consumption
of the three solvers. In the mixed-precision case, the SP and DP stages are distinguished.
From the reported results, it can be noticed that the savings in energy consumption of the
mixed-precision method is slightly higher than the run-time counterpart. Furthermore,
the improvement seems to increase with the dimension of the problem.

solver problem # steps time (s) energy (j)

sign func.
rail 1357 10 4.0 563.88
rail 5177 11 85.65 14493.7
flow 9669 13 487.29 94516.5

sda
rail 1357 24 2.16 437.2
rail 5177 27 78.12 17730.2
flow 9669 24 467.22 101077.1

Table 5: Energy and run-time evaluation of the double precision solvers.
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problem
#steps GESDA It. Refinement Total

GESDA Newton Lyap. time (s) energy (j) time (s) energy (j) Energy (j)

rail 1357 10 2 9 0.71 118.3 2.04 309.4 427.7
rail 5177 10 2 10 19.55 3342.7 33.72 6554.0 9896.7
flow 9669 10 2 7 104.95 16459.0 115.97 24536.0 40995.0

Table 6: Energy and run-time evaluation of the mixed precision solver.

5 Concluding remarks

In this work we presented and evaluated a mixed precision variant for the solution of the
Algebraic Riccati Equation. The experimental evaluation showed that the mixed-precision
variant offers an interesting reduction on the execution time, compared to traditional
methods like the Sign Function and SDA. In addition, the savings in energy consump-
tion reported are even more important than the savings in run-time, what reinforces the
convenience of the mixed-precision solver over DP solvers.

As future work, we will study a low rank variant of the mixed precision solver. Specif-
ically, a combination of a low rank variant of the SDA or the Sign Function algorithm to
obtain the initial solution and a low rank Lyapunov solver in the iterative refinement.
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Energy-aware scheduling for parallel evolutionary

algorithms in heterogeneous architectures

Julio Ortega, Juan José Escobar, Antonio Dı́az, Jesús González, Miguel Damas1

The availability of mechanisms such as dynamic voltage and frequency
scaling (DVFS) and heterogeneous architectures including processors
with different power consumption profiles allow scheduling algorithms
aware of both runtime and energy. In this paper, we propose and evalu-
ate a scheduling strategy that takes into account the relative weights of
the workloads and the frequencies and voltages of the different process-
ing cores in a given heterogeneous parallel architecture either to save
energy without increasing the running time or to reach a trade-off among
time and energy. The parallel algorithms considered to evaluate the pro-
posed scheduling procedure are master-worker evolutionary algorithms
whose fitness functions demand high computing times and distribute
the fitness evaluation of the individuals among the available cores. As
many useful bioinformatics and data mining applications present this
profile, the proposed energy-aware scheduling approach could be fre-
quently applied. The experimental results obtained by simulation show
relevant energy savings, with values depending on the characteristics of
the heterogeneous architecture and on the workload profiles.

1 Background models

Any scheduling procedure locates tasks on the available processors according to predic-
tions about their computational cost and the corresponding energy consumption. There-
fore, the procedure also needs information about the characteristics of processors in the
system where the tasks are executed. In this section, the models on energy consumption
and computing time required by the given tasks are described.
The energy model used by the proposed scheduling procedure is estimated from the

power consumption equations corresponding to CMOS circuits that include the terms
associated to capacitive, short-circuit, and leakage power. As the most part of previous
works, and assuming the capacitive term as the most significant, we will use it to estimate
the power consumption in a processor as:

P = β × f × V 2 (1)

Where parameter β is related with the product of the number of transistors switching
in the processor per clock cycle and the total capacitance load, f is the clock frequency
of the processor, and V is the supply voltage. Therefore, the energy Ei consumed by a
given task i that requires Ci clock cycles in a processor with a supply voltage Vi can be
estimated from (1) by

Ei = β × f × V 2
i ×

Ci

f
= β × V 2

i × Ci (2)

1Dept. of Computer Architecture and Technology, CITIC, University of Granada (Spain),
jortega@ugr.es, jjescobar@ugr.es, afdiaz@ugr.es, jesusgonzalez@ugr.es, mdamas@ugr.es

1



PACO 2017 Extended Abstract

a) b)

Figure 1: Task dependence graph considered (a), and evolutionary algorithm as example
of application with such graph (b)

Whenever a processor is idle, there is also a so called indirect energy consumption that
for a given processor k can be estimated by

E idle
k = β × f × V 2

idle × tk (3)

where Vidle is the supply voltage of the processor in its idle state, and tk is the amount
of time in which processor k has been in this state. The tasks have to be located on the
processors included in a heterogeneous platform with p processors, Pj(j = 1, ..., p). Each
processor Pj can operate at different voltage supply levels (VSL), Vj,l(l = 1, ..., ω(j)),
corresponding to different clock frequencies frequencies fj,l(l = 1, ..., ω(j)).

2 A bi-objective scheduling procedure

This section describes a scheduling procedure that allocates processors and frequencies
to tasks trying to minimize both runtime and energy consumption. It can be applied to
parallel programs whose tasks dependence graphs are shown in Figure 1.a. In this graph,
tasks T1, T2, ..., TN can be executed in parallel after task T0, and after synchronizing
themselves once they have finished, task T0 is executed again and generates another set
of parallel tasks T1, T2, ..., TN executed in parallel, and so on. Moreover, the runtime of
task T0, is negligible with respect to the runtime of each parallel task T1, ..., TN . Many
useful applications can be parallelized according to the dependence graph of 1.a. Indeed,
1.b schematizes an evolutionary algorithm. Each generation, the fitness of the individuals
in the population has to be evaluated according to some performance procedure that could
demand a costly computation. For example, in [1] evolutionary multi-objective optimiza-
tion is applied to solve a feature selection problem in a BCI application. The individuals
of the population correspond to different sets of features that define the components of
the patterns to be classified. These sets of features have to be evaluated by the accuracy
of the classifier once it has been adjusted by using the training patterns characterized
by the selected features. The iterations required to train the classifier usually require a
high amount of computing time.The fitness evaluation needs between 97.36% (with 30 000
individuals in the population) and 99.93% of the runtime (for 120 individuals).
To define the scheduling strategy, we take into account four parameters, tMAX , tmax,

tmin and tMIN . These parameters can be obtained from the highest and lowest clock cycles
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values, Ci, required to complete the estimated workloads of the different tasks (i = 1, ..., n)
and from the frequencies of the available processors, fj,l(j = 1, ..., p, l = 1, ..., ω(j)) as
follows:

tMAX = max(Ci(i = 1, ..., n))/min(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (4)

tmax = max(Ci(i = 1, ..., n))/max(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (5)

tmin = min(Ci(i = 1, ..., n))/min(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (6)

tMIN = min(Ci(i = 1, ..., n))/max(fj,l, (j = 1, ..., p, l = 1, ..., ω(j))) (7)

The parameter tMAX is the time required by the task with the heaviest workload when
it is executed in a processor running at the lowest frequency, the parameter tmax is the
time required by the task with the highest workload in a processor running at the highest
frequency. This way tMAX and tmax respectively represent the highest and lowest running
times that the heaviest task would require in the present heterogeneous platform. In the
same way, tmin and tMIN are, respectively, the highest and lowest running times for the
lightest task.
It is also possible to define energy consumption parameters, ECMAX , ECmax, ECmin,

and ECMIN , that respectively correspond to the runtimes tMAX , tmax, tmin, and tMIN as
follows:

ECMAX = β ×max(Ci(i = 1, ..., n))× [min(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (8)

ECmax = β ×max(Ci(i = 1, ..., n))× [max(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (9)

ECmin = β ×min(Ci(i = 1, ..., n))× [min(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (10)

ECMIN = β ×min(Ci(i = 1, ..., n))× [max(Vj,l, (j = 1, ..., p, l = 1, ..., ω(j)))]2 (11)

The parameters tMAX , tmax, tmin, and tMIN verify that tMIN < tmax < tMAX and
tMIN < tmin < tMAX while ECMAX , ECmax, ECmin, and ECMIN verify that ECmin <
ECMAX < ECmax and ECmin < ECMIN < ECmax. Therefore, given a task i with Ci

clock cycles, that have been allocated to a processor with supply voltage Vj and frequency
fj, it is possible to define two indexes, ∆t and ∆E, with values between 0 and 1, and
respectively related with the contribution of the task allocation to the runtime and to
energy consumption:

∆t =

Ci

fj
− tMIN

tMAX − tMIN

(12)

∆E =
K × Ci × V 2

j − ECmin

ECmax − ECmin

(13)

To select a processor and the corresponding frequency for a given task, the scheduling
algorithm uses a cost function that takes into account both the energy and runtime
objectives through indexes ∆t and ∆E. In our procedure we propose the cost function
∆(Ci, fj) = ∆ta × ∆Eb with integers a and b greater than or equal to one. This cost
function promotes allocations with low values of ∆t and ∆E, and even lower values for
one factor whenever the other factor grows. Depending on the relative values of a and b
it is possible to give more relevance either to lower runtime or lower energy consumption.
The proposed scheduling procedure is shown in Figure 2.
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C(i)(i = 1, ..., p) // Cycles of task i to be allocated to a processor
Cmax = max(C(i)(i = 1, ..., p));
Cmin = min(C(i)(i = 1, ..., p));

// Frequency i-th of processor j-th (FL frequency levels; p processors)
F (i, j)(i = 1, ..., FL; j = 1, ...p)
Fmax = max(F (i, j)(i = 1, ..., FL; j = 1, ...p));
Fmin = min(F (i, j)(i = 1, ..., FL; j = 1, ...p));
Compute tMAX , tmax, tMIN , tmin, and ECMAX , ECmax, ECMIN , ECmin

C(i)(i = 1, ..., p) is sorted verifying C(j) ≤ C(j + 1)(j = 1, ..., p− 1);
for i = 1 : p

// Select processor to locate C(i) and frequency
for j = 1 : p

if processor j has not been previously selected
for k = 1 : FL

∆(C(i), F (j, k)) = ∆ta ×∆Eb;
end;

end;
end;
Select the frequency level of processor, s, not previously selected, for which
is obtained the minimum value of ∆(C(i), F (j, k));
Mark processor s as selected;

end;

Figure 2: Description of the energy-aware procedure for scheduling

3 Performance evaluation

In this section, we analyze the performance of the proposed scheduling procedure. Table
1 describes the three configurations of eight processors with different clock frequencies
we have used in our experiments. As can be seen, each configuration corresponds to a
different level of heterogeneity. Indeed, conf1 is homogeneous as all the processors have
the same levels of voltage and frequency. The configuration conf2 includes two different
processors while conf3 includes four. More specifically, Table 1 provides the relative
speeds with respect to the one achieved at the highest frequency, which is 1 GHz in all
the configurations.

We have also used three different profiles for the evolutionary algorithm. They are
defined by the lowest and the highest values for the computing cost of the fitness evaluation
tasks, and the lowest difference between two different computing costs. The cost weights
for the individuals in the population are randomly selected. This way, the benchmark
b30×100 includes tasks with computing costs between 100 and 3 000 cycles with cost
differences multiple of 100 cycles. The computing costs of the tasks in b300×100 go from
1 000 to 30 000 cycles being 100 cycles the lowest difference between tasks, and finally, the
tasks in b30×1 000 go from 1 000 to 30 000 cycles with lowest differences of 1 000 cycles
between tasks. Each of these files (b30×100, b300×100 and b30×1 000) includes 100
configurations of task costs with the aforementioned characteristics. These configurations
have been randomly selected by using a standard uniform distribution. This way, the
averages for the increments in runtime and energy consumption correspond to 100 different
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% P1 P2 P3 P4 P5 P6 P7 P8

100 100 100 100 100 100 100 100
conf1 80 80 80 80 80 80 80 80

50 50 50 50 50 50 50 50

80 80 80 80 100 100 100 100
conf2 64 64 64 64 80 80 80 80

40 40 40 40 50 50 50 50

60 60 80 80 90 90 100 100
conf3 48 48 64 64 72 72 80 80

30 30 40 40 45 45 50 50

Table 1: Relative speeds (in %) in the processors of the configurations used in the
experiments

(a, b)
(1, 1) (1, 3) (2, 1) (3, 1) (3, 2)

Bench. Conf. ∆t ∆E ∆t ∆E ∆t ∆E ∆t ∆E ∆t ∆E

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b30×100 conf2 74.68 −60.96 74.68 −60.96 6.78 −10.84 6.78 −10.78 75.19 −60.44

conf3 58.61 −64.18 58.61 −64.18 148.80 −11.74 24.41 −16.05 59.71 −63.36

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b300×100 conf2 75.23 −61.85 75.23 −61.85 9.37 −10.42 8.81 −10.27 76.19 −61.05

conf3 54.76 −65.06 54.76 −65.06 148.50 −11.96 24.23 −15.78 57.42 −63.60

conf1 100.00 −55.80 100.00 −55.80 0.00 0.00 0.00 0.00 100.00 −55.40
b30×1 000 conf2 73.59 −60.95 73.59 −60.95 8.34 −10.21 7.62 −9.97 73.71 −60.28

conf3 53.81 −64.18 53.81 −64.18 143.70 −11.82 21.85 −15.87 54.97 −63.02

Table 2: Averages of increments in runtime and energy consumptions. The values corre-
sponding to the lowest runtime increments are shown in bold characters

cases.

Table 2 shows the results obtained for the averages of the increments in runtimes and
energy consumptions by the proposed scheduling procedure for the different benchmarks.
These benchmarks have been executed on the three considered configurations described
in Table 1. The increments corresponds to the differences in runtime and energy con-
sumption with respect to a random scheduling of the tasks across the different processors.
Several couples of values for the parameters a and b in ∆(Ci, fj) = ∆ta ×∆Eb have been
considered.

As can be seen, in the homogeneous configuration conf1 only it is possible to save en-
ergy for the (a, b) couples (1, 1), (1, 3), and (3, 2), that also provide high decrements in
the energy consumption in the heterogeneous configurations conf2 and conf3. Neverthe-
less, in these last two configurations, the couples (1, 1), (1, 3), and (3, 2) also determine
increments in the runtime higher than 50%. The (a, b) couples (2, 1) and (3, 1) produce
neither increments in the runtimes nor decreases in the energy consumption whenever the
homogeneous conf1 is considered.

In the heterogeneous configuration conf2, the couples (2, 1) and (3, 1) allow increments
in the runtime much lower than those obtained with (1, 1), (1, 3), and (3, 2) although
the energy savings are also lower. In the other heterogeneous configuration, conf3, this
behavior (i.e. lower increments in the runtime with decrements in the energy consumption)
is only observed with couple (3, 1). The couple (2, 1) produces high increments in the
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runtime (higher than 140%). From Table 2 it is also apparent that given a parameter
couple (a, b), the averages in the increments in runtime and energy consumption are
similar for the three different distributions of task costs considered (b30×100, b300×100
and b30×1 000).

4 Conclusions

This paper proposes a scheduling procedure for evolutionary algorithms, with fitness
functions requiring high runtimes to be evaluated, that takes into account not only runtime
but also energy consumption. The procedure is based on dynamic voltage and frequency
scaling (DVFS) and it is useful in heterogeneous architectures including processors with
different power consumption profiles. It uses an approximate estimation of the cost of the
fitness evaluation task, to build a cost function, ∆(Ci, fj) = ∆ta × ∆Eb, including the
effect of energy consumption and speed through two parameters, a and b, that control the
trade-off between these two measures. The simulation experiments we have accomplished
have shown that by using the adequate combination of those two parameters it is possible
to control the strength of each component, runtime and energy consumption. This way,
the averages values for the increments of speed and energy consumption obtained across
different configurations of task costs show that our procedure is able to reach energy
savings of more than 10% with a runtime increment of about 9%. In many configurations
of tasks it has been also observed energy savings of about 10% without any increase in the
runtime. Given a configuration and a couple of parameters, a and b, similar averages of
increments in runtimes and energy consumption have been observed across the considered
distribution of task costs.
A lot of researching work still has to be completed. On the one side a more detailed

characterization of the heterogeneous configurations of processors in terms of their ca-
pabilities to make possible task allocations with the best speed and energy consumption
figures would be very useful. The performance evaluation by using profiles of task costs
corresponding to real applications should be also completed, along with measuring the
real values for energy savings and speeds in the execution of the parallel codes in the
available heterogeneous platforms. This way, the usefulness of the consumption models
we use in our scheduling procedure would be demonstrated.

Acknowledgements

This work was supported by project TIN2015-67020-P, funded by the Spanish “Ministerio
de Economı́a y Competitividad” and European Regional Development Funds (ERDF).

References

[1] J. Ortega, J. Asensio-Cubero, J. Q. Gan, and A. Ortiz, Classification of

motor imagery tasks for bci with multiresolution analysis and multiobjective feature

selection, BioMedical Engineering OnLine, 15 (2016), p. 73.

6

PACO 2017

32



PACO 2017 Extended Abstract

Frequency Scaling and Energy Efficiency regarding the
Gauss-Jordan Elimination Scheme on OpenPower 8

Martin Köhler1 Jens Saak2

The Gauss-Jordan Elimination scheme is an alternative to the LU de-
composition for solving linear systems or computing the inverse of a
matrix. We develop a multi-GPU aware implementation of this algo-
rithm on an OpenPOWER 8 system with application to the Matrix Sign
Function. Thereby, we analyze the influence to the CPU clock frequency
scaling on the overall energy consumption. The results show possible
energy saving of 14.2% without a noteworthy increase of the runtime.

1 Introduction

Beside solving a general linear system Ax = b using the LU decomposition there are
a few applications, like Newton’s Method for computing the Matrix Sign Function [9,
4, 3, 2] or the Polar Decomposition [7], that require the explicit inverse A−1. In this
case, either the three step scheme implemented in LAPACK [1] or the Gauss-Jordan
Elimination [11] can be used to obtain A−1. The LAPACK approach first computes
the LU decomposition of the matrix A, then inverts the upper triangular matrix U ad
finally solves LA−1 = U−1. This procedure takes 2m3 flops if m is the order of the
matrix. Furthermore, this approach causes that three routines need to be regarded during
the optimization of the implementation. Moreover, the two steps working on triangular
matrices are complicated to parallelize by their nature. On the other hand, we have
the Gauss-Jordan Elimination computing the inverse A−1 by rearranging the three step
LAPACK scheme [11]. The resulting algorithm is free of any operations dealing with
triangular matrices and mainly consists of general matrix-matrix products. This makes
the algorithm preferable on massively parallel architectures, like multi-core or accelerator
based systems. Furthermore, one can show that the Gauss-Jordan Elimination reduces
the number of memory accesses [10] and by using general matrix-matrix multiplies the
data locality for the single operations of the algorithm is improved.

In our contribution, we focus on the efficient implementation of the Gauss-Jordan ma-
trix inversion on the OpenPOWER 8 platform. Besides two 10-core IBM POWER8
CPUs the test system is equipped with two Nvidia Tesla P100 accelerators with NVLink
interconnect and 256 GB DDR4 memory. The system can be seen as predecessor of the
compute nodes in the upcoming super computer “Summit” at Oak Ridge National Lab-
oratory3 that will use the IBM POWER9 platform together with the next generation of
Nvidia’s accelerators named “Volta”. The most important differences to previous GPU
accelerated systems and the named POWER8 system are:

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg ,
koehlerm@mpi-magdeburg.mpg.de

2Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstraße 1, D-39106 Magdeburg ,
saak@mpi-magdeburg.mpg.de

3https://www.olcf.ornl.gov/summit/ – Accessed March 20th, 2017
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• The usage of NVLink as interconnect between CPU and GPU. This increases the
transfer rate between their memories by a factor of 2 to 3 in comparison to the latest
PCI-Express bus. In this way, data transfers between the CPU and the GPU are
cheaper (with respect to runtime) than on older systems.

• The ratio of the peak performances between both CPUs and GPUs is a factor of
20. This is a increase by a factor of 5 if we compare it to an older system, like the
16 core Intel Xeon Haswell with two Nvidia K20 accelerators, where we have done
our previous work on [10].

• While keeping the energy consumption for the GPUs in the same order of magnitude
as for the old K20 GPUs the energy consumption of the POWER8 CPUs is much
higher in idle state, as well as in full operation mode, compared to the Intel Haswell
Xeon CPUs with a similar peak performance.

The last point makes the difference from the energy point of view. For this reason we want
to focus on reducing the power consumption of the CPUs by changing their clock frequency
and/or changing the CPU frequency governors that control the automatic adjustment of
the CPU clock frequency.

The contribution is organized as follows. First we recall the Gauss-Jordan Elimination
approach and its efficient implementation. Later on we use the Matrix Sign Function as
an application for our matrix inversion code. Finally, we show the influence of changing
the CPU’s clock frequency to the time-to-solution, the energy-to-solution and the Energy-
Delay-Product (EDP) [5, 8]. Thereby, the EDP can be used to decide whether it is worth
to save the energy or to save runtime from an economic point of view.

2 Gauss-Jordan Elimination

The Gauss-Jordan Elimination scheme can be interpreted as an alternative representation
of the LU decomposition with reordered operations [11]. Therefore, we will only recall
the basics to obtain a blocked algorithm here. First, we consider the Gauss-Transform
Gi ∈ Rm×m:

Gi =



1 −a1i
aii

. . .
...

1 −a(i−1)i

aii
1
aii

−a(i+1)i

aii
1

...
. . .

−ami

aii
1


, (1)

which introduces zeros in the i-th column of a matrix GiA and sets the i-th row in this
column to one. By applying Gi to a permuted matrix PiA, where Pi exchanges row i with
row k, k := argmaxk≥i |aki|, one can use pivoting as in the LU decomposition [6]. We use

G̃i := GiPi as pivoted Gauss-Transform (PGT). The application of m Gauss-Transforms
or pivoted Gauss-Transforms from the left to a matrix A ∈ Rm×m yields its inverse:

G̃m · · · G̃1︸ ︷︷ ︸
A−1

A = I. (2)
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Using the fact that G̃i eliminates the i-th column, except of the 1 on the diagonal, one
can store the i-th column of G̃i in the i-th column of A, after it is applied, to obtain
an in-place algorithm. The block algorithm (with a block size of NB) is obtained by
the following considerations. Without loss of generality, we neglect the pivoting matrix
Pi. The application of a Gauss-Transform Gi can be written as a rank-1 update with an
additional operation:

A← A− 1

aii

(
a1i, · · · , a(i−1)i, 0, a(i+1)i, . . . , ami

)T
Ai,·

Ai,· :=
1

aii
Ai,·. (3)

By partitioning the matrix A into

A←

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (4)

where A22 is of dimension NB × NB we obtain the block formulation of the rank-1 up-
date (3) as:

A←

 A11 0 A13

0 0 0
A31 0 A33

+

 −A12A
−1
22

A−122

−A32A
−1
22


︸ ︷︷ ︸

H

[
A21 INB

A23

]
. (5)

Thereby, the matrix Hk can be regarded as the (partial) inverse of the block column

B :=
[
AT

12 AT
22 AT

32

]T
and can be computed by applying Gauss-Transforms to B as

well.

In order to avoid a direct fallback from the rank-NB updates from (5) to the rank-1
updates from (3) in the computation of H we use the same strategy as in LAPACK since
version 3.6.0. There the locality improved LU decomposition was introduced [12] to avoid
the direct level-2 BLAS fallback. The key idea is to apply the blocked algorithm again to
H but with a block size of NB

2
recursively until the block size is reduced to 1 and the final

work consists only in updating a single column. As in the case of the LU decomposition
this increases the data locality of the operations and allows to use more level-3 BLAS
operations than if one uses the rank-1 formulation immediately.

Taking the GPUs into account, we can easily create a hybrid CPU-GPU version of our
algorithm. The rank-NB update is well suited for the GPU because, on the one hand, the
general matrix-matrix product is one of the best optimize routines for the GPUs and, on
the other hand, using the block cyclic distribution scheme this can be easily parallelized
across multiple GPUs. Asynchronous operations and lookahead are also easy to implement
by splitting the update with H and A23 into two parts. The first part affects the leading
NB columns of A23 and results in the input data for the computation of the next matrix
H. Afterwards the GPUs can handle the remaining part of A23 while the CPU prepares
the next matrix H.

Newton’s Method for the Matrix Sign Function The Matrix Sign Function X :=
sign(A), e.g. [9], is the generalization of the sign of a scalar number to the matrix case.
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Figure 1: m = 20 480
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Figure 2: m = 40 960

One way to compute it is to use one of its defining properties, X2 = I, and apply the
Newton iteration with the initial value A. This yields the following iteration:

Xk+1 :=
1

2

(
Xk + X−1k

)
X0 = A. (6)

On convergence sign(A) = X∞ holds. In practical implementations a scaling factor ck is
introduced to accelerate the convergence [3]. For ease of presentation we do not regard
this here.

Beside the inversion of the matrix Xk we only need a matrix valued scale and a matrix
valued add operation. Having in mind that this operation is bandwidth bound we refer to
the high bandwidths of the system here. Reaching a practical GPU–memory bandwidth
of 500 GB/s one can still scale a matrix filling up the device memory 31.25 times per
second. With a memory bandwidth of 230GB/s bandwidth bound operations can also be
performed on the CPUs.

If pivoting is enabled during the inversion of Xk, the Gauss-Jordan-Elimination scheme

computes the inverse X̃k

−1
of PXk, where P consists of all permutations used during the

pivoting. Therefore, we have to add a column permutation to X̃k

−1
to obtain X−1k :=

X̃k

−1
P T . As long as only one GPU is used this can easily be performed on the GPU.

If the matrix is distributed across several GPUs this becomes a communication intensive
procedure. Due to the limited bandwidth between two GPUs (40GB/s) the irregular
movement of the columns will slow down the whole procedure. In this case we move the
whole matrix X−1k to the host memory again and use a parallel permutation algorithm
there. Finally, we distribute the matrix to devices again an create an on device copy of the
matrix to have Xk+1 already available for the next iteration. Changing the devices’ data
layout to a cyclic block row representation we can easily permute the columns but the
problem of the distributed data moves to the row permutation inside the Gauss-Jordan
Elimination, which causes the same problems there.

3 Results

We run all experiments on the OpenPOWER 8 system (IBM POWER System 822LC)
running CentOS 7.3 (with a custom build Linux 4.8 kernel) mentioned in the Introduction.
The software ecosystem consists of Nvidia CUDA 8.0, IBM XLC 13.1.5, IBM XLF 15.1.5,
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Figure 3: m = 61 440

Dimension 20 480 40 960 61 440

EDP(1) 3.890 3.225 2.959
EDP(2) 3.890 3.225 2.959
EDP(3) 3.890 3.690 3.092

Table 1: CPU Clock Frequency (in [GHz])
minimizing the EDP(w) with
weights w = 1, 2, 3.

and IBM ESSL 5.5 as host BLAS/LAPACK library. The CPUs clock frequency can be
adjusted in a range from 2.061GHz to 4.023GHz by steps of ≈33MHz, where for high
clock frequencies above 3.823GHz the frequencies are reduced automatically due to power
supply and thermal issues. Nevertheless, we force the CPUs to reach these frequencies by
using the userspace performance governor of the cpufreq mechanism of the Linux kernel.

The main goal of the experiments is to check whether it is worth to spent more energy
by enforcing a high CPU clock frequency, or where optimal points between an increase
of the runtime and the saved energy are. The optimality is checked with respect to the
Energy-Delay-Product (EDP) [5, 8] defined by:

EDP(w) = E · Tw, (7)

where E is the energy-to-solution, T is the time-to-solution, and w a weight factor to
penalize the time. The optimal block size NB for the Gauss-Jordan Elimination was
determined in previous experiments. Here, we restrict to the matrix inversion since this
is the most challenging operation during the computation of the Matrix Sign Function.
We use random matrices A of dimension 20 480, 40 960, 61 440.

Figures 1 to 3 show the runtime and the energy consumption of the Gauss-Jordan
Elimination. For the smallest case (m = 20 480) we observe that we have an approximately
linear decrease of the runtime coupled with a slowly increasing energy consumption. In
this case, one can still choose nearly maximum CPU clock frequency and still obtain an
economically optimal execution. This coincides with the suggestion of the EDP from
Table 1 to chose a frequency next to the maximum. For larger problems we see that
beginning with a clock frequency of ≈2.9GHz we have a steep increase of the energy
consumption while only obtaining a small speed up in the runtime. On the other hand,
regarding the largest example (m = 61 440) the increase of the clock frequency from
2.959GHz to 4.023GHz costs 14.2% more energy while only accelerating the process by
2.2%, while switching from the clock frequency from 2.016GHz to 2.959GHz we only
need 5% more energy and accelerate the algorithm by 26.9%. The EDP from Table 1
suggest exactly this clock frequency for w = 1 and w = 2. Even if we increase the
impact of the runtime to w = 3 the EDP only suggests an increase of the clock frequency
by 4 steps to 3.092GHz. Finally, we see that for an increasing problem dimension the
influence of the pure CPU power decreases and even for higher weights of the runtime the
EDP suggests a moderate clock frequency in order to obtain an economically acceptable
solution.
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4 Conclusions

We have shown that for the Gauss-Jordan Elimination on the OpenPOWER 8 platform
one can save a remarkable amount of energy by choosing a proper clock frequency for the
CPUs without causing a noteworthy increase of the runtime. This extended abstract only
covers the case of fixed CPU clock frequencies but the hardware (supported by the drivers
from the Linux kernel) supports automatic adjustment with respect to several policies.
These so called cpufreq governors will also be taken into account in the final contribution
as well as the overall process of the Newton iteration (6).
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Characterization of Multicore Architectures using
Task-Parallel ILU-type Preconditioned CG Solvers

José I. Aliaga1 Maŕıa Barreda1 Enrique S. Quintana-Ort́ı1

We investigate the efficiency of state-of-the-art multicore processors us-
ing a multi-threaded task-parallel implementation of the Conjugate Gra-
dient (CG) method, accelerated with an incomplete LU (ILU) precon-
ditioner. Concretely, we analyze multicore architectures with distinct
designs and market targets to compare their parallel performance and
energy efficiency.

1 Introduction

The solution of sparse linear systems via iterative methods has been recently argued to
be representative of the actual performance that is experienced by a large fraction of the
scientific and engineering codes running on current supercomputers. This has led to the
introduction of the HPCG benchmark2 as a complement to the traditional LINPACK
benchmark that ranks supercomputers twice per year in the Top500/Green500 lists.

Following this idea, in this work we investigate the efficiency of state-of-the-art multi-
core processors using our own task-parallel implementation of the CG method enhanced
with an ILU-type preconditioner (hereafter, referred to as ILU-PCG). Our experimental
analysis evaluates both the parallel performance and energy consumption of a variety
of multicore architectures designed to deliver high performance and/or reduced energy
consumption.

The rest of the abstract is organized as follows. In Section 2 we describe the ILU-PCG
solver and how to extract the task-parallelism. In Section 3 we present the architectures
included in the study. In Sectionand 4 we characterize the multicore architectures using
the ILU-PCG solver. Finally, in Section 5 we offer some concluding remarks.

2 Task-parallel ILU-PCG solver

2.1 The iterative solver

In the evaluation we employ an ILU-PCG solver to tackle linear systems with sparse and
symmetric positive definite (s.p.d.) matrix A. The solver computes a preconditioner M ,
via an ILU factorization of the coefficient matrix, and then solves the preconditioned
linear system via a convenient variant of the CG method, which hopefully exhibits a fast
convergence rate due to the effect of the preconditioner.

The most complex and challenging operations in the ILU-PCG benckhmark are the
computation of the preconditioner M and its application. The remaining computations
involve basic linear algebra operations such as the sparse matrix-vector product (spmv),

1Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain,
aliaga@uji.es, mvaya@uji.es, quintana@uji.es

2http://www.hpcg-benchmark.org/
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Figure 1: Dependency tree of the diagonal blocks. Task Tj is in charge of processing the
diagonal block Ajj.

dot (or inner) product, axpy-like update, and the calculation of a vector 2-norm (equiv-
alent to a dot product). We will therefore focus the following analysis in the operations
involving the preconditioner.

2.2 Task-Parallel PCG

The concurrency intrinsic to the calculation as well as the application of the precondi-
tioner is considerably involved. Specifically, the parallelism of the process can be unveiled
by means of nested dissection applied to the adjacency graph representing the non-zero
connectivity of matrix A. By recursively splitting this graph, the result is a hierarchy of
independent subgraphs, organized as dependency acyclic graph (DAG) with the shape of
a binary tree. In the remaining operations of PCG, concurrency is extracted by divid-
ing the operations into subtasks, and mapping the data into the leaves of the DAG. For
example, it is straight-forward to partition the output vector from spmv (or the axpys)
into several subvectors, which can be then computed as independent tasks. The dot and
vector 2-norm are reduction-type operations, also parallelizable, but impose a global
synchronization/communication point to the procedure.

Figure 1 illustrates the dependency tree for the factorization of the diagonal blocks.
The edges of the DAG define the dependencies between the diagonal blocks (tasks); that
is, the order in which these blocks of the matrix have to be processed. Luckily, the leaf
tasks of the DAG in general comprise a significant part of the computational cost of the
process.

In summary, by recursively applying the same idea, we can explicitly unveil an increas-
ing amount of task-level parallelism during the factorization that computes the precondi-
tioner M as well as the triangular solves involved in its application. The DAGs associated
with the first stage (computation of the preconditioner) and the triangular solves with
the lower triangular factor present the form of a tree with bottom-up dependencies, from
the leaves to the root; on the other hand, the triangular solves with the upper triangular
factor share the structure of the DAG but the dependencies are reversed, pointing down
from the root to the leaves.

We note that the recursive decomposition of the graph into further levels multiplies the
concurrency exponentially. However, there exists a balance between the number of levels,
and consequently independent tasks, and the convergence rate of the procedure. Con-
cretely, this recursive process introduces additional numerical levels in the computation
of the preconditioner. Thus, different DAGs are associated with distinct preconditioners,
which can be expected to feature close numerical properties.

In our particular parallel implementation of the PCG solver, task-parallelism is ex-
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Architecture sandy odroid(A15) juno(A57) haswell xeon phi

Procesor number E5-2620 ARMv7 rev 3 (v7l) AArch64 rev 0 E5-2603v3 5110P
#Sockets 2 1 1 2 1
#Cores 12 4 2 12 60
Base Frequency 2.0 GHz 2.0 GHz 1.1 GHZ 1.6 GHz 1.053
Cache 15 MB 2 MB 2 MB 15 MB 30 MB
TDP 95 W 15 W 30 W 85 W 225 W
Voltage Range 0.60 V-1.35 V 0.91 V-1.32 V 0.81 V-1.00 V 0.65 V-1.30 V –
Memory 32 GB 2 GB 8 GB 32 GB 8 GB
Max. Memory Bandwidth 42.6 GB/s 14.9 GB/s 13.2 GB/s 51 GB/s 320 GB/s

Table 1: Hardware specifications of the platforms.

Architecture sandy odroid (A15) juno (A57) haswell xeon phi

gcc 4.4.6 4.8.2 4.9.1 4.4.7 5.1.0
ompss 16.06 16.06.1 16.06.1 16.06.1 16.06
mercurium 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
nanox 0.12a 0.10.1 0.10.1 0.10.1 0.12a
metis 5.0.2 5.0.2 5.0.2 5.0.2 5.0.2
Power/energy measurements RAPL PMLib PMLib RAPL PMLib
Frequency changes CPUfreq CPUfreq CPUfreq CPUfreq –

Table 2: Software specifications of the platforms.

ploited using a multi-threaded code that relies on the OmpSs programming model3 [1].

3 Target Multicore Architectures and General Setup

For the study, we selected three different types of multicore architectures comprising two
general-purpose processors from Intel, two low-power systems from ARM, and the Intel
Xeon Phi. This collection is representative of todays’ multicore technology. Table 1 offers
some information about hardware in each platform; and the software employed in the
platforms are described in Table 2.

All the experiments in next sections employed ieee754 real double-precision arithmetic.
For the analysis, we employed a large-scale linear system corresponding to the Laplacian
equation −∆u = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions, u = g
on ∂Ω, and a discretization that resulted in a SPD system, with instances of different size.
The problem size is the largest that fits in the main memory of each platform.

4 Characterizing Multicore Architectures using ILU-PCG

The following experimental evaluation comprises three “dimensions”, two of them archi-
tectural (number of cores/threads and operation frequency) and one corresponding to
software (number of leaves for ILU-type preconditioner task dependency tree). Due to
the large number of tests and results, we organize the presentation of the performance
analysis of the architecture into the following sequence of steps:

3https://pm.bsc.es/ompss
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Figure 2: Time and energy consumption for the execution of ILU-PCG in sandy.

0

100

200

300

400

500

600

700

800

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

60

80

100

120

140

160

180

200

220

240

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.
4 Thr.

Figure 3: Time and energy consumption for the execution of ILU-PCG in odroid.

1. Evaluation of the parallel ILU-PCG solver for a range of representative frequencies
and number of threads (thread-level parallelism), using 1, 2, 4,. . . , 64 leaves.

2. Selection of the optimal number of leaves for each level of thread-parallelism.

3. Evaluation of the impact of frequency on the ILU-PCG solver.

4. Selection of the optimal frequency for each number of threads.

5. Evaluation of the impact of the thread-level parallelism on the ILU-PCG solver.

This analysis is then repeated from the perspective of energy efficiency, taking as a basis
the performance evaluation to justify some of the results for this second metric.

In order to avoid an exhaustive list of figures and results, we next summarize them
using a few plots that illustrate the interplay between frequency/thread concurrency and
performance/energy consumption. In particular, Figures 2–6 report absolute values for
the last two metrics against processor frequency and number of threads. The third one
(number of leaves), depends on the software, and is set for all these experiments to the
optimal value. To allow an easier visualization of the differences, for those architectures
with a large number of cores, we skip the results obtained with 1 and 2 cores. In any case,
these configurations always offered worse performance and energy efficiency than those
using a higher level of thread concurrency.

A collection of general remarks can be extracted from this experimental evaluation that
emphasize the differences between the performance-oriented architectures (Intel Xeon)
and the low-power processors (ARM):
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Figure 4: Time and energy consumption for the execution of ILU-PCG in juno.
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Figure 5: Time and energy consumption for the execution of ILU-PCG in haswell.

Performance:

1. The optimal number of leaves is mostly determined by the problem size: a
larger dimension can accommodate additional levels of task-parallelism without
incurring into a costly overhead. In contrast, the number of leaves is basically
independent of the architeture class (performance-oriented versus low-power),
frequency, and number of threads. For the small and large problem instances,
the optimal number of leaves are, respectively, 8 and 32.

2. The execution time in general benefits from operating at a higher frequency
and/or using a larger number of cores. However, the differences may be small
when the memory bandwidth is saturated as the results for the low-power
architecture demonstrate.

Energy consumption:

1. The optimal numbers of leaves match those obtained when the figure-of-merit
is performance. The same remarks apply when the target metric is energy
consumption.

2. The optimal frequency is the highest one for the Intel performance-oriented
architectures. In contrast, the ARM low-power processors benefit from a more
reduced frequency level. The reason for this different behaviour is twofold, and
can be used to further distinguish the behaviour of the two types of systems:

a) The performance-oriented architectures exhibit a considerable static power
rate so that increasing the execution time is very costly in terms of energy
consumption. The low-power processors do not suffer from this drawback.
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Figure 6: Time and energy consumption for the execution of ILU-PCG in xeon phi.

b) The low-power processors tend to saturate the memory bandwidth rapidly
as the frequency is raised, yielding a negligible improvement of execution
time for a linear increase in the power dissipation rate. The consequence
is a worse energy efficiency.

3. From the perspective of scalability, adding more cores is beneficial unless the
memory bandwidth is saturated. Once that threshold is surpassed, the increase
in the dissipation rate directly translates into higher energy costs.

5 Conclusions

We have analyzed the computational performance and energy efficiency of servers equipped
with the state-of-the-art general-purpose multicore processors as well as accelerators like
the Intel Xeon Phi. Following the introduction of the HPCG benchmark, we adopted
ILU-PCG to test performance and energy efficiency of multicore platforms, observing dif-
ferent behaviours for performance-oriented and low-power processors, especially when the
figure of merit is energy efficiency.

References

[1] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, and E. S. Quintana-Ort́ı. Lever-
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Harvesting Energy in ILUPACK via Slack Elimination

José I. Aliaga1 Maŕıa Barreda1 Asunción Castaño1

We develop a new energy-aware methodology to improve the energy
consumption of a task-parallel preconditioned Conjugate Gradient iter-
ative solver on a Haswell-EP Intel Xeon. This technique leverages the
power-saving modes of the processor and the frequency range of the
userspace Linux governor, modifying the CPU frequency for some oper-
ations. We demonstrate that its application during the main operations
of the PCG solver can reduce its energy consumption.

1 Introduction

ILUPACK2 (Incomplete LU decomposition PACKage) offers an assorted variety of Krylov
subspace-based methods, enhanced with a sophisticated ILU-type preconditioner, for the
iterative solution of sparse linear systems. The computational cost of computing and
applying ILUPACK’s preconditioner has sparked several recent efforts to develop parallel
versions of this solver, for multicore processors, graphics accelerators, and clusters of
computer nodes; see [2, 3] and the references therein.

Task-parallel versions of ILUPACK have also been used as a case study to explore
the energy consumption and optimization of iterative solvers. Concretely, the authors
of [4] investigated the benefits that an energy-aware implementation of the runtime in
charge of the concurrent execution of ILUPACK produces on the time-energy balance of
the application. The study in that paper reported energy savings between 7 and 13%
(for Intel and AMD multicore processors from 2009-2010), with practically no penalty on
performance.

In this paper we explore a new approach to save energy in the task-parallel version of
ILUPACK’s preconditioned Conjugate Gradient (PCG) method, leveraging the iterative
nature of the method to progressively adjust the frequency of the processor cores in order
to reduce idle periods and harvest energy. In rough detail, our algorithmic-based energy-
saving (ABES) technique is applied to the major operations comprised by ILUPACK,
namely the sparse matrix-vector product (SpMV) and the lower/upper triangular solves
required for the application of the preconditioner (respectively denoted as LwTrSv and
UpTrSv). Each one of these operations is divided into a collection of sub-operations,
or tasks, to be executed in parallel. Then, by enforcing a deterministic mapping of these
tasks to cores, we can detect and quantify idle periods during the first initial iterations,
tuning the operating frequency of the cores to reduce these idle times.

2 Brief Overview of ILUPACK

ILUPACK provides C and Fortran routines for the numerical solution of sparse linear
systems via Krylov subspace methods [8], combined with multilevel preconditioners that

1Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain,
aliaga@uji.es, mvaya@uji.es, castano@uji.es

2http://ilupack.tu-bs.de
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improve the numerical properties of the linear system, accelerating the convergence of the
iterative solver. ILUPACK derives an efficient preconditioner from the ILU factorization
of the system matrix, dropping the small entries of the factors, while relying on pivoting
to bound the norm of the inverse triangular factors, to compute a numerical multilevel
hierarchy of partial inverse-based approximations [5, 6].

Exposing task-parallelism In the remaining of this section, we focus on the paralleliza-
tion strategy underlying the task-parallel versions of ILU-type iterative solvers in general,
and ILUPACK PCG in particular; see, e.g., [2]. Basically, these methods exploit the
connection between sparse matrices and adjacency graphs, recursively applying nested
dissection to permute the sparse matrix. The goal of this re-organization of the matrix is
to obtain a hierarchy of subgraphs and separators that fix the order in which the diagonal
blocks have to be factorized. This process renders a task dependency graph (TDG) for the
preconditioner calculation with the shape of a balanced binary tree, where the subgraphs
occupy the leaves and the separators correspond to the internal nodes.

From the perspective of computational cost and complexity, the major operations in
ILUPACK’s PCG solve are SpMV, LwTrSv and UpTrSv, each ocurring once per it-
eration. With a proper organization of the data and distribution of the work, for a TDG
with l leaf nodes, the SpMV kernel can be decomposed into an equal number of indepen-
dent tasks. The parallelization of the triangular solves is more complex. These kernels
can both be decomposed into the same number of tasks as the TDG identified during
the preconditioner calculation, maintaining the same task dependency. Thus, there exist
dependencies in the binary-tree, pointing bottom-up for the lower triangular kernel and
top-bottom for the upper triangular case. As a result, when these tasks are mapped to
the cores, the information flows as in a reduction for LwTrSv or as in a broadcast for
UpTrSv.

Mapping tasks to cores In practice, each operation appearing in ILUPACK’s PCG is
decomposed into a number of tasks that exceeds the number of cores as this produces
a more balanced distribution of the workload during the execution. For LwTrSv and
UpTrSv, most of the computational work is concentrated into the leaf nodes of the TDG.
However, as the number of levels in the TDG is increased, the processing of the separators
(non-leaf nodes) introduces some overhead, ultimately constraining the practical number
of leaf nodes to a few hundreds. The take-away from this discussion is that, when de-
ciding the number of levels/leaf nodes of the TDG, there is a trade-off between workload
balancing and cost of processing the separators of the TDG.

Figure 1 displays an Extrae trace for one iteration of the PCG solver, executed on an
Intel Xeon 16-core processor using 16 threads. The TDG in this example is composed of
64 leaves (4 leaf tasks per thread) and 7 levels. This trace shows that, even with 4× more
leaf nodes than threads, there still appear significant idle times for SpMV, LwTrSv and
UpTrSv, motivating the approach to save energy described in the next section.

3 Applying ABES in ILUPACK

In order to describe the principle underlying the ABES technique, let us consider initially
a simple TDG consisting of three tasks, T0, T1, T2, organized into two levels, with data
dependencies T0→T1, T0→T2; and T1, T2 independent of each other. (This reflects the
scenario occuring during the lower triangular solve, LwTrSv).
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7.

Figure 1: Execution traces of the PCG iterative solve preconditioned with ILUPACK for
16 threads.

In addition, assume a task-parallel execution using two threads, on a platform consisting
of two hardware cores, denoted as C1, C2; and let us map the execution of T1 to C1 and
that of T2 to C2. Thus, in case the execution time of T1 does not exactly match that
of T2, due to the data dependencies, the thread in charge of the less expensive task will
have to wait for its counterpart to complete its task. It is precisely this “slack” (or idle)
period that we aim to eliminate with our ABES technique.

Consider the execution of ILUPACK next. The execution of the main tasks appearing
in the iterative solve of ILUPACK’s PCG method yield idle periods, due to an unbalanced
distribution of the workload (see Figure 1), that our ABES technique targets as follows:

• For the preconditioner computation, we allow a dynamic mapping of tasks to threads,
and the same mapping is enforced for the PCG solve. Furthermore, threads are
assigned to specific cores (no thread migration is allowed) and all threads/cores ini-
tially proceed at the nominal frequency fn. Because of the strict mapping of threads
to cores, we will use “thread” to refer to both terms hereafter.

• During the first five iterations, the ABES mechanism records the termination time
for each thread–operation pair, identifying the slowest thread. The ABES mech-
anism then determines the operating frequency of each thread–operation for sub-
sequent iterations. Concretely, the frequency-tuning policy aims to slow-down the
last task of all threads that terminate the execution of their tasks earlier than the
slowest thread.

• Each four iterations, the ABES mechanism analyze the impact of the frequency-
tuning policy. If the defined operating frequencies in a thread yields in longer
execution time than the execution time of slowest thread, the last changed task
is fixed to the next higher level and the corresponding thread is removed to the
ABES policy. Otherwise, the policy aims to slow-down the corresponding task, or
the previous task, if its minimum operating frequency has been reached.

• When all the threads are removed to the policy, the operating frequency of each
thread–operation has been fixed.
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4 Experimental Results

For the experiments in this section, we employ a server equipped with two 8-core Intel
Xeon(R) E5-2630 processors (2.4 GHz), with 64 GBytes of DDR3 RAM. The userspace
Linux governor allows the processor cores to operate at 13 possible frequencies ranging
from 1.2 GHz to 2.4 GHz, with a stride of 0.1 GHz. The operating system running in the
server is Linux version 2.6.32-642.4.2.el6.centos.plus.x86 64, and the compiler is gcc 4.4.7.

All the experiments employed ieee754 real double-precision arithmetic. In the first
experiment we generated a large-scale linear system for the Laplacian equation −∆u = f
in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions, u = g on ∂Ω, and a
discretization that resulted in a sparse symmetric positive system. This A200 matrix has
8 ·106 rows/columns. The second matrix in the experimentation corresponds to the sparse
symmetric audikw 1 example from the SuiteSparse Matrix Collection [1], with close to
1,000,000 rows/columns.

Energy was measured using Intel’s RAPL (Running Average Power Limit) interface [7],
reflecting the estimated consumption of the core-uncore (package), DRAM and the total
(core, uncore and DRAM) system. For the Haswell-EP, the isolated on-core consumption
is not provided by RAPL. The idle power was obtained during the executing the Linux
sleep command by all cores during 100 sec. This value was then subtracted to the total
power in order to obtain the net energy. The experiments were executed after a warm
up period of 150 sec. using a busy-wait loop, and each experiment was repeated 5 times,
showing the average values.

In our energy consumption analysis, we consider the following configurations: performance-
oriented (PO), energy–aware (EnAw), and three variants of ABES. For PO, the PCG is
executed using a power-oblivious runtime; in contrast, for EnAw, the runtime exploits the
power-saving modes of the Intel Xeon processors, promoting the idle threads to one of the
power-saving C-states [4]. The ABES variants combine EnAw with the ABES technique
applied to SpMV(ABES1), SpMV & LwTrSv(ABES2), or SpMV & LwTrSv & Up-
TrSv(ABES3).

Tables 1 and 2 report the time-power-energy of the five policies applied to the itera-
tive solution of the two sparse examples, using a 32-leaf TDG executed on 8 cores. Two
different mappings are considered: balanced and unbalanced. In the first mapping, the
operations are issued in decreasing order of computational cost; the second mapping is
manually generated to enforce additional ABES steps. The last column in the tables in-
cludes the ABES steps which are added to the policy sited in previous row, thus ABES1,
ABES2 and ABES3 respectively represent the ABES steps in SpMV, LwTrSv and Up-
TrSv. Moreover, the remaining columns numbers show the relative improvement of the
corresponding variant with respect to the PO policy, therefore, negative values reflect a
decrease of performance, power dissipation or energy consumption. Several conclusions
can be obtained from the analysis of these tables:

• The number of ABES steps is greater in unbalanced configuration than in their
balanced counterparts.

• A higher number of ABES steps is necessary for audikw 1 than for A200, mainly
because the nonzero pattern of the last example is more regular.

• A significant part of the increase in the execution time is due to the introduction of
EnAw while the impact of ABES variants are smaller.
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Balanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 0.62 -0.57 0.49 1.09 -0.55 0.90 -0.65 1.28 0.07 1.14 –
ABES1 0.97 -0.72 0.77 1.56 -0.76 1.29 -0.63 1.61 -0.09 1.41 21
ABES2 1.09 -0.65 0.89 1.73 -0.65 1.46 -0.65 1.75 0.00 1.55 0
ABES3 0.99 -0.74 0.79 1.62 -0.75 1.35 -0.71 1.72 -0.03 1.52 5

Unbalanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 0.62 -0.58 0.48 1.14 -0.50 0.95 -0.79 1.42 0.22 1.28 –
ABES1 1.75 -0.82 1.45 2.71 -0.83 2.29 -0.81 2.58 -0.01 2.28 41
ABES2 1.72 -0.86 1.42 2.69 -0.85 2.28 -0.87 2.61 0.01 2.31 10
ABES3 1.57 -0.68 1.31 2.46 -0.63 2.10 -0.84 2.43 0.16 2.16 16

Table 1: Relative variation (in %) of the energy-aware variants with respect to PO, consid-
ering the balanced and unbalanced mappings of the A200 matrix when a 32-leaf
TDG processed by 8 cores.

Balanced mapping
Total energy Net energy Time Total power add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 1.02 -0.46 0.86 1.59 -0.40 1.39 -0.61 1.63 0.14 1.48 –
ABES1 3.26 -0.96 2.81 4.73 -1.03 4.15 -0.79 4.08 -0.17 3.63 41
ABES2 3.41 -1.00 2.95 4.97 -1.07 4.35 -0.84 4.29 -0.16 3.82 22
ABES3 3.24 -0.96 2.80 4.73 -1.01 4.14 -0.84 4.11 -0.12 3.67 17

Unbalanced mapping
Total energy Net energy Time Total power Add.

Package DRAM Total Package DRAM Total Package DRAM Total steps
EnAw 2.30 -0.91 1.97 3.46 -0.99 3.01 -0.75 3.08 -0.16 2.74 –
ABES1 5.92 -2.25 5.03 8.67 -2.79 7.45 -0.97 6.95 -1.29 6.06 65
ABES2 6.10 -2.26 5.19 8.96 -2.78 7.70 -1.03 7.21 -1.24 6.29 60
ABES3 5.88 -2.36 4.98 8.68 -2.90 7.44 -1.10 7.06 -1.27 6.16 59

Table 2: Relative variation (in %) of the energy-aware variants with respect to PO, con-
sidering the balanced and unbalanced mappings of the audikw 1 matrix when a
32-leaf TDG processed by 8 cores.

• In general, the improvements in net energy are higher than those observed in the
total energy.

• The savings of the ABES variants occur in package energy consumption; in contrast,
the DRAM energy is increased. These figures grow with the number of ABES steps.

• The application of ABES to SpMV produces larger savings than the use of the same
technique in LwTrSv or UpTrSv.

5 Conclusions

We have introduced the ABES technique to improve the performance of energy-aware vari-
ants of a PCG solver. The results demonstrate that the application of this methodology
on the main operations of the solver reduces the energy consumption with a negligible im-
pact on the execution time. Furthermore, the technique adapts to the problem, increasing
the energy savings for unbalanced mappings.
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GPU-Accelerated Implementation of the
Storage-Efficient QR Decomposition

Peter Benner1 Martin Köhler2 Carolin Penke3

The LAPACK routines GEQRT2 and GEQRT3 can be used to compute
the QR decomposition of a matrix of size m× n as well as the storage-
efficient representation of the orthogonal factor Q = I−V TV T . A GPU-
accelerated algorithm is presented that expands a blocked CPU-GPU
hybrid QR decomposition to compute the triangular matrix T . The
storage-efficient representation is used in particular to access blocks of
the matrix Q without having to generate all of it. The algorithm runs
on one GPU and aims to use memory efficiently in order to process
matrices as large as possible. Via the reuse of intermediate results the
amount of necessary operations can be reduced significantly. As a result
the algorithm outperforms the standard LAPACK routine by a factor of
3 for square matrices, which goes hand in hand with a reduced energy
consumption.

Along with the LU decomposition, the QR decomposition [5] is one of the basic ma-
trix factorizations used in many numerical linear algebra algorithms. Especially when
orthonormal bases come into play, e.g. in least-squares problems, the QR decomposition
is commonly involved. During the last decades many different strategies to compute the
orthogonal matrix Q ∈ Rm×m and the upper triangular matrix R ∈ Rm×n from a general
matrix A ∈ Rm×n fulfilling QR = A were developed. The most common ones are based
on Householder reflections [6]. These algorithms represent the matrix Q as a product of
orthonormal Householder matrices Hi ∈ Rm×m:

Q = H1 · · ·Hn, (1)

where Hi = Im − 2
viv

T
i

vTi vi
and vi is the i-th Householder vector. Typically Q is not stored

explicitly but implicitly in factored-form representation, where the scaled Householder
vectors vi and the scalar factors τi = 2

vTi vi
are stored explicitly [5, 1].

We consider the case where we are interested in a block partitioning of Q like

Q =

[
Q11 Q12

Q21 Q22

]
, (2)

where Qij ∈ Rm
2
×m

2 . When Q is stored as the product of Householder matrices (1)
in factored-form representation, the explicit setup of the matrix Q is required and the

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
benner@mpi-magdeburg.mpg.de

2Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
koehlerm@mpi-magdeburg.mpg.de

3Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
penke@mpi-magdeburg.mpg.de
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blocks can only be accessed or applied afterwards. If only one or two blocks are required,
e.g. to form a matrix-matrix product, this procedure results in a large overhead. The
compact WY or V TV T variants of the QR decomposition [2, 7, 5] can be used to reduce
this overhead. Here, the Householder product (1) changes to

Q = Im − V TV T
W=V T
Y=V= Im −WY T , (3)

where V = [v1, . . . , vm] contains the Householder vectors vi. The upper triangular matrix
T can be computed from the Householder vectors and represents the accumulation of the
Householder transformations. When it is additionally stored in explicit form it can be
used to apply Q using level-3 BLAS operations, which are the foundation of fast linear
algebra algorithms on current computer architectures. Furthermore, regarding the block
partitioning of Q in (2), one can extract and apply blocks easily by using T and a parti-
tioned V . The computation of the compact WY representation of the QR decomposition
is part of LAPACK [1] in the GEQRT3 routine. An improved parallel version, employing
a Directed-Acyclic-Graph (DAG) for task scheduling, is part of the PLASMA library [3].
Parts of this algorithm have also entered the recent LAPACK 3.7 as the routine GEQR.
The blocked variant of the QR decomposition typically makes use of the compact repre-
sentation (3) of decomposed panels to update the trailing submatrix using matrix-matrix
products. However, an equivalent of the GEQRT3 routine, that also exploits the GPU’s
capabilities to compute the n × n triangular factor T , does not exist. The MAGMA
library [8, 9] only provides QR decompositions which give the scalar factors τi = 2

vTi vi
of

the elementary reflectors or triangular matrices Ti ∈ Rnb×nb (with nb as the panel width)
that represent the compact QR factorization of the individual panels. To build T from
the Ti, a post-processing step would be necessary. Other GPU-accelerated libraries, such
as ArrayFire [10], cuSOLVER4, or CULATools5, only support the classical representation.

In our contribution, we want to close this gap by presenting a GPU-accelerated approach
to not only compute the QR factorization in factored-form representation but also provide
T from the compact WY representation of the matrix Q.

We implement the blocked variant of the QR decomposition [5] as a CPU-GPU hybrid
with additional operations to compute the T matrix. The matrix A is partitioned into
panels. It generally resides in GPU memory during our computations. The current panel
Ai is sent to the CPU to be factored:

Ai = QiRi. (4)

The LAPACK routines GEQRT2 or GEQRT3 can be used to compute Ti and Vi defining the
compact representation of

Qi = I − ViTiV T
i . (5)

The factored panel, consisting of Vi and Ri, and Ti are sent back to GPU memory. Here,
Ti is used to update the trailing submatrix.

The following Lemma, which is proved by direct calculation, shows how T describ-
ing the compact representation of Q can be computed from the Ti given by the panel
factorizations.

4http://docs.nvidia.com/cuda/cusolver/

5http://www.culatools.com/
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Algorithm 1 Block Compact QR Decomposition with Reuse of V T T

Require: A ∈ Rm×n

Ensure: V,R, T, S such that A = QR with Q = Im − V TV T , S = V T T .
A is overwritten by V,R. S, T can be stored together in an m× n array.

1: for k = 1, . . . do
2: [Rk, Vk, Tk,k]← QR(Ak:p,k) . by using GEQRT2 on the host
3: Build new block column of T

T1:k−1,k ← −T1:k−1,1:k−1V
T
1:k−1︸ ︷︷ ︸

=ST
1:k−1

VkTk,k

4: Update S1:k−1 which currently holds V1:k−1T
T
1:k−1,1:k−1

S1:k−1 ← S1:k−1 + VkT
T
1:k−1,k

5: Build new block column of S

Sk ← VkT
T
k,k

6: Update trailing submatrix of A

Ak:p,k+1:q ← Ak:p,k+1:q − VkT T
k,k︸ ︷︷ ︸

=Sk

V T
k Ak:p,k+1:q

7: end for

Lemma 1 Let Q1 = Im − V1T1V
T
1 ∈ Rm×m and Q2 = Im − V2T2V

T
2 ∈ Rm×m with

V1 ∈ Rm×j, V2 ∈ Rm×nb and T1 ∈ Rj×j, T2 ∈ Rnb×nb. Then

Q1Q2 = Im − V+T+V T
+ ,

where

V+ =
[
V1 V2

]
∈ Rm×j+nb , T+ =

[
T1 −T1V T

1 V2T2
0 T2

]
.

While the QR factorization is being computed, we continuously build up the block
columns of

T =

T1,1 · · · T1,q
. . .

...
0 Tq,q

 . (6)

Lemma 1 gives
T1:k−1,k = −T1:k−1,1:k−1V

T
1:k−1VkTk,k, (7)

where V1:k−1 contains the Householder vectors of the previous panel factorizations and Vk
contains the Householder vectors of the current panel factorization. We aim to implement
this computation efficiently on the GPU employing cuBLAS routines. T1:k−1,1:k−1V

T
1:k−1,

or its transpose V1:k−1T
T
1:k−1,1:k−1, is necessary to compute the k-th block column of T . It

holds

T1:k,1:kV
T
1:k = (V1:kT

T
1:k,1:k)T

=
[
V1:k−1T

T
1:k−1,1:k−1 + VkT

T
1:k−1,k VkT

T
k,k

]T
.
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DTH
HTD
GPU
CPU

CPU
GPU
HTD
DTH

Time
Iteration k − 1: Iteration k: Iteration k + 1:

Transfer Ak:p,k

Factor Ak:p,k

Transfer Ak:p,k, Tk,k

Update Ak−1:p,k:q Compute T1:k−2,k−1 Update S1:k−2 Compute Sk Update Ak:p,k+1 · · ·

· · · Update Ak:p,k+2:q Compute T1:k−1,k Update S1:k−1

Transfer Ak+1:p,k+1

Factor Ak+1:p,k+1

Transfer
Ak+1:p,k+1, Tk+1,k+1

Compute Sk+1 Update · · ·

Figure 1: Course of events for the asynchronous version of Algorithm 1.

Table 1: Runtime in [s] for the CPU (LAPACK) and the GPU-accelerated version of the
compact WY QR decomposition using a block width of 128.

Dimension CPU GPU Speedup Dimension CPU GPU Speedup
1 000 0.050 0.048 1.04 9 000 8.532 2.404 3.55
2 000 0.228 0.120 1.90 10 000 11.181 3.202 3.49
3 000 0.583 0.212 2.75 11 000 14.504 4.115 3.52
4 000 1.139 0.335 3.40 12 000 18.067 5.182 3.49
5 000 1.984 0.551 3.60 13 000 22.211 6.566 3.38
6 000 3.183 0.852 3.76 14 000 27.064 8.003 3.38
7 000 4.668 1.260 3.70 15 000 32.319 9.768 3.31
8 000 6.373 1.762 3.62

We see that, if V1:k−1T
T
1:k−1,1:k−1 is available from the computation associated to the

previous panel, it can be updated and expanded to provide V1:kT
T
1:k,1:k. This is much

cheaper than recomputing T1:k,1:kV
T
1:k for every panel, which is why we expand our algo-

rithm to successively compute V1:kT
T
1:k,1:k. The reason for the transpose is the fact that

V1:k−1T
T
1:k−1,1:k−1 is lower trapezoidal and can therefore be stored together with T in an

m× n array. The new block column VkT
T
k,k can also be used in the update of the trailing

submatrix.
These ideas are implemented by Algorithm 1 which realizes a QR factorization that

includes the computation of T and V T T . The panel factorization is performed by the
CPU. The following steps are the updates of T , V T T and the trailing submatrix. They
are performed on the GPU by a series of cuBLAS routines, so that leading zeros and
triangular structures are exploited to reduce the total amount of operations. Only a
minimal further work space of size nb × n (nb denoting panel width) is required.

Furthermore we employ asynchronous communication to overlap CPU and GPU work.
Hence, while the GPU is still busy updating the remaining trailing submatrix, the panel
is transferred between device and host and can already be factored by the CPU. This is
visualized by Figure 1. In the optimal case, that is depicted here, it is possible to have
the GPU working to full capacity.

For the performance evaluation of the algorithm we use a dual-socket Intel Xeon E5-

4

PACO 2017

54



PACO 2017 Extended Abstract

2640v3 system (16 cores, 64 GB RAM) and an Nvidia Tesla K20m accelerator. The
results are given in Table 1, where all computations are done in IEEE double precision.
Here, the CPU reference result is computed using GEQRT3 from OpenBLAS 0.2.18. For
the panel factorization in the GPU-CPU hybrid implementation we use GEQRT2 which we
evaluated to be the fastest variant in LAPACK for the panel decomposition on the host.
The GPU code uses the cuBLAS library of CUDA 8.0 and the whole code is compiled
using gcc 4.8. In order to avoid the tuning for a special matrix structure the input square
matrices consist of random entries distributed uniformly between 0 and 1. In Table 1 we
see that the speedup increases very fast with the growing problem dimension to a factor
of up to 3.76 while using only one GPU. For a further increasing problem dimension we
obtain a stagnation caused by the limited memory bandwidth.

1,024 4,096 7,168 10,240 13,312
0

100

200

300

400
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600

Matrix Size n

Performance in GFLOPS/s

1,024 4,096 7,168 10,240 13,312
0

0.5

1

1.5

2

2.5

Matrix Size n

Energy Efficiency in GFLOPS/J

QR factorization on the GPU

QR factorization on the CPU using GEQRT3

Figure 2: Comparison of approximate performance and energy efficiency of CPU-based
and GPU-accelerated algorithm for square matrices.

The performance achieved by the GPU is also highlighted by Figure 2. We approximate
the performance by assuming the number of FLOPs to be well represented by 5

3
n3. This

includes 4
3
n3 from the QR factorizations and 1

3
n3 from the computation of T ignoring

lower order terms. The high performance is due to the GPU’s capacities to perform many
operations in parallel with little overhead. This also explains its higher energy efficiency
which is depicted in the figure as well. Using the same amount of energy the GPU can
perform up to 4.75 times as many operations as the CPU. This is achieved for large ma-
trices with sizes of about 10000× 10000, because here the GPU cores can be used to full
capacity. To explain the following decline for even larger matrices further investigations
are necessary.

We showed that the GPU is an excellent tool to compute the storage-efficient QR
factorization. This is true with regards to classical FLOP performance as well as energy
efficiency. An essential part of our implementation is the simultaneous computation of
the V T T matrix, which to our knowledge is new. To see how this approach compares
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to the conventional ones implemented in LAPACK [4], an experimental setup is required
that implements both variants on the same computer system, i.e., on the GPU or on the
CPU. Future research will investigate this relation and provide further insight into the
efficiency of the new approach.
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Domain Knowledge Specification for Energy Tuning

Anamika Chowdhury1

Madhura Kumaraswamy, Michael Gerndt2

Zakaria Bendifallah, Othman Bouizi3

Lubomı́r Ř́ıha, Ondřej Vysocký, Martin Beseda, Jan Zapletal4

The European Horizon 2020 project READEX is developing a tool suite
for dynamic energy tuning of HPC applications. While the tool suite
supports an automatic approach, domain knowledge can significantly
help in the analysis and the runtime tuning phase. This paper presents
the means available in READEX for the application expert to provide
his expert knowledge to the tool suite.

1 Introduction

Energy efficiency and consumption have become the most important and challenging
issues in current HPC systems and in designing future exascale computing systems. Ad-
vances in hardware technology, the operating and tuning HPC applications are required to
reduce the overall energy consumption. Aspects such as arithmetic intensity and resource
utilization can be exploited to benefit energy savings due to their ability to characterize
varying application behaviour. In previous works, the energy consumption was optimized
by using a model-based approach to predict and statically set the best frequency for
the entire application run. However, in READEX, we develop a tool suite that switches
tuning parameters dynamically during the application execution based on the dynamic
changes over runtime [3].

The READEX methodology is a two-stage approach and consists of Design Time Anal-
ysis (DTA) and Runtime Application Tuning (RAT). It uses the Periscope Tuning Frame-
work (PTF) [1] for DTA, and the READEX Runtime Library (RRL) for runtime tuning,
with Score-P [2] as the common instrumentation and measurement infrastructure. Pre-
analysis steps are performed prior to the DTA in which the application is instrumented
and analyzed for dynamism. Coarse granular program regions that constitute most of the
execution time are selected for dynamic tuning and are identified as significant regions [5].

A novel tuning plugin was developed for PTF to perform DTA and run experiments that
currently evaluate three tuning parameters: CPU frequency, uncore frequency and the
number of OpenMP threads within a single program run. The experiments are executions
of the so-called phase region, which is usually the body of the main progress loop and whose
individual time steps are called phases. The plugin then determines the best configuration
or settings of the tuning parameters for the runtime situations (rts’s) of significant regions,
i.e., its instances at runtime. Rts’s that have similar characteristics are grouped into

1Technical University of Munich, Faculty of Informatics, Germany,
chowdhua@in.tum.de

2Technical University of Munich, Faculty of Informatics, Germany, kumarasw@in.tum.de

3Intel ExaScale Labs, Paris, France, zakaria.bendifallah@intel.com
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lubomir.riha@vsb.cz, ondrej.vysocky@vsb.cz, martin.beseda@vsb.cz, jan.zapletal@vsb.cz
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scenarios, and best configurations for those scenarios are set. The knowledge obtained
during DTA, such as the best-found system configurations for individual scenarios is
encapsulated in a tuning model. For production runs, this tuning model is forwarded to
the READEX Runtime Library (RRL), which performs runtime tuning by dynamically
switching to the best configurations for upcoming rts’s.

READEX uses the so-called identifiers to predict at runtime the characteristics of an
upcoming rts by letting the developer specify domain knowledge. Currently, READEX
supports region identifiers to distinguish rts’s, phase identifiers to distinguish phase char-
acteristics and input identifiers to distinguish executions with different application inputs.
Without these identifiers, rts’s of a significant region may be merged into the same sce-
nario even if they have different behaviour. Hence, these identifiers will improve the tuning
model by distinguishing rts’s and assigning them to different scenarios to potentially se-
lect a better configuration. The domain knowledge also includes Application-level Tuning
Parameters (ATP) that switch the application control flow and expose tuning potential
in the target application.

This paper describes how the domain knowledge is used by the READEX tuning plugin
during DTA and in brief, the RAT.

Listing 1: Phase specification

1 #include "SCOREP_User.inc"

2

3 SCOREP_USER_REGION_DEFINE(R1)

4

5

6 do it=1,max_iter

7 ! phase region begins

8 SCOREP_OA_PHASE_BEGIN(R1,...)

9 ...

10 call VCycle(...)

11 ...

12 SCOREP_OA_PHASE_END(R1)

13 ! phase region ends

14 enddo

Listing 2: Region identifiers

1 !--- VCycle ---!

2 ...

3 !--- level k-1 to level k ---!

4 do k = min_level+1,max_level

5 call interpolate(...,k)

6 call resid(...)

7 call psinv(...)

8 enddo

9

10 !Interpolate to level k region

11 subroutine interpolate(...,k)

12 SCOREP_USER_PARAMETER("level",k)

13 ...

14 end subroutine

2 Domain Knowledge Specification

This section describes how the user can define the Score-P Online Access Phase, provide
additional identifiers, and specify application-level tuning parameters. Listings 1 and 2
show a high-level view of the domain knowledge specification for the MG (MultiGrid)
benchmark of the NAS parallel benchmark suite. MG uses a V-cycle to solve a discrete
Poisson equation on a 3D grid. It is based on a hierarchy of grid levels, where the
maximum level is the finest grid with the highest resolution.

During each iteration, an entire V-cycle is executed starting from the highest grid level.
The residual on the current grid level k is projected to the next coarser grid level k-1.
When the coarsest grid is reached, an approximate solution is computed. The result is
then interpolated from the coarser to the finer grid, where the residual is calculated and a
smoother is applied to correct the result. The result is then propagated further upwards.
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2.1 Phase Specification

Before starting DTA, the user must annotate the phase region with Score-P macros. It
must first be declared, as shown in line 3 in Listing 1, and then surrounded by begin and
end marcros as shown in lines 8 and 12 respectively in Listing 1. The Score-P user manual
provides more information on the parameters of the macros.

2.2 Identifier Specification

The READEX tool suite provides support for different types of identifiers for runtime
situations.

Region identifiers: The user can specify region identifiers via Score-P user parameters
to distinguish rts’s of that region if the region has different characteristics in the
runtime situations. For example, since the size of the grid processed in interpo-
late(...,k) gets larger when going from the minimum grid level to the maximum, at
a certain grid level the computation switches from being compute bound to memory
bound. To enable DTA to determine special system configurations for compute and
memory bound rts’s, a region identifier for the grid level is added to the code (Line
12 of Listing 2). The region name, the call path, and the region identifier are now
used as identifiers of the different rts’s.

Phase identifiers: DTA also exploits dynamicity in the characteristics of the applica-
tion across phases. To do so, the application expert can provide phase identifiers
as domain knowledge at the start of the phase via region identifiers for the phase
region.

Input identifiers: READEX also improves the tuning model by identifying special
system configurations for different inputs characteristics. For example, in the multi-
grid application, the grid level where the computation switches from compute to
memory bound depends on the resolution of the finest grid and the number of MPI
processes. The finer the grid, the more levels are memory bound. The more pro-
cesses are used, the fewer levels are memory bound due to an increased amount of
cache. Application specific input identifiers are specified in an accompanying input
specification file in the form of key-value pairs. These specification files will be used
by both PTF and RRL. The number of MPI processes and OMP threads will be
known implicitly.

2.3 Application Tuning Parameters

In order to leverage application dynamism, READEX enables to exploit the dynamism
available through the use of different code paths such as the use of different preconditioners
in the ESPRESO FEM library or different blocking factors in stencil codes.

Part of the READEX tool-suite, the ATP library provides an API to annotate the
source code in order to identify the control variables responsible for control flow switch-
ing. During the first phase of the application execution in DTA, variable types, value
ranges and addresses are discovered and agglomerated into an ATP description file. The
subsequent phases of the application execution are reserved for best configuration dis-
covery. Parameter information collected in the ATP description file is exploited to test
different parameter values.

3

PACO 2017

59



PACO 2017 Extended Abstract

PhaseRegion

mg3P

rprj3 psinvinterp

Figure 1: CCT of MG without user
parameters

PhaseRegion

mg3P

rprj3 psinvinterp

level=2 level=8

Figure 2: CCT of MG with user
parameters

Furthermore, one critical complexity that the exploitation of ATPs exhibits is the pres-
ence of dependences between variables, where the values for one variable depend on the
values of prior variable(s). In this case, not all value combinations are possible and forcing
the values on the program may break its semantics. READEX, through the ATP library,
provides the means to handle this by allowing the declaration of parameter dependences
in the form of logical constraints. It also relies on a constraints solver called the omega
library5 to resolve the dependences. The solver handles affine function based constraints
and provides valid combinations of parameter values for use in the DTA phase.

3 Implementation

DTA is carried out by PTF, a distributed framework consisting of a frontend and a
hierarchy of analysis agents [1]. First, one phase of the application is executed in which
the application regions are gathered and returned to the PTF analysis agents from Score-P
via the Online-Access Interface and to generate the ATP specification file. Partial Calling
Context Trees (CCT) 6 are generated at every analysis agent for those MPI processes
controlled by the agent, and are gathered to create the complete tree in the frontend.

Figure 1 presents the CCT of MG if no region identifier is given. Separate nodes are
created for the call sites of the projection, interpolation, and the smoother. All runtime
situations, i.e. invocations, are represented by one node with its call path. Figure 2
illustrates the situation with the region identifier in the interpolation. For each grid level,
a separate node is created and the runtime situations can be distinguished in PTF. Each
rts is identified by its region name, the call path, which includes the region identifiers
(represented as parameter name=value), and the phase and input identifiers. With the
region identifier, a valid rts of the region interp is /PhaseRegion/mg3P/interp/level=8,
as shown in Figure 2.

The PTF frontend executes the READEX tuning plugin, which reads from the READEX
configuration file the objective(s) (Energy, CPU Energy, Execution Time, Energy Delay
Product or Energy Delay Product Squared), the tuning parameters (core frequency, un-
core frequency and the number of OpenMP threads), the search strategy (exhaustive,
random, individual or genetic) and the significant regions. It also reads the input identi-
fiers from the input specification file and the ATPs from the generated ATP specification
file.

5http://www.cs.umd.edu/projects/omega/

6A context sensitive version of a call graph.
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It then assesses selected system configurations from the search space of the tuning
parameters and the ATPs generated by the search algorithm. For each configuration, it
executes an experiment and measures the objective value for all the rts’s of the significant
regions. The plugin outputs the best configuration for both the phase and the rts’s.

Finally, a tuning model is generated from this knowledge. The tuning model genera-
tion clusters the rts’s into scenarios based on their best configuration. It determines a
classifier that maps each valid rts onto a unique scenario based on the identifiers given at
runtime. For each scenario, a selector is generated that returns a single or a set of good
configurations for that scenario with respect to the chosen objective. The tuning model
encapsulates this knowledge, and is stored as a JSON file, which is then read by the RRL
to perform dynamic switching at runtime.

4 Example

The ESPRESO [4] library is a combination of Finite Element (FEM) tools and a domain
decomposition based Finite Element Tearing and Interconnect (FETI) solvers. The FETI
solver contains a projected conjugate gradient (PCG) solver and therefore, its convergence
can be improved by several preconditioners. The computational complexity of different
preconditioners vary from basic vector scaling (weight function), to sparse-matrix vec-
tor multiplication with different number of non-zeros (lumped, light-dirichlet) to dense
matrix-vector multiplication (dirichlet). Using a simplified approximation, we can state
that from the preconditioners listed above, the more computationally demanding the pre-
conditioner is, the more numerically efficient it is, i.e. the more it reduces the number
of iterations to solve the problem. In ESPRESO, we can dynamically switch between any
of these during the runtime. If a preconditioner is not used, one iteration contains an
action of a FETI operator (cost is 30.9 J and 0.12 s) and an application of a projector
(cost is 0.7 J and 0.005 s). If a preconditioner is used, each iteration contains one more
projector application in addition to the preconditioner action.

We evaluated the preconditioners on a structural mechanics (linear elasticity) problem
with 2.3 million unknowns on a single compute node using 24 MPI processes. The results,
see Table 1, show that the solution can be reached in 5.46 s when using Light Dirichlet
preconditioner, despite the fact that it needs more iterations than the Dirichlet precon-
ditioner. The Light Dirichlet preconditioner saved 15.9 s and 4 091.5 J in comparison to
solving the problem without any preconditioner.

Preconditioner # iterations 1 iteration Solution
none 172 125 ms 31.6 J 21.36 s 5 501.31 J

Weight function 100 130+2 ms 32.3+0.53 J 12.89 s 3 284.07 J
Lumped 45 130+10 ms 32.3+3.86 J 6.32 s 1 636.11 J

Light dirichlet 39 130+10 ms 32.3+3.74 J 5.46 s 1 409.82 J
Dirichlet 30 130+80 ms 32.3+20.62 J 6.34 s 1 594.50 J

Table 1: ESPRESO preconditioners comparison for runtime and energy consumption.
The table contains (i) single iteration evaluation including baseline (FETI oper-
ator and 2x projector) + resources spent by the preconditioner (ii) overall FETI
solver evaluation considering the different number of solver iterations.
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5 Conclusion

This paper gave a short overview of the READEX project, which is aiming at improving
the energy efficiency of HPC applications by a dynamic tuning approach. At design time, a
tuning model that guides the dynamic switching of tuning parameters is determined. The
quality of that tuning model can be enhanced by domain knowledge that is provided by the
application owner. Part of the domain knowledge are application-level tuning parameters
that significantly increase the tuning potential. The tuning potential is demonstrated in
an example, where ATPs are used to select different preconditioners for the ESPRESO
library.
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Comprehensive Memory-Bound Simulations
on Single Board Computers

Christian Himpe1 Tobias Leibner2 Stephan Rave3

Numerical simulations of increasingly complex models, demand grow-
ing amounts of (main) memory. Typically, large quantities of memory
are provided by workstation- and server-type computers, but in turn
consume massive amounts of power. Model order reduction can reduce
the memory requirements of simulations by constructing reduced order
models, yet the assembly of these surrogate models itself often requires
memory-rich compute environments. We resolve this deadlock by care-
ful algorithmic design of the model reduction technique. The presented
empirical-cross-Gramian-based model reduction comprises two phases;
in a first phase the empirical cross Gramian matrix is computed, sec-
ondly, a singular value decomposition of this system Gramian matrix
reveals a low-rank projection, which can be applied to the original full
order model. This model reduction approach can be realized econom-
ically memory-wise using the HAPOD algorithm, and we demonstrate
its applicability on a low-end single board computer device.

1 Introduction

Numerical simulations of models based on parametric differential equations are an impor-
tant tool in science and engineering. A common scenario is the repeated (multi-query,
many-query) simulation for different parameters. Using high fidelity resolutions or more
comprehensive models usually results in large-scale systems, which may even need to be
processed on distributed memory systems due to memory or computational constraints.
Such multi-node compute clusters consume wast amounts of power.

Model reduction can overcome computational complexity constraints by constructing
algorithmically reduced order models. Yet, the assembly of the reduced model may require
significant memory resources. Especially, data-driven model reduction techniques for the
reduction of the time-domain representation of nonlinear systems need to simulate the
full order model multiple times.

This work demonstrates that dense model reduction algorithms can be adapted to
memory-constraints environments, not only by using reduced order models for the applica-
tion simulation, the “online-phase”; but also for the assembly of the reduced order model,

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg,
himpe@mpi-magdeburg.mpg.de

2Institute for Computational and Applied Mathematics, Westfälische Wilhelms Universtät, Einstein-
strasse 62, 48149 Münster,
tobias.leibner@uni-muenster.de

3Institute for Computational and Applied Mathematics, Westfälische Wilhelms Universtät, Einstein-
strasse 62, 48149 Münster,
stephan.rave@uni-muenster.de
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the so-called “offline phase”. Hence, a full-cycle memory economic simulation environ-
ment is provided. Due to the memory-resource independence, low-power or power-aware
platforms become applicable for complex simulations.

In the scope of this work, input-output system models of the following form are con-
sidered:

ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)), (1)

x(0) = x0,

which consist of a dynamical system given by an ordinary differential equation (ODE)
and an output function. This class of models maps an input function u : R≥0 → RM via
the state trajectory x : R≥0 → RN , that is the solution to the ODE with the vector field
f : RN × RM → RN , to the output trajectory y : R≥0 → RQ resulting from the output
functional g : RN × RM → RQ.

2 Model Order Reduction (MOR)

Given an input-output system (1), an associated reduced order model has the form:

ẋr(t) = fr(xr(t), u(t)),

yr(t) = gr(xr(t), u(t)),

xr(0) = xr,0,

with a reduced state xr : R≥0 → Rn, n� N , a reduced vector field fr : Rn×RM → Rn, a
reduced output functional gr : Rn×RM → RQ and an approximate output yr : R≥0 → RQ,
such that ‖y − yr‖ � 1. Various methods exist to obtain such a reduced order model.
In the scope of this work we will focus on a data-driven approach from the class of
projection-based model order reduction methods.

2.1 Projection-Based MOR

A popular class of model reduction methods uses truncated projections to construct re-
duced order models. The aim in projection-based model order reduction is to find a set
of projections to, and back from, a coordinate system in which its base vectors are or-
dered by importance in some sense, so that lesser relevant directions can be truncated.
Practically, a projection-based reduced order model to (1) is given by:

ẋr(t) = V1f(U1xr(t), u(t)),

yr(t) = g(U1xr(t), u(t)),

xr(0) = V1x0,

with the truncated reconstructing projection U1 ∈ RN×n, and the truncated reducing
projection V1 ∈ Rn×N , which are bi-orthogonal: V1U1 = In.

2
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2.2 Cross-Gramian-Based MOR

To delineate the subsequent nonlinear model reduction approach, the underlying linear
model reduction technique is briefly summarized. Given a square (M = Q), linear system:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(0) = x0,

with a linear vector field consisting of A ∈ RN×N , B ∈ RN×M , and a linear output
functional, C ∈ RQ×N , the cross Gramian matrix [2] is defined as:

WX :=

∫ ∞
0

eAtBC eAt dt ∈ RN×N .

Following the approximate balancing technique in [9], a singular value decomposition
(SVD) of this cross Gramian,

WX
SVD
= UDV

yields the projections U ∈ RN×N and V ∈ RN×N . Truncating N − n columns of U
and rows of V based on the magnitude of singular values Dii ∈ R≥0 gives the truncated
reconstructing projection U1 ∈ RN×n and truncated reducing projection V1 ∈ Rn×N . The
latter may be obtained by truncating V (Petrov-Galerkin approach) or using Uᵀ

1 (Galerkin
approach). For further details on balancing methods, see [1].

2.3 Empirical-Cross-Gramian-Based MOR

A cross Gramian matrix can also be computed for nonlinear systems in data-driven man-
ner, which is motivated by the following representation of the linear cross Gramian,

WX =

∫ ∞
0

(eAtB)(eA
ᵀtCᵀ)ᵀ dt,

as a product of the primal and dual (adjoint) impulse responses. For nonlinear systems, an
adjoint system is generally not readily available as for linear systems. Yet, a cross Gramian
can be computed purely based on state and output trajectory data: the empirical cross
Gramian [6], which in a simplified variant is given by:

ŴX :=
1

M

M∑
m=1

∫ ∞
0

Ψm(t) dt ∈ RN×N , (2)

Ψm
ij (t) = (xmi (t)− x̄mi )(yjm(t)− ȳjm) ∈ R.

The xmi (t) symbolizes the i-th state component for a simulation with the m-th perturbed
input component, while yjm(t) symbolizes the m-th output component for a simulation
with j-th perturbed initial state component, and x̄mi , ȳjm are averages of the respective
trajectory components. for further details see [4].

3 Memory-Economic Computation

A major drawback of the empirical Gramians in general and the empirical cross Gramian
in particular, is their dense structure of full order N . In this section we describe a
memory-economic algorithm to compute the SVD of the empirical cross Gramian without
assembling the full order cross Gramian.
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3.1 Memory-Economic Empirical-Cross-Gramian-Based

The definition of the empirical cross Gramian (2) can be computed column-wise [5]:

WX =
(
ωX,1 . . . ωX,n

)
∈ RN×N ,

ωX,j =
1

M

M∑
m=1

∫ ∞
0

ψmj(t) dt ∈ RN×1,

ψmj
i (t) = (xmi (t)− x̄mi )(yjm(t)− ȳjm) ∈ R.

Thus the empirical cross Gramian can be assembled in blocks of columns, without any
exchange of data between the steps of computing the column blocks. Following, an algo-
rithm is presented to compute the singular vectors from the partitioned empirical cross
Gramian incrementally, so only one partition has to kept in memory.

3.2 Memory-Economic SVD

The column-wise partitioning of the empirical cross Gramian is now reused to obtain the
full empirical cross Gramian’s left singular vectors U1 associated to the dominant singular
values, via a proper orthogonal decomposition (POD). The matrix of singular vectors
acts as the truncated reconstructing projection and its transpose as truncated reducing
projection. In the scope of this work we restrict ourselves to Galerkin projections V = Uᵀ,
but Petrov-Galerkin-type projections are computable in a similar manner.

3.2.1 Hierarchical Approximate POD

To obtain the left singular vectors of the empirical cross Gramian, given in a column-wise
block partitioning, a method related to the SVD, the hierarchical approximate proper
orthogonal decomposition (HAPOD) from [5] is utilized.

The HAPOD algorithms allows to compute the dominant left singular vectors U1 of a
given column-wise partitioned data-set, for example incrementally, such that the mean
`2 projection error is bounded from above by ‖WX − U1U

ᵀ
1WX‖`2 < ε. Given an upper

bound ε and a partitioning WX = [ω1, . . . , ωS], with ωs containing Ks columns, this “live
HAPOD” computes as:

û0 := {},

[ωs, ûs−1]
SVD
= usdsvs → ûs := usd̂s, d̂s,ii =

{
ds,ii ds,ii < ε2Ks

√∑s
j=1 Kj

S

0 else

U1 := ûS → V1 = Uᵀ
1 .

The combination of the partitioned empirical cross Gramian with the live HAPOD
allows a computation of a low-rank reducing Galerkin projection and hence a projection-
based reduced order model in a memory economic manner, as the full empirical cross
Gramian is never needed and the partitioned only requires communication to forward
reduced base components.
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Figure 1: Comparison of power draw under load, computational time (offline phase) and
energy consumption on different compute systems and partitionings.

4 Numerical Example

To illustrate this memory-economic model reduction technique combining the empirical
cross Gramian with the HAPOD, a nonlinear hyperbolic network model is utilized,

ẋ(t) = A tanh(Kx(t)) +Bu(t),

y(t) = Cx(t),

x(0) = 0.

Exemplary, a sparse but stable system matrix A ∈ R1024×1024, a sparse random input
matrix B ∈ R1024×1, a random output matrix C ∈ R1×1024, and a diagonal random gain
matrix K ∈ R1024×1024, Kii = U[0,1] is selected for this test.

This model is reduced using the conjoined methods of the empirical cross Gramian and
the HAPOD on three different compute systems:

• Desktop:

CPU AMD A10-7800 (64-bit Quad-Core x86-64) @ 3.9Ghz

SIMD AVX, FMA3 & FMA4

RAM 32GB DDR3-2133 (dual rank & dual channel)

• Thin Client:

CPU AMD A12-9800E (64-bit Quad-Core x86-64) @ 3.1Ghz

SIMD AVX2, FMA3 & FMA4

RAM 32GB DDR4-2133 (dual rank & dual channel)

• Single Board Computer:

CPU Allwinner H3 (32-bit Quad-Core ARM Cortex A7) @ 1.2Ghz

SIMD NEON, VFP4

RAM 0.5GB DDR3-1600 (single rank & single channel)

using emgr - empirical Gramian framework [3] in GNU Octave [10] with OpenBLAS [8]
via FlexiBLAS [7].

In Figure 1 average power draw under load for each of the systems is depicted, as well
as the computational time and consumed energy for the partitioned and unpartitioned
(one partition of order 1024) empirical-cross-Gramian-based computation.
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The power draw during computational load among the three architectures ranges from
the 111 W (A10), over 47 W (A12), to 3.5 W (H3). Even though the A12 requires 23%
more time on average than the A10 to obtain the solution, the A12 consumes only about
half the energy. The H3 requires expectedly significantly longer computational time but
still consumes less energy than the A10. It should be emphasized that the H3 is a 32-bit
(ARM) architecture and additional factors, such as cooling have to be considered more
carefully than on x86 platforms, hence this comparison is not completely fair.

The partitioning has a minor effect on computational time and energy consumption:
Longer times and more energy are required for small partition sizes. For larger partition
sizes a slight reduction in time and thus energy consumption can be observed. Overall,
the combination of partitioned empirical cross Gramian and hierarchical approximate
proper orthogonal decomposition enables model reduction in compute- or memory-limited
environments such as single board computers at little to no additional cost.
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[7] M. Köhler and J. Saak, FlexiBLAS - A flexible BLAS library with runtime
exchangeable backends, Tech. Rep. 284, LAPACK Working Note, Jan. 2014.

[8] OpenBLAS. http://www.openblas.net.

[9] D. C. Sorensen and A. C. Antoulas, The Sylvester equation and approximate
balanced reduction, Numer. Lin. Alg. Appl., 351–352 (2002), pp. 671–700.

[10] The Octave Developers, GNU Octave. http://octave.org.

6

PACO 2017

68



List of Participants



PACO 2017

N
a
m

e
F

ir
st

N
a
m

e
A

ffi
li

a
ti

o
n

E
m

a
il

C
o
u

n
tr

y
P

a
g
e

A
li
a
g
a

J
o
sé
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Information to Participants



PACO 2017

On Site

• Conference room:
All talks will take place at the lecture hall. To reach it, exit the main entrance
and keep to the right.

• Coffee breaks:
Will be served next to the lecture hall.

• Meals:
Breakfasts, lunches and dinners will be served at the dining room, placed at
the ground floor at the main building at 8:00-9:00, 12:30-13:30, and 18:30-
20:00 o’clock.

• WLAN:
Internet access is available at most of the facilities (including all rooms and
the lecture hall). All the necessary information to access the wireless network
are provided by the castle’s staff and information boards around the castle.

• Wallberg trip:
All participants and companions are invited to join the Wallberg trip. A
lunch box will be provided before departure. There is a funicular that can
be used to go up and down to the hill. Participants are free to decide whether
to use the funicular in one or both directions. Hiking shoes are recommended.
Sturdy shoes are needed for all hike options and one option includes a trail
with rocky parts. Details will be announced on site.

• There will be drinks and coffee always available at the garden room. If you
take any, please write it down in the list you will find next. You can pay at
the reception desk on your check-out.

• More info about the Ringberg castle and the surroundings can be found at
its webpage and the following APP:
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PACO 2017

For Speakers

• Please make sure that your presentation is transferred to the computer con-
nected to the beamer before your session starts.

• Ask the local organizers if you have any question.

Local organizers

• Prof. Dr. Peter Benner

• Dr. Jens Saak

• Dr. Alfredo Remón

• Martin Köhler

• Janine Holzmann1 / Diana Noatsch-Liebke1

Important phone numbers

• Emergency number: 112

• Castle’s reception: +49 (0)802 227 90

1not on site
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