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;OKNLRZL LTI systems, control, tasks

Space station, CD player, vehicle suspension system, ...

Ex(t) = Ax(t) + Bu(t), E,AcR™" B¢ R™M "
y(t) = Cx(t) + Du(t), C € RP*" D e RP*™,

Example: x = Ax + Bu + Gr with x € RS,

(l)< 1 kO 0 0 0
_X _% X Sp 0 0
T T o o :
A = k7p Ccp 7k5+kp _ CstCp ks Cs y B = 2
ms ms mg mg mg Mg 0
0 0 0 0 0 1 1
ks s _kstkt _ cs
Mus Mus Mus Mus

G =(0,0,0,0,0,k;/mys); r(t) = road; u(t) = actuator force;
X1 (t) = passenger’s vertical displacement. Determine u(t)
(e.g. u(t) = —Kx(t)) to ensure smooth riding on a rough

road.
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Problems

Control, introduction, tasks
x(t) = Ax(t) + Bu(t), x(0) = 0; @)
y(t) = Cx(t) + Du(t).
Apply Laplace transform to get

A

y(s) = (C(sl —A)™'B +D) G(s)

G(s)=transfer function

Of interest is the input—soutput behavior y(s) = G(s)((s).
In large scale/real time applications: try to reproduce nearly
the same behavior with a system of smaller dimension

r < n. Take D =0.

Xr(t) = Arxc(t) + Bru(t)
Yr(t) = Crx (1)

y(s) — ¥r(s) = (G(s) — G¢(s))l(s) should be small in some
norm for a class of inputs u(-).

} Gi(s) = C(sl — A) 1B,
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NLA tasks in control
Consider N dimensional LTI SISO (more general, XIXO)

X(t) = AX(t) +bu(t) iG(s)=c(sl —A)th.
y(t) = cx(t)

For r<n and r—dimensional V; = R(V;), W, = R(W;) with
Vi YW+ = {0} (& det(W,"V,) # 0) look for

Vr 2 V(t) = Vix (t) such that v(t) — Av(t) — bu(t) L W;.
The reduced output is y,(t)=cv(t). In the bases V,, W,,

W, (Vex (1) — AV, x (1) — bu(t)) = 0, i.e.
X (1) = Arxe (t) + bru(t) _ _
yr(t) = CrXr(t) . Gr(S) B Cr(SI B Ar) 1br

A = (W,TVr)—lerAVr, by = (W V)W, b, ¢; = cV,.



AS NLA in
CONTROL

Zlatko Drma¢

Problems

Numerical tasks
IG I, = /& J7% 16 () 2dw;

min |G — Gy||%,, G stable of order r

Let G, be a local minimizer with simple poles at N,
i=1,....r. Thenatg = —\;: Gr(Ui) = G(O’i),
G,’»(Ui) = G/(Ui), i = 1,...r

Hermite interpolation by V; = Span((oil — A)~tb)'_,,
W, = Span((oil — AT)~tcT)_,

Solving linear systems for V; and W,. Reduce to
generalized upper Hessenberg form

orez~("#8). oraz-(BEEE). ono-(})

and work on (E, A, b,c) =(Q"EZ,Q"TAZ,Q"h,cZ)is
efficient. SimplerifE =1,Z = Q.
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Generate many interesting and challenging problems.

Problems

e Simple questions, difficult answers: Compute the
transfer function G(¢) = C(CE — A)~1B for many
complex values of {. Here n can be large.

» By changing the state space coordinates, x(t) = TX(t),
the new representation is, e.g. for E = I, given with
(A,B,C,D) = (T1AT,T~!B,CT,D). Find T such that
the new representation reveals structural properties of
the system. Various canonical forms.

e Solve Lyapunov equation AH + HAT + BBT = 0. Solve
Riccati egn: XA + ATX +Q — XSX = 0. Many other
types of matrix equations.

e Find invariant subspace that corresponds to specified
eigenvalues.
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... algorithms, software

Solve eigenvalue and singular value problems.

Given A with eigenvalues \q, ..., A, and B, find K such
that A — BK has prescribed eigenvalues aq, ..., an.
Pressure from applications to deliver accurate solutions
quickly. Computing environments changing rapidly.
Users from applied sciences and engineering — usually
not interested in math details, just solutions, software.

Pure mathematicians not interested because the
problems are "trivial", non—fundamental or just too
messy.

And we have high performance computers. So, why is
this difficult?
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Yes, have computer, but ..
Machine (floating—point) numbers F C Q.

f:j:m-Ze, e=-126:127, m=1.z1...2Zy3.

F=F|( J{+Infinity,—Infinity NaN}
Machine arithmetic ¢, ©, ®, ©.
o T finite, 232 (single), 2% (double); 0.1 ¢ F;
eadb=FL(a+b)=(a+b)(1+eap)

leap| < U = eps = round-off ~ 1078

e Ingeneral, (@adb)®dc#ad(badc),
(acb)oc#ac(boc);xpydz =77

e 1310 °%°=1;x=y ¥ x—-y=0;10"20©10"3% = 0;

¢ Finite speed, finite memory.

e Faster — more mess per second.
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T Example using MATLAB,
eps ~2.2-10716

X =(x y)eR™2 <? C) = computed (X X)),

b

_cqn1s3 (1 _ 1 _ 3
Let x =510 <1>, y_10<2>. (cosZ(x,y) = o )-

Test the orthogonality of x and y,

c
cosZ(x,y) = — <
(x,y) 7S¢
( ¢/ sqgrt(a*xb) <= eps
( (c/ sqgrt(a)) / sgrt(b) <= eps
( ¢ <= sqrt(axb) * eps
( c <=sgrt(a)*sqrt(b)  eps

I
o r o P

~— N N
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1 1
_c. 153 _ 16
Let x=5-10 <),y_10 < l)

( ¢/ sgrt(axb) <= eps

( (c/ sqgrt(a)) / sqgrt(b) <= eps
( ¢ <= sqgrt(a*xb) * eps

( ¢ <=sgrt(a)*sqrt(b)  eps

Then

~— ~— ~— ~—
Il
= o = o
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1 1
A=10 1 ¢ |,where{=10/eps. ¢ ~4.5e+016
. 0 -1 ¢
1 o O
Givens rotation kills A;z: AW = 0 8 8 |;
0 3
a~ 2, 3 = 3.184525836262886e+016.

] svd(A) | svd(AT) |
[0, | 6.369051672525773e+16 | 6.369051672525772e+16 |
[0, | 5.747279316501105+00 | 3.004066501831585e+00 |
| 03 | 9.842664568695829e-01 | 4.220776043599739e-01 |

1 o O 1 o O
A®) 0 B B ,A(Z): 0 ~ ~ ,
0 @ 3 0 00
A =BD, s,(B) < 2.
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Take in MATLAB

A_ (1.0e250 0
“\ 0  10e201)

d =diag(A), o = svd(A). Ais (bi)diagonal, and its singular
values are on the diagonal. However,

d = diag(A) = 9.999999999999999%¢ + 249
= @8 = 1 1.000000000000000e — 201 ) °

— svd(A) = 9.999999999999999¢ + 249
7= ~ \1.000000000016167e — 201/ °

A = eig(A)= 9.999999999999999¢ + 249
N 9% = | 1.000000000000000€ — 201
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LAPACK’s driver routine xGESVD computes a = max; j |Aj|

wanenmes  and scales the input matrix A with (1/a)/v /¢ (if o < /v/e)

e or with (1/a)e/w (if @ > e/w). Here ¢, v and w denote the
round—off unit, underflow and overflow thresholds,
respectively.
Let o = max; j |Aj|, ¢ = eps/2, w = realmax, v = realmin,
s = ey/w/a, and scale A with s. The singular values of sA
are on its diagonal; scaling the diagonal of sA with 1/s
changes the (2, 2) entry precisely to
1.000000000016167e —201. Five digits in the second
singular value of a 2 x 2 diagonal matrix are lost due to
scaling o = (1/s) * (s xd). (In MATLAB, w ~ 1.79 - 103%8,
v~ 2.22 -1073% ) The problem is not removed if s is
changed to the closest integer power of two.
Note that this scaling is designed to avoid overflow in the
implicit use of ATA.
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The stiffness matrix of a mass spring system with 3 masses
X~~H~~HM with spring constants k; = k3 =1, k, =¢/2

o ki + ko —ko 0
K= —k2 k2—|—k3 —k3 s )\min(K)zf/‘l-
0 ks ks

The true and the computed assembled matrix are

1+3 -5 0\ 1 5 0
K={ -5 1+35 -1|, K=[-5 1 -1
0o -1 1 0 -1 1

K is component-wise relative perturbation of K with
[Kij — Kij| £

max = <eg/2.

i |K (2+¢) /

K is indefinite with Amin(K) ~ —£2/8. Too late for Amin(K). :(
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Consequences
Almost never have exactly given data. Have A € F™*" as
approximation of an ideal, not accessible Ag, A = Ag + E.
Do not have E, but know that ||E||/||A]| = f(m,n)u is small.
AcB={Ao+E, |E| <e}andany X € Bisjust as good
as A.

e Full rank matrices dense in My «xn. What is then the
rank of Ap = A — E? Rank of A? Any technigue will fail
over IF.

e Chance to compute zero exactly is exactly zero.

e Matrices with simple eigenvalues dense in My .
Jordan form? Diagonalizability?

e |s A +definite? Invertible? Orthogonal? Stable
(Re(M(A) < 0))? A~ =7 AT =2

¢ In 1950 Goldstine and von Neuman concluded that
solving linear systems with n > 15 with guaranteed
accuracy would be nearly impossible!
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Consequences

Error? Distance to what?!?

computed .
X e e Y =F(X+X)

backward exactly
error

X +0X o [[oX]|| < €||X]|

Backward stability: solve exactly a problem close to X
Not preserved under composition of mappings

> [10X]| < el X[l (10X (DI < el XG0

— [0Xij| < €lXijl,  [0Xij| < e/ Xii X

— X + 6X same structure as X

Perturbation theory: |[Y — Y| <K - ||6X||

Von Neumann, Turing, Givens, Wilkinson
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Consequences

[ll—conditioned = close to

ill-posed
Relative condition number
| F(X +AX) = F(X)||
- I F(X)]] IDF(X)[IX|
k(F,X) = limsup =
(7. X) =0 SUp =A% /X 7]

For A A~1 k(A) = ||A|| - ||A~1]|, and the bad set is the
variety of singular matrices.
distance(A,bad) 1
1Al K(A)’

bad = det~1({0}).

Ajj = Ajj + €| A

1

inf{le| : det(A+€E)=0} = ————
(el det(A+€B) = 0} = s
Probability of being too close to bad set. Algebraic and

geometric properties of bad sets.
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Eigenvalue assignment
a1, ...,on given. Find K such that the spectrum of A + BKT
is {a1,...,an}. Try many B’s and methods to hit ©:

0.6

0.2

ololoc:: -] -

-0.2

—0.6]- . ERi B 4

Placing plenty of poles is pretty preposterous (Chunyang,
Laub, Mehrmann)
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We develop sharp high precision numerical tools for linear
algebra problems in control theory. In this lecture, we
illustrate some aspects of the development of such tools.

e We show how things can go wrong, even in computing
some elementary matrix factorization in order to
determine the matrix numerical rank. We stress the
necessity of strict mathematical approach to numerical
software development.

Goals

e The symmetric eigenvalue and the singular value
problems are known to be well-conditioned. We show
that numerical algorithms do not always deliver optimal
accuracy. Using only orthogonal transformations in the
diagonalization process does not guarantee accurate
results. Perturbation theory important ingredient.

e Higher standard solutions. Accurate NLA methods
make other computational tasks numerically feasible.



AS NLA in
CONTROL

Zlatko Drma¢

Scaling:
examples

Asymmetric3 X 3

example

@ Scaling: examples
Physical unit changes
Integral equations and least squares
A symmetric 3 x 3 example
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X(t) = Ax(t) + Bu(t):
. ClJ( 1 k0 0 0 0
sical uni X p °p P p

s i Tmpm om om0 0 ) M
y 0 0 0 1 0 0
Es — kp e kstkp cstep ks cs ii + Bu
4 ms ms Mg ms ms ms X5
X5 0 o0 0 0 0 1 Xe
Xg 0 0 ks o _kstky _ cs

Mus Mus Mus Mus

e X7 displacement in meters (m); x, speed (m/s)

* Mp, Mg, Mys Mass (kg)

* Kp, Ks, k¢ spring stiffness (N/m)

e Cs, Cp damping coefficient (N s/m)

o Az = 000N /m/kg], Azs = R [Ns/m/kg], ..

e In different units, x(t) = DX(t), D diagonal scalmg.
e How to interpret ||x||2, |Allr, [|0A|r? Big? Small?
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x(t) = Ax(t) +Bu(t), x(0) =xo
:an” y(t) = Cx(t)

Grammians H = LyL,, M = LyL/, via Lyapunov equations:
AH +HAT = -BB", ATM+MA=-C'C.

Hankel SV, o; = \/A\{(HM),HM = T ~IHMT = ¥2.
Different scaling (change of units, x may contain quantities
of different physical nature) x(t) = DX(t); A~ D~1AD,

B — D~!B, C — CD;

H—H=DHDT, M—M=D"MD

Change of units (scaling) changes classical condition
numbers x,(H), k2(M) thus making an algorithm
numerically inaccurate/unstable, while the underlying
problem is the same. Is this acceptable?!?
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ohysical uni
changes
Integral equation:
and Ieasl squares

mmetric 3 X 3

Integral equation
Consider numerical solution of the integral equation

b
y(©) = / K(E, OX(C)d¢

Here y denotes measured unknown function x distorted by
the instrument with known kernel K(-, -). If the equation is
discretized at £1 < - -+ < &m, and the integral is computed
using quadrature rule with the nodes ¢; < --- < ¢, and
weights dq, ..., dn, then

Z:dKé.,CJ )X(G) +ei, ei=error, i=1,....m.

Sety = (y(éi))izl, K = (K(&,¢)) € R™", D = diag(d)i_,
An approximation x = (x;)iL; of (x(¢)){L; is obtained by
solving the linear regression problem

y =KDx +e, xeR", e=(e)",.
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changes
Integral equations
and least squares

mmetric 3 X 3

L Y(E) = [PK(E OX(C)d¢

y =KDx +e, x eR", e =(e&)";.

with vector e dominated by statistically independent
measurement errors from A/(0, S?), where positive definite
S =diag(sj){L, carries standard deviations of the e;’s. A
good estimate of S is usually available.

Wanted is an estimate X of x. To normalize the error
variances, the model is scaled with S~ to get

b=Ax+e', b=S"ty, A=S7KD, e’ =Sle.

Hence, we solve ||b — Ax|, — min

So, what does it mean if we have A 4 §A with backward
error (or initial uncertainty) 6A with [|0A[|r < [|A]|g?
Compare with A + §A = S™1(K + 6K )D with [|6K |[r < |[K||r
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10%° 10 10'°
H={10% 10%° 10° |;
101 10° 1
use MATLAB, eps ~ 2.22-10716

1.000000000000000e + 040
eig(H) = —8.100009764062724e + 019
—3.966787845610502¢e + 023

L=chol(H) (H = LLT)

1.0000000e+20 0 0
L=| 9.9999999e+8 9.9498743e+9 0
9.9999999e -2 9.0453403e—2 9.9086738e—1

Is H positive definite?
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] ei g(H) | eig(PTHP),P ~(2,1,3) |
[ A\1] 1.000000000000000e+40 | 1.000000000000000e+40 ]
[ \2] -8.100009764062724e+19 | 9.900000000000000e+19 ]
[ \s] -3.966787845610502e+23 | 9.818181818181818e-01 |

wme T ] 1jeiginv(H) | eiginvinv(H)) |
[ \1] 1.000000000000000e+40 | 1,000000000000000€+40 |
[ 2] 9.900000000000000e+19 | 9.900000000000000e+19 |
| As| 9.818181818181817e-01 | 9.818181818181817e-01 |
[ ] ei g(H +E;) | ei g(H + Ey) |
[\1] 1.000000000000000e+40 | 1.000000000000000e+40 |
[ 2] -8.100009764062724e+19 | 1.208844819952007e+24 |
[ \s| -3.966787845610502e+23 | 9.899993299416013e-01 |

Eqi: Hyo = 100 — 102 Es: Hiz,H3g — Hig* lJrepS)

eps ~ 2.22.10-15: Al numbers COrrect 1?
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Given A € C™*" determine whether for some small /A, the
matrix A 4 6Ais of rank p < rank(A).

e needed and useful if A is close to matrices of lower
rank (i.e. ill-conditioned)

¢ in the case of ill-conditioning, one does not expect
much and any bad result is attributed to ill-conditioning;

e condition number can be ill-conditioned

e numerical instability in a software implementation of a
basic numerical linear algebra decomposition (QR
factorization with column pivoting) for almost 40 years
hidden in all major numerical software packages
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r
A=UsVT =) oiuv|
k=1

012---20r>0:Ur+l:"'zami”(mv”)

Let ¢ <rand A, =Y\, aiuv] Then

min_|A—X|lr = A~ A
rank (X)<¢

min_ A~ X|lz = A~ Al
rank (X)<¢

|A = Allr =

A = Agll2 = 0p41
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pivoting
EEEERN I\

, permutation Ol BN BN BN BN
~~ (R |0 0O H o H ¢
2P _Q<o>’R_ 0 0 0 « WM ¢
o 0 000N ¢

j
Ri| > | Y |Ry[?, forall 1<i<j<n. 3)
\Jki

Ru1| > [Raz| == [Rpp| > |Rpp1p41[ =---> |Ran|  (4)

The structure (3), (4) may not be rank revealing but it must
be guaranteed by the software (e.g. LAPACK, Matlab)
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QRCP as preconditioner

_o(R)- A —a. g 1 1.
LetAP =Q <o>’ Ac = A de( e D+ TACAT, )

14
— i 1 1 —
Re =R da( e e ) = ( 5

1

0

0
d R — (33 )
Rr = dag(1reiyr - TReT:) 302)

Let AP = QR, where |R;| > /> _ [Rg[2, 1 <i<j<n.

Then || IR l2 < VAl R ™| ll2, w2(Rr) < n¥/2kp(Ac).
Moreover, ||R; 1|, is bounded by O(2"), independent of A.
With exception of rare pathological cases, |R; 2|, is below
O(n) for any A. RR* is more diagonal than R*R.

Let A = Hilbert(100). x,(A) > 10159 > cond(A) ~ 3.6e19
rko(Ac) = ka(Re) > 1019, k5 (R;) ~ 48.31. Repeat with
A+ RT,P =1,togetnew xy(R;) ~ 3.22.
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Examples of failure (Matlab)

\\\ i
\\\
//f//]
sl 1
e I
njj‘{/// 1
!‘AJ [
" |
il
|
|
4
|
50 100 150 200 250 300
EEEEEN
j cOETES
L]
|Rii"maxj2i Zk |Rkj| R=[000eme
0000Mé
00000 ¢
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Examples of failure (Matlab)

\\\\ -
\
5‘0 1(‘)0 1%0 ZC‘)O 25‘0
EEEEER
j ) cuELY
[ ]
IRiil, maxj>i \/> 4 R[4 R=| 000 eme
0O0OO0OO0OMNOS
00000O0 ¢
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|Ax —d|l2 — min; x = A\d (Matlab LS solution)
Warni ng: Rank deficient, rank = 304 tol =

EEER
1.0994e-012. R = <83=! )
EEE

Zlatko Drma¢

10°

10° Rus;

107° |

AAAAAA
\\\\\\\
‘‘‘‘‘

1075]

102

rank( A, 1. 0994e- 12) returns 466
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Any routine based on xQRDC (LINPACK) or xGEQPF,
XGEQP3 (LAPACK) can catastrophically fail.

e XGEQPX (TOMS ¢ 782, rank revealing QRF)
S o XGELSX and xGELSY in LAPACK (||AX — b||, — min)
o XGGSVP in LAPACK (GSVD of (A, B))

0 A Az

UTAQ=(0 0 Ay ,VTBQ:<8 8 Bé3>.
0 0 O

e ... and many others ... long list. Need a new xGEQP3.

Resolved by Drmac¢ and Bujanovi¢ (ACM TOMS, 2008) and
included in LAPACK.
In control, included in SLICOT in 2010.
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The SLICOT (Subroutine Library In COntrol Theory)

e is used as computational layer in sophisticated CACSD
packages such as EASY5 (since 2002. MSC.Software,
initially developed in the Boeing Company), Matlab
S (The MathWorks) and Scilab (INRIA).

- « Since its initial release, SLICOT has been growing at
an impressive rate, from 90 user—callable subroutines
in 1997., 200 subroutines in 2004., 470 subroutines in
2009., ...

o Efficiency an reliability based on BLAS, LAPACK and
state of the art numerical linear algebra

The problem illustrated in the previous examples of QRCP
failure affects SLICOT and thus many other control theory
libraries.
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Introducti
Examples

sLcoT

SLICOT

Ex = Ax + Bu

y = Cx + Du. ®)

e Strategically placed "WRI TE( *, *) vari abl e"
statements in the affected subroutines can completely
change the computed properties of (5).

e Substantial variations of the output can also be caused
by changing the compiler and optimizer options.

e This is undesired behavior, even if the computation is
backward stable, and even if it is doomed to fail, due to
ill—conditioning.

The problem occurs only at certain distance to singularity,
and the rank revealing task itself is usually performed if the
matrix is close to singularity. Since many things can happen
close to singularity, any ill-behavior is usually attributed to
ill-conditioning and the true cause remains inconspicuous.



in
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SLICOT Example: MBO3OY

lllllllllllll

Scaling:
eeeeeeee

Numerical

\\\\\\\\\

(NNWHWllﬂﬂﬂwrmmm

CCCCCCCCC

aaaaaaaaaaaa

el Figure: Left: The matrix R computed by MBO3OY, shown by
meshz(log10(abs(R))). The computed rank is 49. Right: The
matrix R computed with MBO3OY, with "WRI TE( *, ») TEMP2"
statement added after the line 339 in MBO3OY.f. The computed
rank is 82.
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L -

1.1 |ABOIND |« 1.1.1| ABO10OD

1.2.1| ABOSND

2.2| ABOSMD |« 1.2.2.1| AB09JD

1.3 |AGO8BY |« 1.3.1| AGO8BD

1.2 | ABOBNX | «:

i

sLcoT

1.4 |MB02QD |« 1.4.1|SB01DD

1.5 | TBO1UD | «:

1.5.1 | TBO1PD | «:

1.5.1.2 [ABO9ID |
1.5.2 [TBO3AD | « 1.5.2.1[TD03AD|
1.5.3 [ TBO4AY | « 1.5.3.1[ TB04AD |

1.6 | TGO1FD |« 1.6.1| AGO8BD

:
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Introduction

Examples

sLcoT

... affected SLICOT routines

2. |MB04GD |« 2.1[MB03PD |
3.|MBO30D | «:

3.1 [IBOIND |« 3.1.1| IBO1AD | «: 3.1.1.111BOSAD

3.1.1.2|1BO3BD

3.2 |IBO1PD |« 3.2.1|IBO1BD | «: 3.2.1.111B0SAD

3.2.1.2|1BO3BD| 3.3.1.1.1

33 « 331[1B0IPD]- 33.11 o
3.4 [MB02QD] - 3.4.1 [SB01DD|

3.5.1[NFO1BQ] « 3.5.1.1[NFO1BP
3.5 «—Z 3.5.2«_: 3.5.2.1| MD0O3BB

3.5.2.2| NFO1BP
3.6 1 MDO3BY | «: 3.6.1| MDO3BB

3.6.2| NFO1BP

3.7.1 NFO1BP
3.7 1 NFO1BR |«
3.7.2| NFO1BQ |« 3.7.2.1| NFO1BP
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Examples

sLcoT

60 out of 470 affected!

2. [MB30VZ] -

4.2 | AGBBYZ |« | AGO8BZ | 4.3| TGO1FZ | « | AG08BZ

5. MBO3PY |« 5.1| ABOSNX | «:

5.1.1| ABO8BMD %5.1.1.].IABOQJD
5.1.2| ABOBND

611 |
6. [MB3PYZ ]« 6.1[ AB8NXZ | «: 6.1.27. :
7.1. [MB02GD | 7.2.[MBO2HD | ; 7.3.

7.4. [MB02JD|; 7.5.| MB02JX |

8.
9.

AGO8BY | « 8.1| AG08BD |

AG8BYZ | « 9.1| AGO8BZ |

10.[TGO1HX | «: 10.1[TGOIHD]; 10.2[ TGO1ID]; 10.3[ TGOLID |
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sLicoT
Analysis

Implementation: L(IN+A)PACK,
1970s, 1990s, ...

AR, =

Ol JONO.

]

* % ¥ ®
QD
Z
I
¥ ¥ ¥ ® DB B
Il
N
N X
==
~__—

(k+1)
K R K B K K
sz|(< )= ( (I)(k> ,Hij( ) = (Zj(k+1)> ; wj( )= sz( ul

J

12| = WY = \/(wj(k))z —(8%“*)2,  provided that

Fk+1) 2 500 2
computed( | 1 — t(—k) | —+—1 ) >tol, tol ~20-eps,

@ Yj
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Analysis

L(IN+A)PACK update

DO30J=1+1,N
IF ( WORK(J).NE.ZERO ) THEN
TEMP = ONE - (ABS(A(1,J))/WORK(J) )**2
TEMP = MAX( TEMP, ZERO )

TEMP2 = ONE +| 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2

WRITE(**) TEMPZ
IF( TEMP2.EQ.ONE ) THEN
IF(M-L.GT.0 ) THEN
WORK(J) = SNRM2( M-I, A(1+1,J),1)
WORK( N+J ) = WORK(J )
ELSE
WORK(J) = ZERO
WORK( N+J ) = ZERO
END IF
ELSE
WORK(J ) = WORK( J )*SQRT( TEMP )
END IF
END IF
30 CONTINUE

g77 -c -O -ffloat-store
Critical part in the column norm update. (For the full source
see http://www.netlib.org/lapack/single/sgeqpf.f)
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|_NONO)

* x x® DB
* x x ® DB

(k+1)
k R k B; k k
Hizy) = ( kk) Hz = (Zj(k+1)> e =112 @)
j

[ = o) = af®; ¢ = Jgy2 + (5% )2

2049) = w6 = 0Pz - (D)2
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Analysis

New update — conclusion

Provably delivers Businger—Golub structured R (up to
roundoff)

For the computed R = R + 6R, not only ||6R||/||R], but
also [|6R(:, 1)|[/IR(:, 1)[| and [[6R(i, :)|[/[IR(i, )] are
small.
~ - = —
Row scaled R, well conditioned. < 0 — H)
00 —

Same efficiency as original routines

Makes many other solvers more robust and can prevent
catastrophes in mission critical applications

Included in LAPACK, SLICOT
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in floating point

@ Eigenvalues and singular values

Introduction

Backward stability

Perturbations of the spectrum
Positive definiteness in floating point
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x(t) = Ax(t)+Bu(t), x(0) =xo
y() = Cx(t)

Grammians H = LyL],, M = Ly L/, via Lyapunov equations:

o0 T (AT 100 T
H :/ e”BBTe”™ dt, M :/ e cTcedt
0 0

AH +HAT = —BBT, ATM +MA = —CTC.

Hankel singular values, o; = \/Aj(HM). Need spectral
decomposition of the product HM of positive definite
matrices, HM — T ~'HMT = ¥2. New state coo’s
x(t) =TX(t); A— T~1AT,B~ T-1B,C — CT;

HoH=TMHT T=%, M>M=T'MT =%
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Introduction
Backward stability

Backward stability: eig()

H =HT, n x n symmetric.
Hui = \iu;, H=UAUT, A=diag(\)",

Symm. EigenValue Problem perfect* * %k
* eigenvalues real, eigenvectors orthogonal

* algorithms use orthogonal transformations

* Weyl: If H ~~ H + 6H, then A ~ XA + 6\, with

max|5)] < M|

Ul (VT UTHUDU,) U — A

U
Computed (finite prec., O(n®)) U ~ U, A ~ A.
Backward stability:

[[0H|

OT(H +oH)0 ~ A, HTH’ < e~ 1071 small.
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Introduction

Backward stability
of the

Forward error

floating
point

H A, U; H =~ UAD*

backward exact computation
error

H + 6H, |6H|| < ¢[H]], ¢ small

Weyl: |6)i| < ||0H], i =1,...,n. Bad news for small \;’s
|0Ai| < IH]|
INE =N

Let kp(H) = ||H||[[H™Y||. Then

5)\i‘ [[oH |
—| < ka(H)—7.
A H

Want better accuracy for better inputs.

max
|
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Error in the eigenvalues
LetH = LLT = 0and LLT = H +6H = 0, |oH;| < nc /HiHj.
Compare the eigenvalues of H and H = H + éH = LL:
e H=LL" issimilarto LTL, H ~ LTL.

o LetY = I +L-15HL-T. Then

H+0H=L(1+LHLT)LT =LYYTLT ~YTLTLY.

Zlatko Drma¢

Compare \(LTL)=X(H) and A (Y TLTLY )=)\i(H + dH).
o Ostrowski: M = YTMY, then, for all i, \i(M) = X\i(M)&;,

Amin(YTY) < & < Amax(YTY). Here YTY =I4+-L~16HLT.
e Hence |\i(H) — A\i(H)| < Ai(H)||L=26HL=T ||,

[L=26HL=T |, = |[L*DD~16HD DL~ T||,=||L~*D(6Hs)DL™T ||,
< ILT'D3lI6Hsl2 = IDL™TLD|2[|6Hs 2
= [(D*HD ™) l2/|6Hs |2 = [[Hs *[|2]|dHs]|2

N
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5o @ 5 5
=283 P 3

Error in the eigenvalues
Since 0Hs = (6Hij/\/Hii Hjj)

max&'<\Hl\ Oy
RV R | VG
-2

<nnc
i OAi oH
Compare with max |— S/ﬂiz(H)H [P
FoLA [H]]2

Van der Sluis: ||Hs ||z < x2(Hs) < nminp_giag x2(DHD).
Our 3 x 3 example: H = DHsD, D = diag(10%°,10%°, 1),

1040 10%° 10%° 1 01 01
10° 10%° 10° | =DHsD=D (0.1 1 0.1]D,
101® 10° 1 01 01 1

ka(H) > 10%0, kp(Hs) < 1.4, |[HoY|, < 1.2.



AS NLA in
CONTROL

Zlatko Drma¢

Positive definiteness in
floating—point

Demmel and Veseli¢

Let H = DHsD, where D = diag(+/Hii)[_;, and let Amin(Hs)
be the minimal eigenvalue of Hs.

If 6H is symmetric perturbation such that H + dH is not
positive definite, then

max |oH;j > Amin(Hs) _ 1 _
1<i,j<n 4 /Hii Hjj n nHHg HZ
_ 2 |0H| _
If 6H = — Amin(Hs)D?2, then max = Amin(Hs) and
|

H -+ 0H is singular.

If ||[Hs %||2 is too big (2 1/¢) then H is entry—wise close to a
non—definite matrix. Can say: H is numerically definite iff
IHs |2 < 1/e.
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Zlatko Drma¢

0 ks ks
Note that K = LLT, where

ki + ko —ko 0
K= —ks ko + ks —kz|.

vkk 0 0 vkE 0 0 1
REE R
0 0 ks

0 —vks vks
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Jacobi method
Ein leichtes

sided Jacobi

@ Jacobi method
Ein leichtes Verfahren
One-sided Jacobi SVD
Floating point Jacobi
Provable accuracy
SVD computation in floating point

floating point
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Ziatko Drrat Jacobi, 1844, 1846

Ein leichtes Verfahren ...
H=HT, H&) = yTH®U, — A =diag(\) (k — o)
Each Uy annihilates (py, gk ), (k, px) positions in H®).

e o o o e ®» ® 0
T T(T|® ®© ® ° | ® e Kk e
U3 U2 Ul ° ° ° ° U1U2U3— ® * . .
Ein leichtes e o o o O [ ] [ ] [ ]
[ cosyy  sinyy B
Ui = <— sin cos¢1> D2 V2=
(k) HK)
| Jacobi rotation| cot 24y = W,
Hkak
sign(cot 21/ T
tan i — gn(cot 2¢x) (-2

| cot 2¢x | + /1 + cot? 24y

(p,q) = P(k) pivot strategy, P : N — {(i,j).: i <j}
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Jtko Drmat Convergent strategies

Jacobi: |hga)| = MaX;; |hi(jk)|, P(k) = (p,q).
Reading Jacobi's 1846. paper recommended.
Cyclic: P periodic, one full period called sweep.
Row-—cyclic and column—cyclic:

e 15 2 3 e 1] 2] 4]

° ° 4 -5 § e e 3| 5|

e o o o 6| |e o o 6]
e o o e o o o ® ¢

i off (H) = [ST(HWYZ — 0 (k — o)
i#j
HK 5 AUy -Ug--- — Uas(k — o0); UTHU = A
Asymptotically quadratic reduction of Off(H(k)).

Forsythe, Henrici, Wilkinson, Rutishauser, Hari, Veseli¢
Asymptotically cubic strategies exist.
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One-sided Jacobi SVD

Hestenes used implicit Jacobi for SVD of A € RM*":
Diagonalize H = HO = ATA; A = A,.
HO = VIHOV, = V] AT (AVg) = AT A

H (k+1) :VkT H v, IAI+1A|<+1 — N=diag(};)

Zlatko Drma¢

V uses Jacobi rotation to diagonalize

A s p = (L m.p)
(h(k f%) ) he) = [Ak(L: m,q)|2
hig = A(1:m.p)TAx(1:m,q)

h,()p), h(k) scalar update; hga) BLAS1 SDOT
AKHUZ, Y =diag(v/X), UTU =1
Vi Voo — V, VTV =], AV = UX

A=UXVT the SVD of A.
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Zlatko Drmat One—sided rotation
dp = [[Ak(L: mvg)Hz- dg = [[A(1:m,q)l?,
E=A(1:m,p) Ac(1:m,q);

ROTATE(Al:m,pa Al:m,qa dpa d_q7 57 [Vl:m,pa Vl:m,p])

1. g-Ya=d. S .
21-5 |9] + V1 + 92
c= 's=t-c;
V1+t2

(Al:m,p Al:m,q) = (Al:m,p Al:m’q> (CS i) ;

2

3 dp=dp—t-&;dg=dq+t-&;
4: if V is wanted then
5

6

(Vlzn,p Vl:n,q) = (Vlzn,p Vli”:Q) (CS i)
end if

Can avoid squared norms. Can use fast rotations. Unit
stride memory access. Vectorizable. Parallelizable.
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Jacobi SVD
p=n(n—-1)/2;s =0; convergence = false ;
if V is wanted then initialize V =1, end if
fori =1tondod; =A], A:miend for;
repeat
s=s+1;p=0
fori=1ton—-1do
forj=i+1tondo
E A1m|AlmJ,
if |£] > me,/did; then
call ROTATE(Alzm’i,Alzm’j,di,dj,f, [Vl:m.iavl:m,j]) ;
elsep=p+1endif
end for
end for
if p = p then convergence=true; go to » end if
until s > 30
if convergence then T = /dj, Up.m; = Apm it

i
else Error: Did not converge in 30 sweeps. end if

1m|

i=1:
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Jacobi in floating—point
Breakthrough: Jacobi method is more accurate than QR!
Demmel and Veselic: Let HK), denote the computed
matrices. Then, in the positive definite case, one step of
Jacobi in floating—point arithmetic reads

A — OF (00 1 6A09)0,

where Uy is exactly orthogonal and e—close to the actually
used Jacobi rotation Uy, and §H®) is sparse with

o — maxJOA©,

VI GIOM IO

Relative perturbation of eigenvalues in the k—step bounded
by ney ||(H&) 1|5, A% scaled to have unit diagonal.
IMPORTANT: Stop when max; [(H{));] < e

The accuracy depends on maxy H(Flék))—l”z
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Jacobi in floating—point

If the entries of the initial H are given with relative
uncertainty ¢, then:

e The spectrum is determined up to relative error of order
of ne||Hs || (Hs diagonally scaled H to have unit
diagonal)

e The symmetric Jacobi method introduces perturbation
of the order of ne, maxy [|(H&) 2|,

Numerical evidence: maxy H(Hék))*Hz behaves well.
Theoretical (still open) problem: Bound

k)y—
EHY o ra(HE)
k1 |[Hg |2 k>1 k2(Hs)

Demmel, Veseli¢, Slapnic¢ar, Mascarenhas, Drmac
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Floating point Jacobi
Provable accuracy
omputation in

floating point

Provable accuracy

LetH = LLT > 0, L Cholesky factor.
Use Veselic—Hari trick:

If we apply Jacobi SVD to L, LV = UYL, where V is the
product of Jacobi rotations, then H = UX2UT.

So, can apply Jacobi and get eigenvectors without
accumulation of Jacobi rotations! This reduces flop
count, memory requirements and memory traffic!

This implicitly diagonalizes LT L, which is similar to

H = LLT, and it is actually one step of the
Rutishauser’'s LR method. If L is computed with
pivoting, then LT L is 'more diagonal’ than H.

The cost of Cholesky (n®/3) much less than one sweep
of Jacobi (2n2 with fast rotations).

In floating point

~~ 5H
LLT = H + 6H, max [0
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F point Jacobi

Provable accuracy
D computation in

floating point

Provable accuracy

Now to the SVD of L: )
One sided Jacobi SVD LV1V, - V-V, - UX
In floating point

o L« (((':1 +5|:1)\71+5|:2)\72 +(5|:3)\A/3—|—

e Ify =XV, V rotation, X, y row vectors, then
¥ = (X 4+ 0x)V, V orthogonal, ||6x || < 6¢]|x].

e Hence, each row of 6I:i is € small relative to the
corresponding row of L;. The \7,- with j # i do not
change the row norms of 6L;.

» At convergence, US = (L + dL)V, with £ = diag(5;),
|oL(i, )| < O(n)el|L(i,:)| for alli.

o \i = &7 are the eigenvalues of (L + 6L)(L + oL)"
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(L+ o)L +oL)T = LT + LoLT + oLLT 4oL +oL"
E

By Cauchy—Schwarz,
Eijl < 20(ne)IE(, HINCG, )+ OEILE, )INLG, )|
~ (O(ne) +0(?))y/(LLT )i (CLT);

~ (O(ne) + O(e))/HiiHj,

. ~ o OHi;
since LLT = H + ¢H, max [oH;] <nc Sne
1) HiiHjj
So, we have the eigenvalues of
il _ _ |A Ij|
LL' +E=H+éH +E =H + AH, max < O(ne)
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Floating point

Jacobi

Provable accuracy

omputation in

floating point

Provable accuracy—conclusion

If H = O then

The algorithm:

1. Compute the Cholesky factorization H = LLT;

2. Compute L = UXV T using one-sided Jacobi SVD;
3. Output: Set A = ¥% H = UAUT

computes the eigenvalues and eigenvectors of H with
entry—wise small backward error max; 28] O(ne).

The forward error is max; [6X;| /A < O(n2%e)||Hg .
Most of the forward error comes from Step 1. Step 2. in
floating point is as good as exact SVD.

If Cholesky in Step 1 fails to compute L, then the matrix
is entry—wise close to a hon—definite matrix, and
smallest eigenvalue can be lost due to symmetric tiny
entry—wise perturbations.

All computations in one n x n array.
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SVD computation in
floating point

SVD perturbation theory
Let rank(A) = n < m, D = diag(||A(:,1)||), and

A= A+ 0A = o)+ o) +doj.

A 0A = (1 + SAANA— max D=9l < saaf),
i o]

A
[6AAT| < HHAHH(IIATIIHND = ¢ K(A),

I6AD =[] (AD~H)T]].

ISADY| < i max; IR < Ve ;

I(AD )| = [|AL]| < fmlnA:dlag r(AL)
Possible: ||AL| < x(A); always [|AL]| < vNk(A).
Jacobi SVD: ||Al|| — more accurate .
bidiagonal SVD: x(A) — less accurate ,

bidiagonalization provokes x(A).
Jacobi++ SVD: A =D,CD, — D]_(C + 5C)D2
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Jintko Drmas _ QRF preprocessor for Jacobi
A=QR;[Q,R]=qr (A), Q, R computed.
Backward error analysis:

(FA) (3Q, QTQ =1) A+5A=0R,

I6AG. DIl < ea]AG,D)]l, i=1,....n
Perturbation analysis: ¢;(R) = o;((I + JAAT)A)

i(R .
1— oAt < 2R 1 L saat), forali.

gi(A)

soemuen | ot A = AgD, D = diag(||A(:,i)]))-

Hl — t HOAG DIy At
|SAAT|| = [SAD(ADH)T|| < \/—max ACDI [As]]

IAL]l < 5(As) < Vi Jnin_ k(AA)
A=diag

If k(As) is moderate, then SVD(R) is OK for the SVD(A).
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SVD computation in
floating point

__Strong backward stability
Jacobi SVD(R): RTV = UX. Computed: )
[U,V,X] = Jacobi SVD(RT). Jacobi rotations V such that
max |cos Z((0%)e;, (UX)e))| < O(n)u
i#]
Error analysis:

A~

(IBR) (IV, VTV =1) (R+6R)"V = (0%)

ISR(:, 1) < ellRC, i) i =1,....n,
Finally,
R+0R = QT(A+6A)+QTQsR
o N
A+ 0A+ QIR
Q' (A+JA+QJR)
AA

where [[AA(:,1)]| < (e1 + €2(1 + €1))[|A(:, )] for alli, and the
SVDis (A+ AA)TQV = UX. Very nice and simple.

Accurate.
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Accurate
PSVD and
applications
Accurate PSVD

RRD
matrices

ructured

Rational
approximation

@ Accurate PSVD and applications
Accurate PSVD
RRD of structured matrices
Rational approximation
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Entry—wise backward stability also possible for HMx = AX.
e Use contragredient scaling H := DHD,
to get all . Here D = diag(v/M;)[_;.
e Cholesky f. H := PTHP = LyL/,
o HM = PLyL],PTLuL, = Ly," (LY PLALLPT LWL,
e o HM = LT (AAT )Ly, A = LJ}PLy, Ly = Ly sDn
appicatons e Compute A = (L, P)Ly. (No fast matrix-multiply
allowed. Must pay O(n3).)
e Compute the SVD A = UXV T using the Jacobi SVD
(AV = UL, AAT = UT2UT).
o Assemble: T = DL;,"UX?/2.
e Itholds T IHT T =TTMT =%
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Accurate

PSVD and
applications
Accurate PSVD

Accurate solution

The algorithm solves
(H + 6H)(M + dM)x = Ax

exactly, with symmetric 6H, 6M,

SH; OM;
oM <f(n)-e, M| <g(nLys)-e, 1<i,j<n

HiHy ~ VMM
— <h(n)([Hs I+ Ms™*]l) -, e =eps.

Hs = diag(H)~/2Hdiag(H)~%/2, r2(Hs) < N min r(DHD)

All \'s stable IFF ||Hg ! and |[Mg || moderate.
We have optimal accuracy.
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Implicit diagonalization of HM is actually computing the
SVD of a product of two matrices, BCT = UXVT.
A=BCT =UXVT, B, C full column rank

H BN

EEE [ I B B

BCT = EEEE
H BN

Accurate . . . .
PSVD and . . .

applications

A=yxGEMM(B,CT) fastesssst matrix multiply
CALL yxGESDD(A) fastesssst SVD

1 € 2 2\ [ 2+2¢ 2+¢ N 2 2
-1 €¢)\2 1) \—242¢ —2+4¢) 7 \-2 -2

U,BU/ U;CTU;3 ~ X, U; orthogonal
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Introduction

Scahmg" < 1 ) <2 2>

examples

Numerical -1 2 1
U

rank revealing

1 1

E\gerwva\uE§ ° 1 U 2 2 U — ﬁ ﬁ
and singular 1 I} 1 1 1
values *1 2 1 _\72 ﬁ
Jacobi method

V18
Accurate e U CT _ \/g 2
PSVD and 1 “\o N2
applications 2
:’:‘Zﬁézsstruclmed . BUT 1 1 _|_ € _l _|_ € ~ A l 71
S TV2\—-14€ 1+e¢ v2ai-1 1
Concluding e ¢ happy because U is orthogonal ?!

backward errors: ||dB| < eps||B||, ||0C|| < eps||C]|
Is that the best we can do?
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PSVD: SVD(BCT)

How to compute the SVD of a product of two matrices,
BCT = UXVT, accurately?

Zlatko Drma¢

EEEE
AgC' =
EEEE

N———
unit columns

Accurate PSVD
RRD of structured

e« CAgP =Q ('g); BCT =( P)(RT 0)QT;

[ |
o A= P)RT; R™= n =well.cond x diag.

V 0
e [U,X,V1]=SVD(A) jacopi: V = Q (01 Inp)
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Accurate PSVD
RR

approximation

BPTT =

And what about BPRT?

(=)

/17 0 O

Consider (al ao a3):(b1 b, bg) (fz]_ ly, O

(82 &s)

l31 f3p M33

(bs + = )la3
(b + 62b2)l05 + (b3 + d2b3) 32

(by +62b2)l00 + (b3 +  — = + d2b3)
(

(

bz+-®b2+(®b3—5bdzg)@z+(b3+

by + db2)lan + (b3 + )33
(bz + 6bs bz + 5b3) L, L= RT

|

)33
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Introduction

Scaling:
examples

Numerical
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Backward stability

oft)

e C+iC=0Q (g :

o ||0C(:,1)]| < €||C(:1)], for all columns i
A =BRT;

e A=(B+J/B)RT,

o ||0B(:,0)|| < €lIB(:,1)]], for all columns i

(B +6B)(C +46C)" = (I +0BB)BCT(I1 +sCChHT
B = Becaeq D, scond(B) = cond (Becajeq)
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Theoretical accuracy

Scond(C) Scond(B)

) theory:
max; @ < f(m,p,n)-e-max{scond(B),scond(C)}

e
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Scond(C) 0 1

Scond(B)

theory: measured max; |" "" ;in (0.3,46)x theory
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Rank Revealing Decomposition

In a +60 pages LAA paper Demmel, Drmag, Gu, Eisenstat,
Slapnicar, Veselic (DGESVD paper) noted that some
classes of matrices allow so called Rank Revealing
Decomposition (RRD),

P,AP, = LDU, P4,P, permutations,

where D is diagonal, and

Moreover, L, D, U can be computed in a forward stable way.
An example of a RRD of A is obtained by non—standard
Gaussian eliminations using certain structural properties of
A. More examples by Demmel and Koev.

Then, we can use the accurate PSVD algorithm and get the
SVD of LDU.

Example: Cauchy matrix Cj = 1/(x; + ;)

(displacement rank one, XC + CY =d;d])
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S — Cauchy matrices

det(C) = HI<J( j i)Y — Vi)
Hi,j (X +Yj)
Can get accurate LDU at high cost, O(n®). Then Demmel

reduced it to the usual O(n®) using the recursive structure
of the Schur complement.

Accurate PSVD Cll C12 — I O Cll C12
e Ca Cax (321(:1_1l | 0 s®
g _ glk—1) (i = X)) — k)
! T Y k)
Straightforward extension to Cauchy-like matrices D;CD,,
D; diagonal. Simplified for symmetric positive definite cases.
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An illustration

After computing C = LDU, one applies accurate Jacobi
PSVD to the product (LD)U. All forward stable, but the
spectrum is ill-conditioned!

An illustration of the power of this algorithm is the example
of 100 x 100 Hilbert matrix H1gg. Computation done by
Demmel:

e The singular values of Hygg range over 150 orders of
magnitude and are computed using the package
Mathematica with 200—decimal digit software floating
point arithmetic. The computed singular values are
rounded to 16 digits and used as reference values.

e The singular values computed in IEEE double precision
floating—point (¢ ~ 10~16) by the Jacobi PSVD agree
with the reference values with relative error less than
34 - ¢.
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Rational approximation
New highly accurate NLA algorithms open new possibilities
in other computational tasks.
For instance, Haut and Beylkin (2011) used
Adamyan-Arov—Krein theory to show that nearly
L>°—optimal rational approximation on |z| = 1 of

Zlatko Drma¢

n n
: @z
f(Z):E: - *, 1f + o

—rt Z ="

with max;|—1 [f(z) —r(z)| ~ min,

= i g e
approximation r(z) = Z . + Z 1 —_ ﬁz + ao
. S 1

is numerically feasible if one can compute the
con—eigenvalues and con—eigenvectors

Cu =T, Cj= Vavay i

]
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Rational
approximation

Con-eigenvalues

Here C = (‘Wﬁ\/_) is positive definite Cauchy matrix C.

The con—eigenvalue problem Cu = Au is equivalent to
solving

CCu = |\2u,

where C is factored as C = XD?X*. The problem reduces to
computing the SVD of the product G = DX T XD. Accurate
SVD via the PSVD based on the Jacobi SVD. Haut and
Beylkin tested the accuracy with x,(C) > 10°°° and using
Mathematica with 300 hundred digits for reference values.
Over 500 test examples of size 120, the maximal error in
IEEE 16 digit arithmetic (¢ ~ 2.2 - 10716) was

A — Al _52.10-12 Ui —uif2

, <5.4.107%
RY uill2
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Concluding
remarks

Concluding remarks

lll-conditioning can be artificial, an artifact of a
particular algorithm, and not the underlying problem. In
many cases accurate computation is possible, despite
high classical condition numbers.

Backward stability is often used to justify the result.
Structured backward error can yield better results.

Using only orthogonal transformations does not
automatically guarantee good results.

Users from applied sciences and engineering — often
not interested in math details, just solutions, software.
Need robust reliable and efficient numerical software. Is
trading accuracy for speed avoidable?

Challenging problems for numerical linear algebra.
Higher standards for new algorithms.
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