Parallel QR Algorithm with Aggressive Early Deflation

Meiyue Shao

Department of Computing Science and HPC2N
Umeå University, Sweden

Joint work with R. Granat, B. Kågström, and D. Kressner

Trogir, October 2011
• Dense linear eigenvalue problems

 – Standard eigenvalue problem (SEP): $Ax = \lambda x$
 – Generalized eigenvalue problem (GEP): $Ax = \lambda Bx$

Sometimes **ALL** eigenvalues are needed.
Achieved via Schur decomposition: $A = QTQ^H$ or $(A, B) = (QSZ^H, QTZ^H)$.
Modern QR Algorithm

- QR algorithm:
 1. (optional) Balancing (isolating and scaling)
 2. Hessenberg reduction ($A \rightarrow H$)

```
+---+    +---+  
|   |    |   |  
|   |    +---+  
```

3. Repeat
 Aggressive early deflation
 Multi-shift QR sweep (bulge-chasing)
 Until converge ($H \rightarrow T$)

```
+---+    +---+  
|   |    |   |  
|   |    |   |  
```

4. (optional) Backward transformation.
• Aggressive early deflation (AED)

\[
\begin{align*}
H &= \begin{pmatrix}
1 & H_{11} & H_{12} & H_{13} \\
H_{21} & H_{22} & H_{23} & 0 \\
0 & H_{32} & H_{33} & 0
\end{pmatrix}, \\
U &= \begin{pmatrix}
I & 1 \\
1 & V
\end{pmatrix}, \\
U^H H U &= \begin{pmatrix}
H_{11} & H_{12} & H_{13} V \\
H_{21} & H_{22} & H_{23} V \\
0 & s & S
\end{pmatrix}, \\
S &= V^H H_{33} V = \square.
\end{align*}
\]

– If the last entry of the vector \(s\) is small enough, we can deflate an eigenvalue.
– Otherwise, the undeflatable eigenvalue is moved up.
– Reduce back to Hessenberg form after all eigenvalues are tested.
– Undeflatable eigenvalues can be used as shifts in the next QR sweep.
- Software structure

PDHSEQR
Entry routine for new parallel QR algorithm.

PDLAQR1
Modified version of ScaLAPACK's current implementation of the parallel QR algorithm.

PDLAQR0
New parallel QR algorithm.

PDLAQR3
Aggressive early deflation and shift computation.

PDLAQR5
Multishift QR iteration based on chains of tightly coupled bulges.
Parallel QR Algorithm

- Parallel bulge-chasing algorithms
 (on distributed-memory systems)

ScaLAPACK 1.8.0

New algorithm

PDLAQR1() BLAS-1 loosely coupled

PDLAQR5() BLAS-3 tightly coupled
• Local bulge chasing

Several chains of tightly coupled bulges are chased simultaneously.
• Cross border chasing

Odd-numbered windows

Even-numbered windows
• Aggressive early deflation
 – Schur decomposition for a smaller matrix
 Several possible choices: recursion, (modified) ScaLAPACK solver, or even LAPACK solver.
 Depends on the size of AED window, as well as the number of processors.
 – We need to take care of eigenvalue reordering (PBDTRORD).
 – Usually the AED phase is slow since the submatrix (AED window) is not large enough.
 Sometimes we need to redistribute the submatrix to a subset of processors.
 – We prefer QR sweep since it scales better than AED. So the threshold (NIBBLE) for skipping a QR sweep is larger than that used in LAPACK.
A 16000 × 16000 dense eigenvalue problem with 100 processors

\[H \rightarrow T = Q^T HQ \]

- ScaLAPACK
- New software
Profile of the total execution time ($A \rightarrow H \rightarrow T$)
$(4000 \times 4000 \text{ per core})$
A $100,000 \times 100,000$ Dense Eigenvalue Problem

<table>
<thead>
<tr>
<th># Procs</th>
<th>16 x 16</th>
<th>24 x 24</th>
<th>32 x 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Time</td>
<td>5.87 hrs</td>
<td>3.97 hrs</td>
<td>3.07 hrs</td>
</tr>
<tr>
<td>Balancing</td>
<td>0.24 hrs</td>
<td>0.24 hrs</td>
<td>0.24 hrs</td>
</tr>
<tr>
<td>Hess. red.</td>
<td>2.92 hrs</td>
<td>1.78 hrs</td>
<td>1.08 hrs</td>
</tr>
<tr>
<td>QR+AED</td>
<td>2.72 hrs</td>
<td>1.95 hrs</td>
<td>1.75 hrs</td>
</tr>
<tr>
<td>AED/(QR+AED)</td>
<td>44%</td>
<td>44%</td>
<td>42%</td>
</tr>
<tr>
<td>shifts per eig</td>
<td>0.30</td>
<td>0.22</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Concluding Remarks

- New issues in the parallel QR algorithm
 - multiple chains of shifts
 - crossover points for different algorithms
 - shifting strategy
 - data redistribution
- The software will be released soon.
- Future work
 faster, faster, and even faster . . .
 (perhaps less and less energy consumption in the future)
Thank you!