
Trogir Summer School · Pseudospectra Exercises

1. Getting to know EigTool.

(a) Download EigTool (http://www.cs.ox.ac.uk/pseudospectra/eigtool)

(b) Run eigtool from a MATLAB prompt.

(c) Experiment with menu option: Demos/Dense/...

(d) For dense matrices, experiment with menu option: Transients

(e) For dense matrices, experiment with menu option: Numbers

(f) For dense matrices, experiment with Pmode+epsilon button

(g) Experiment with menu option: Demos/Sparse/...

(h) Observe convergence of Restarted Arnoldi method: adjust the ARPACK subspace di-
mension, and observe how this affects convergence behavior for Arnoldi.

2. Computing pseudospectra of a damped, vibrating string.

This exercise asks you to perform some pseudospectral computations for several damped
vibrating strings. Codes to generate the discretization matrices will be provided. We model
a string via the differential equation

utt(x, t) = uxx(x, t)− 2a(x)ut(x, t)

on x ∈ [0, 1], t ≥ 0 with homogeneous boundary conditions u(0, t) = u(1, t) = 0. We write
this equation in first-order form as

d
dt

[
u(x, t)
ut(x, t)

]
t

[
0 I

d2/dx2 −2a

] [
u(x, t)
ut(x, t)

]
,

where the operator

A =
[

0 I
d2/dx2 −2a

]
has domain Dom(A) = (H1

0 (0, 1) ∩ H2(0, 1)) × H1
0 (0, 1). The energy norm on this space is

defined by 〈[
f
g

]
,

[
u
v

]〉
E

=
∫ π

0
(f ′(x)u′(x) + g(x)v(x)) dx.

We wish to understand the nonnormality of this system, in the physically relevant norm,
given several choice of the damping parameter a.

(a) Use the code make_Aconst to generate the discretization matrix for the operator with
constant a ≥ 0, then apply EigTool to compute the pseudospectra of this matrix over
Re z, Im z ∈ [−100, 100]. (Pick the discretization size N sufficiently large that you are
confident that the pseudospectra have convergence in this region. This is a spectral
discretization, so the matrices do not need to be particularly large.)

(b) Based on your computation in (a), do you expect this system can experience transient
growth?



(c) Now we wish to be more careful in our computation, and work a discretization of the
proper energy norm. The code getE will return a matrix R such that E = R∗R defines
an inner product

〈x,y〉E := y∗Ex = y∗R∗Rx,

which gives a norm ‖x‖E := 〈x,x〉1/2E and an induced operator norm

‖M‖E = sup
x 6=zero

‖Mx‖E
‖x‖E

.

Show that ‖M‖E = ‖RMR−1‖2, where ‖·‖2 here denotes the standard Euclidean norm,
(d) Following from (c), compute the energy-norm pseudospectra of A by calling EigTool

with RAR−1. Use damping values a = 0, π/2, π, 3π/2. (The operator is skew-adjoint
in this inner product when a = 0: can you spot this from the pseudospectra? What
interesting phenomenon happens at a = π?)

(e) Now consider the Castro–Cox damping function, a(x) = 1/(x + 1/k), generated by
the routine makeAcc. Examine the behavior of the energy-norm pseudospectra for k =
10, 102, 103, . . .. Assess the potential for transient behavior different from what you would
predict based on the spectrum alone.

3. Population dynamics: design a transiently growing population.

The Leslie matrix is used for modeling the (female) population of a given species with fixed
birth rates and survivability levels (in the absence of immigration). The population is divided
into n brackets of y-years each, and an average member of bracket k gives birth to bk ≥ 0
females in the next y years, and has probability sk ∈ [0, 1] of surviving the next y years.
Letting p(j)

k denote the population in the kth bracket in the jth generation, we see that the
population evolves according to the matrix equation (e.g., for n = 5)
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with unspecified entries equal to zero. (We presume the mortality of the last age bracket.)

Denote the matrix as A, so that p(j+1) = Ap(j), and hence p(j) = Ajp(0).

In the lectures, we saw how transient growth in matrix powers is linked to the sensitivity of
eigenvalues to perturbations in the matrix entries. This problem is designed to reinforce this
connection in the context of ‘physically’ meaningful transient behavior.

(a) Design a set of parameters b1, . . . , b5 > 0 and s1, . . . , s4 > 0 (for n = 5) so that the
population will eventually decay in size to zero (Aj → 0 as j → ∞), but this will be
preceded by a period of significant transient growth in the population, where p(j) � p(0).
(Think about what kind of birth and survivability values might suggest this demographic
pattern.)



(b) Plot your population for a number of generations to demonstrate the transient growth
and eventual decay. (You may modify the pop.m code.)

(c) Compute pseudospectra of A to show that this transient growth coincides with sensitivity
of the eigenvalues of your matrix.

4. You have often studied the linear, constant-coefficient dynamical system x′(t) = Ax(t), whose
solutions x(t) decay to zero as t→∞, provided all eigenvalues of A have negative real part.

Is the same true for variable-coefficient problems? Suppose x′(t) = A(t)x(t), and that all
eigenvalues of the matrix A(t) ∈ Cn×n have negative real part for all t ≥ 0. Is this enough
to guarantee that x(t)→ 0 as t→∞? This problem asks you to explore this possibility.

(a) Consider the matrix

U(t) =
[

cos(γt) sin(γt)
− sin(γt) cos(γt)

]
.

Show that U(t) is unitary for any fixed real values of γ and t.

(b) Now consider the matrix A(t) ∈ Cn×n defined by

A(t) = U(t)A0U(t)∗, A0 =
[
−1 α
0 −2

]
.

(Notice that A0 is the matrix that featured in Problem 2.)
Explain why σ(A(t)) = σ(A0), W (A(t)) = W (A0), and σε(A(t)) = σε(A0) for all real
t.
(In other words, show the spectrum, numerical range, and ε-pseudospectra are identical
for all t.)

(c) Now we wish to investigate the behavior of the dynamical system

x′(t) = A(t)x(t). (∗)

Define y(t) = U(t)∗x(t). Explain why equation (∗) implies that

y′(t) = (A0 + (U(t)∗)′U(t))y(t). (∗∗)

(Here (U(t)∗)′ ∈ Cn×n denotes the t-derivative of the conjugate-transpose of U(t).)

(d) Compute (U(t)∗)′U(t). Does this matrix vary with t?

(e) Define the matrix
Â = A0 + (U(t)∗)′U(t).

Fix α = 7. Plot the (real) eigenvalues of Â (e.g., in MATLAB) as a function of γ ∈ [0, 7].
Do the eigenvalues of Â fall in the left half of the complex plane for all γ?

(f) Calculate the eigenvalues of Â for γ = 1 and α = 7.
What can be said of solutions y(t) to the system (∗∗) as t→∞ for these α, γ values?
What then can be said of ‖x(t)‖ = ‖U(t)y(t)‖, where x(t) solves (∗), as t→∞?
How does this compare to the similar constant coefficient problem x′(t) = A0x(t) (where
we have seen that A0 has the same spectrum, numerical range, and pseudospectra as
A(t) for all t)?



(g) Adapt this experiment to the matrix

A0 =
[
−1 M2

−1 −1

]
with M = 100, which we saw in the lectures to have a large real distance to instability,
but a small complex distance to instability.

[Examples of this sort were perhaps first constructed by Vinograd; see the books by Dekker
and Verwer, and Lambert.]


