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Overview of Lectures

These lectures address modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Goal: By the end, you should be equipped to understand phenomena that
many people find quite mysterious when encountered in the wild.

Lecture 1:

I Normality and Nonnormality

I Pseudospectra

I Bounding Functions of Matrices

Lecture 2:

I Balanced Truncation and Lyapunov Equations

I Moment Matching Model Reduction

I Differential Algebraic Equations
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Quiz

The plots below show the solution to two dynamical systems, ẋ(t) = Ax(t).

Which system is stable?

That is, for which system, does x(t)→ 0 as t →∞?

(a) neither system is stable
(b) only the one on the blue system is stable
(c) only the one on the red system is stable
(d) both are stable
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Quiz

The plots below show the solution to two dynamical systems, ẋ(t) = Ax(t).

Which system is stable?

That is, for which system, does x(t)→ 0 as t →∞?

original unstable system stabilized system

Eigenvalues of 55× 55 Boeing 767 flutter models [Burke, Lewis, Overton].
These eigenvalues do not reveal the exotic transient behavior.



Why is Transient Growth a Big Deal?

Many linear systems arise from the linearization of nonlinear equations, e.g.,
Navier–Stokes. We compute eigenvalues as part of linear stability analysis.

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

Trefethen, Trefethen, Reddy, Driscoll
“Hydrodynamic stability without eigenvalues,” Science, 1993.



Why is Transient Growth a Big Deal?

Many linear systems arise from the linearization of nonlinear equations, e.g.,
Navier–Stokes. We compute eigenvalues as part of linear stability analysis.

Transient growth in a stable linearized system has implications
for the behavior of the associated nonlinear system.

Consider the autonomous nonlinear system u′(t) = f(u).

I Find a steady state u∗, i.e., f(u∗) = 0.
I Linearize f about this steady state and analyze small perturbations,

u = u∗ + v:

v′(t) = u′(t) = f(u∗ + v)

= f(u∗) + Av + O(‖v‖2)

= Av + O(‖v‖2).

I Ignore higher-order effects, and analyze the linear system v′(t) = Av(t).
The steady state u∗ is stable provided A is stable.

But what if the small perturbation v(t) grows
by orders of magnitude before eventually decaying?



Spectra and Pseudospectra

Source for much of the content of these lectures:

Princeton University Press
2005



1. Normality and Nonnormality



Motivating Applications

Many applications lead to models involving linear, non-self-adjoint operators.

I convective fluid flows

I damped mechanical systems

I atmospheric science

I magnetohydrodynamics

I neutron transport

I population dynamics

I food webs

I directed social networks

I Markov chains

I lasers

ut(x, t) = ν∆u(x, t)

− (a · ∇)u(x, t)

Mx′′(t) = −Kx(t)

−Dx′(t)
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Normality and Nonnormality

Unless otherwise noted, all matrices are of size n × n, with complex entries.

The adjoint is denoted by A∗ = AT .

Definition (normal)

The matrix A is normal if it commutes with its adjoint, A∗A = AA∗.

A =

»
1 1
−1 1

–
: A∗A = AA∗ =

»
2 0
0 2

–
=⇒ normal

A =

»
−1 1
0 1

–
: A∗A =

»
1 −1
−1 2

–
6=
»

2 1
1 1

–
= AA∗ =⇒ nonnormal

Important note:
The adjoint is defined via the inner product: 〈Ax, y〉 = 〈x,A∗y〉.
hence the definition of normality depends on the inner product.
Here we always use the standard Euclidean inner product, unless noted.
In applications, one must use the physically relevant inner product.
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Conditions for Normality

Many (∼ 100) equivalent definitions of normality are known;
see [Grone et al. 1987] . . . .

By far, the most important of these concerns the eigenvectors of A.

Theorem

The matrix A is normal if and only if it is unitarily diagonalizable,

A = UΛU∗,

for U unitary (U∗U = I) and Λ diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

Hence, any nondiagonalizable (defective) matrix is nonnormal.
But there are many interesting diagonalizable nonnormal matrices.
Our fixation with diagonalizability has caused us to overlook these matrices.
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Orthogonality of Eigenvectors

Theorem

The matrix A is normal if and only if it is unitarily diagonalizable,

A = UΛU∗,

for U unitary (U∗U = I) and Λ diagonal.

Equivalently, A is normal if and only if is possesses an orthonormal basis of
eigenvectors (i.e., the columns of U).

An orthogonal basis of eigenvectors gives a perfect coordinate system for
studying dynamical systems:

x′(t) = Ax(t) =⇒ U∗x′(t) = U∗AUU∗x(t)

=⇒ z′(t) = Λz(t)

=⇒ z ′j (t) = λj zj (t),

with ‖x(t)‖ = ‖z(t)‖ for all t.



The Perils of Oblique Eigenvectors

Now suppose we only have a diagonalization, A = VΛV−1:

x′(t) = Ax(t) =⇒ V−1x′(t) = V−1AVV−1x(t)

=⇒ z′(t) = Λz(t)

=⇒ z ′j (t) = λj zj (t),

with ‖x(t)‖ 6= ‖z(t)‖ in general.

The exact solution is easy:

x(t) = Vz(t) =
nX

k=1

etλk zk (0)vk .

Suppose ‖x(0)‖ = 1. The coefficients zk (0) might still be quite large:

x(0) = Vz(0) =
nX

k=0

zk (0)vk .

The “cancellation” that gives x(0) is washed out for t > 0 by the etλk terms.



The Perils of Oblique Eigenvectors

Now suppose we only have a diagonalization, A = VΛV−1:

x′(t) = Ax(t) =⇒ V−1x′(t) = V−1AVV−1x(t)

=⇒ z′(t) = Λz(t)

=⇒ z ′j (t) = λj zj (t),

with ‖x(t)‖ 6= ‖z(t)‖ in general.

The exact solution is easy:

x(t) = Vz(t) =
nX

k=1

etλk zk (0)vk .

Suppose ‖x(0)‖ = 1. The coefficients zk (0) might still be quite large:

x(0) = Vz(0) =
nX

k=0

zk (0)vk .

The “cancellation” that gives x(0) is washed out for t > 0 by the etλk terms.



Oblique Eigenvectors: Example

Example

»
x ′1(t)
x ′2(t)

–
=

»
−1/2 500

0 −5

– »
x1(t)
x2(t)

–
,

»
x1(0)
x2(0)

–
=

»
1
1

–
.

Eigenvalues and eigenvectors:

λ1 = −1/2, v1 =

»
1
0

–
, λ2 = −5, v2 =

»
1

−.009

–
Initial condition:

x(0) =

»
1
1

–
=

1000

9
v1 −

1009

9
v2.

Exact solution:

x(t) =
1000

9
e−λ1tv1 −

1009

9
e−λ2tv2.



Oblique Eigenvectors: Example

‖x(0)‖ = 1

‖x(.4)‖ = 76.75

Note the different scales of the horizontal and vertical axes.



Oblique Eigenvectors Can Lead to Transient Growth

Transient growth in the solution: a consequence of nonnormality.

See Figure 1 in “Nineteen Dubious Ways to Compute the Exponential of a
Matrix” by Moler and Van Loan, SIAM Review, 1978.



Transient Behavior of the Power Method for Computing Eigenvalues

Large coefficients in the expansion of x0 in the eigenvector basis can lead to
cancellation effects in xk = Ak x0.

Example: here different choices of α and β affect eigenvalue conditioning,

A =

241 α 0
0 3/4 β
0 0 −3/4

35 , v1 =

241
0
0

35 , v2 =

24−4α
1
0

35 , v3 =

248αβ/21
−2β/3

1

35 .

:
v1

6v3

}
v2

x0
x2

x4
x6

x8

x1

x3
x5

x7 :
v2:
v1

6
v3

x0

x1, ..., x8 :
v1

i
v3

k
v2

x0
x2

x4
x6

x8x1

x3 x5 x7

normal nonnormal nonnormal
v1 ⊥ v2 ⊥ v3 v1 6⊥ v2 ⊥ v3 v1 ⊥ v2 6⊥ v3

α = β = 0 α = 10, β = 0 α = 0, β = 10

Cf. [Beattie, E., Rossi 2004; Beattie, E., Sorensen 2005]



Tools for Measuring Nonnormality

Given a matrix, we would like some effective way to measure whether we should
be concerned about the effects of nonnormality.

First, we might seek a scalar measure of normality.
Any definition of normality leads to one such gauge.

I ‖A∗A− AA∗‖
I min

Z normal
‖A− Z‖

(See work on computing the nearest normal matrix by Gabriel, Ruhe 1987.)

I Henrici’s departure from normality:

dep2(A) = min
A=U(D+N)U∗

Schur factorization

‖N‖.

No minimization is needed in the Frobenius norm:

depF (A) = min
A=U(D+N)U∗

Schur factorization

‖N‖F =

vuut‖A‖2
F −

nX
j=1

|λj |2.

These are related by equivalence constants [Elsner, Paardekooper, 1987].
None of these measures is of much use in practice.
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Tools for Measuring Nonnormality

If A is diagonalizable,
A = VΛV−1,

it is often helpful to characterize nonnormality by κ(V) := ‖V‖‖V−1‖ ≥ 1.

I This quantity depends on the choice of eigenvectors;
scaling each column of V to be a unit vector gets within

√
n

of the optimal value, if the eigenvalues are distinct [van der Sluis 1969].

I For normal matrices, one can take V unitary, so κ(V) = 1.

I If κ(V) is not much more than 1 for some diagonalization, then the effects
of nonnormality will be minimal.

Example (Bound for Continuous Systems)

‖x(t)‖ = ‖etAx(0)‖ ≤ ‖etA‖‖x(0)‖

≤ ‖VetΛV−1‖‖x(0)‖

≤ κ(V) max
λ∈σ(A)

|etλ|‖x(0)‖.
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Numerical Range (Field of Values)

Another approach: identify a set in the complex plane to replace the spectrum.
This dates to the early 20th century literature in functional analysis, e.g., the
numerical range, Von Neumann’s spectral sets, and sectorial operators.

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of a matrix is the set

W (A) = {x∗Ax : ‖x‖ = 1} .

I W (A) is the set of all Rayleigh quotient eigenvalue estimates.

I σ(A) ⊂W (A) [Proof: take x to be an eigenvector.]

I W (A) is a closed, convex subset of C.

I If A is normal, then W (A) is the convex hull of σ(A).

I Unlike σ(A), the numerical range is robust to perturbations:

W (A + E) ⊆W (A) + {z ∈ C : |z | ≤ ‖E‖}.
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A Gallery of Numerical Ranges

normal random Grcar Jordan

If z ∈W (A), then

Re z =
z + z

2
=

1

2
(x∗Ax + x∗A∗x) = x∗

“A + A∗

2

”
x.

Using properties of Hermitian matrices, we conclude that

Re(W (A)) =
h
λmin

“A + A∗

2

”
, λmax

“A + A∗

2

”i
.

Similarly, one can determine the intersection of W (A) with any line in C.
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Computation of the Numerical Range

This calculation yields points on the boundary of the numerical range.
Use convexity to obtain polygonal outer and inner approximations
[Johnson 1980]; Higham’s fv.m.

Neat problem: Given z ∈W (A), find unit vector x such that z = x∗Ax
[Uhlig 2008; Carden 2009].
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Numerical Range and the Matrix Exponential

What does the numerical range reveal about matrix behavior?

d

dt
‖etAx0‖

˛̨̨
t=0

=
d

dt

“
x∗0 etA∗etAx0

”1/2

=
d

dt

“
x∗0 (I + tA∗)(I + tA)x0

”1/2

=
1

‖x0‖
x∗0
“A + A∗

2

”
x0

So, the rightmost point in W (A) reveals the maximal slope of ‖etA‖ at t = 0.

Definition (numerical abscissa)

The numerical abscissa is the rightmost in W (A):

ω(A) := max
z∈W (A)

Re z .
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Intitial Transient Growth via Numerical Abscissa

A =

»
−1.1 10

0 −1

–

eω(A)t

κ(V)e−t



Crouzeix’s Conjecture

The numerical range can be used to help gauge the size of matrix functions.

Theorem (Crouzeix, 2007)

Let f be a function analytic on W (A). Then

‖f (A)‖ ≤ 11.08 max
z∈W (A)

|f (z)|.

Crouzeix’s Conjecture:
‖f (A)‖ ≤ 2 max

z∈W (A)
|f (z)|.

Obstacle: in applications, W (A) is often too large, e.g., it contains the origin,
or points in the right-half plane, or points of magnitude larger than one.
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Boeing 737 Example, Revisited

Numerical range of 55× 55 stable matrix.

σ(A) W (A)



2. Pseudospectra



Pseudospectra

The numerical range and the eigenvalues both have limitations.
For nonnormal matrices, W (A) can be “too big,” while σ(A) is “too small.”

Here we shall explore another option that, loosely speaking,
interpolates between σ(A) and W (A).

Example

Compute eigenvalues of three similar 100× 100 matrices using MATLAB’s eig.

26664
0 1

1 0
. . .

. . .
. . . 1
1 0

37775
26664

0 1/2

2 0
. . .

. . .
. . . 1/2
2 0

37775
26664

0 1/3

3 0
. . .

. . .
. . . 1/3
3 0

37775
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Pseudospectra

Definition (ε-pseudospectrum)

For any ε > 0, the ε-pseudospectrum of A, denoted σε(A), is the set

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

We can estimate σε(A) by conducting experiments with random perturbations.

For the 20× 20 version of A = tridiag(2, 0, 1/2), 50 trials each:

ε = 10−2 ε = 10−4 ε = 10−6
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Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.
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Proof. (1) =⇒ (2)

If z ∈ σ(A + E) for some E with ‖E‖ < ε, there exists a unit vector v such that
(A + E)v = zv. Rearrange to obtain

v = (z − A)−1Ev.

Take norms:

‖v‖ = ‖(z − A)−1Ev‖ ≤ ‖(z − A)−1‖‖E‖‖v‖ < ε‖(z − A)−1‖‖v‖.

Hence ‖(z − A)−1‖ > 1/ε.
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If ‖(z − A)−1‖ > 1/ε, there exists a unit vector w with ‖(z − A)−1w‖ > 1/ε.
Define bv := (z − A)−1w, so that 1/‖bv‖ < ε, and

‖(z − A)bv‖
‖bv‖ =

‖w‖
‖bv‖ < ε.

Hence we have found a unit vector v := bv/‖bv‖ for which ‖Av − zv‖ < ε.



Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

Proof. (3) =⇒ (1)

Given a unit vector v such that ‖Av − zv‖ < ε, define r := Av − zv.
Now set E := −rv∗, so that

(A + E)v = (A− rv∗)v = Av − r = zv.

Hence z ∈ σ(A + E).



Equivalent Definitions of the Pseudospectrum

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ C n×n with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : ‖Av − zv‖ < ε for some unit vector v ∈ C n}.

These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;

2. analyzing matrix behavior/functions of matrices;
computing pseudospectra on a grid in C;

3. proving bounds on a particular σε(A).



History of Pseudospectra

Invented at least four times, independently:

I Jim Varah in his 1967 Stanford PhD thesis.

I Henry Landau in a 1975 paper, motivated by laser theory.

I S. K. Godunov and colleagues in Novosibirsk in the 1980s.

I L. N. Trefethen, motivated by stability of spectral methods (1990).

Early adopters include Wilkinson (1986), Demmel (1987), Chatelin (1990s).



Properties of Pseudospectra

A is normal ⇐⇒ σε(A) is the union of open ε-balls about each eigenvalue:

A normal =⇒ σε(A) =
[

j

λj + ∆ε

A nonnormal =⇒ σε(A) ⊃
[

j

λj + ∆ε

A circulant (hence normal) matrix:

A =

266664
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

377775
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Normal Matrices: matching distance

An easy misinterpretation: “A size ε perturbation to a normal matrix can move
the eigenvalues by no more than ε.”

This holds for Hermitian matrices, but not all normal matrices.

An example constructed by Gerd Krause (see Bhatia, Matrix Analysis, 1997):

A = diag(1, (4 + 5
√
−3)/13, (−1 + 2

√
−3)/13).

Now construct the (unitary) Householder reflector

U = I− 2vv∗

for v = [
p

5/8, 1/2,
p

1/8]∗, and define E via

A + E = −U∗AU.

By construction A + E is normal and σ(A + E) = −σ(A).



Normal Matrices: matching distance

A = diag(1, (4 + 5
√
−3)/13, (−1 + 2

√
−3)/13).

A + E = −U∗AU.
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Properties of Pseudospectra

Theorem (Facts about Pseudospectra)

For all ε > 0,

I σε(A) is an open, finite set that contains the spectrum.

I σε(A) is stable to perturbations: σε(A + E) ⊆ σε+‖E‖(A).

I If U is unitary, σε(UAU∗) = σε(A).

I For V invertible, σε/κ(V)(VAV−1) ⊆ σε(A) ⊆ σεκ(V)(VAV−1).

I σε(A + α) = α + σε(A).

I σ|γ|ε(γA) = γσε(A).

I σε
“»A 0

0 B

–”
= σε(A) ∪ σε(B).



Relationship to κ(V) and W(A)

Let ∆r := {z ∈ C : |z | < r} denote the open disk of radius r > 0.

Theorem (Bauer–Fike, 1963)

Let A be diagonalizable, A = VΛV−1. Then for all ε > 0,

σε(A) ⊆ σ(A) + ∆εκ(V).

If κ(V) is small, then σε(A) cannot contain points far from σ(A).

Theorem (Stone, 1932)

For any A,
σε(A) ⊆W (A) + ∆ε.

The pseudospectrum σε(A) cannot be bigger than W (A) in an interesting way.



Relationship to κ(V) and W(A)

Let ∆r := {z ∈ C : |z | < r} denote the open disk of radius r > 0.

Theorem (Bauer–Fike, 1963)

Let A be diagonalizable, A = VΛV−1. Then for all ε > 0,

σε(A) ⊆ σ(A) + ∆εκ(V).

If κ(V) is small, then σε(A) cannot contain points far from σ(A).

Theorem (Stone, 1932)

For any A,
σε(A) ⊆W (A) + ∆ε.

The pseudospectrum σε(A) cannot be bigger than W (A) in an interesting way.



Toeplitz Matrices

Pseudospectra of the 100× 100 matrix A = tridiag(2, 0, 1/2) that began our
investigation of eigenvalue perturbations.

A is diagonalizable (it has distinct eigenvalues), but
Bauer–Fike is useless here: κ(V) = 299 ≈ 6× 1029.



Jordan Blocks

Sn =

26664
0 1

0
. . .

. . . 1
0

37775

Near the eigenvalue, the resolvent norm grows with dimension n;
outside the unit disk, the resolvent norm does not seem to get big.
We would like to prove this.
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Jordan Blocks/Shift Operator

Consider the generalization of the Jordan block to the domain

`2(N) = {(x1, x2, . . .) :
∞X

j=1

|xj |2 <∞}.

The shift operator S on `2(N) is defined as

S(x1, x2, . . .) = (x2, x3, . . .).

In particular,

S(1, z , z2, . . .) = (z , z2, z3, . . .)

= z(1, z , z2, . . .).

So if (1, z , z2, . . .) ∈ `2(N), then z ∈ σ(S).

If |z | < 1, then
∞X

j=1

|z j−1|2 =
1

1− |z |2 <∞.

So,
{z ∈ C : |z | < 1} ⊆ σ(S).
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Jordan Blocks/Shift Operator

S(x1, x2, . . .) = (x2, x3, . . .).

We have seen that
{z ∈ C : |z | < 1} ⊆ σ(S).

Observe that
‖S‖ = sup

‖x‖=1

‖Sx‖ = 1,

and so
σ(S) ⊆ {z ∈ C : |z | ≤ 1}.

The spectrum is closed, so

σ(A) = {z ∈ C : |z | ≤ 1}.

For any finite dimensional n × n Jordan block Sn,

σ(Sn) = {0}.

So the Sn → S strongly, but there is a discontinuity in the spectrum:

σ(Sn) 6→ σ(S).



Pseudospectra of Jordan Blocks

Pseudospectra resolve this unpleasant discontinuity.

Recall the eigenvectors (1, z , z2, . . .) for S.

Truncate this vector to length n, and apply it to Sn:

26666664

0 1

0
. . .

. . . 1
0 1

0

37777775

2666664
1
z
...

zn−2

zn−1

3777775 =

2666664
z
z2

...
zn−1

0

3777775

= z

2666664
1
z
...

zn−2

zn−1

3777775−
2666664

0
0
...
0
zn

3777775 .

Hence, ‖Snx− zx‖ = |z |n, so for all ε >
|z |n

‖x‖ = |z |n
p

1− |z |2np
1− |z |2

,

z ∈ σε(Sn).

We conclude that for fixed |z | < 1, the resolvent norm ‖(z − Sn)−1‖
grows exponentially with n.
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Pseudospectra of Toeplitz Matrices

Toeplitz matrices are described by their symbol a with Laurent expansion

a(z) =
∞X

k=−∞

ak zk ,

giving the matrix with constant diagonals containing the Laurent coefficients:

An =

2666666664

a0 a−1 a−2 · · ·

a1 a0

. . .
. . .

...

a2

. . .
. . . a−1 a−2

...
. . . a1 a0 a−1

· · · a2 a1 a0

3777777775
∈ Cn×n.

Call the image of the unit circle T under a the symbol curve, a(T).



Pseudospectra of Toeplitz Matrices

Theorem (Landau; Reichel and Trefethen; Böttcher)

Let a(z) =
PM

k=−M ak zk be the symbol of a banded Toepiltz operator.

I The pseudospectra of An converge to the pseudospectra of the Toeplitz
operator on `2(N) as n→∞.

Let z ∈ C have nonzero winding number w.r.t. the symbol curve a(T ).

I ‖(z − An)−1‖ grows exponentially in n.

I For all ε > 0, z ∈ σε(An) for all n sufficiently large.

n = 16 n = 32 n = 64 n = 128



Pseudospectra of Toeplitz Matrices

symbol curve σε(A100)



Pseudospectra of Toeplitz Matrices

symbol curve σε(A500)



Computation of Pseudospectra

Naive algorithm: O(n3) per grid point

I Compute ‖(z − A)−1‖ using the SVD on a grid of points in C.

I Send data to a contour plotting routine.

Modern algorithm: O(n3) + O(n2) per grid point [Lui 1997; Trefethen 1999]

I Compute a Schur factorization A = UTU∗ and compute σε(T).

I Compute ‖(z −T)−1‖ on grid via inverse Lanczos on (z −T)−∗(z −T)−1.

Large-scale problems: [Toh and Trefethen 1996; Wright and Trefethen 2001]

I Pick an invariant subspace Ran(V) for V∗V = I corresponding to
eigenvalues of physical interest (e.g., using ARPACK).

I Compute σε(V∗AV) ⊆ σε(A).

Alternative: [Brühl 1996; Bekas and Gallopoulos, . . . ]

I Curve tracing: follow level sets of ‖(z − A)−1‖.



EigTool

EigTool: Thomas Wright, 2002

http://www.cs.ox.ac.uk/pseudospectra/eigtool



Pole Placement Example

Problem (Pole Placement Example of Mehrmann and Xu, 1996)

Given A = diag(1, 2, . . . ,N) and b = [1, 1, . . . , 1]T , find f ∈ C n such that

σ(A− bf∗) = {−1,−2, . . . ,−N}.

One can show that f = G−∗e, where e = [1, 1, . . . , 1]T , where

G:,k = (A− λk )−1b = (A + k)−1b.

This gives

A− bf∗ = G

264−1
. . .

−n

375G−1,

with

Gj,k =
1

j + k
.



Pole Placement Example: Numerics

In exact arithmetic, σ(A− bf∗) = {−1,−2, . . . ,−N}.

All entries in A− bf∗ are integers.
(To ensure this, we compute f symbolically.)

For example, when N = 8,

A−bf∗ =

2666666664

73 −2520 27720 −138600 360360 −504504 360360 −102960
72 −2518 27720 −138600 360360 −504504 360360 −102960
72 −2520 27723 −138600 360360 −504504 360360 −102960
72 −2520 27720 −138596 360360 −504504 360360 −102960
72 −2520 27720 −138600 360365 −504504 360360 −102960
72 −2520 27720 −138600 360360 −504498 360360 −102960
72 −2520 27720 −138600 360360 −504504 360367 −102960
72 −2520 27720 −138600 360360 −504504 360360 −102952

3777777775
.



Pole Placement Example: Numerics

In exact arithmetic, σ(A− bf∗) = {−1,−2, . . . ,−N}.

Computed eigenvalues of A− bf∗ (matrix is exact: all integer entries).

◦ exact eigenvalues
• computed eigenvalues
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Pole Placement Example: Pseudospectra

Computed pseudospectra of A− bf∗.

Computed eigenvalues should be accurate to roughly εmach‖A− bf∗‖.
For example, when N = 11, ‖A− bf∗‖ = 5.26× 108.
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Computed eigenvalues should be accurate to roughly εmach‖A− bf∗‖.
For example, when N = 11, ‖A− bf∗‖ = 5.26× 108.



Polynomial Zeros and Companion Matrices

MATLAB’s roots command computes polynomial zeros by computing the
eigenvalues of a companion matrix.

For example, given p(z) = c0 + c1z + c2z2 + c3z3 + c4z4, MATLAB builds

A =

2664
−c4/c0 −c3/c0 −c2/c0 −c1/c0

1 0 0 0
0 1 0 0
0 0 1 0

3775 .
whose characteristic polynomial is p.

Problem (Wilkinson’s “Perfidious Polynomial”)

Find the zeros of the polynomial

p(z) = (z − 1)(z − 2) · · · (z − N)

from coefficients in the monomial basis.

MATLAB gives this as an example: roots(poly(1:20)).
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Roots of Wilkinson’s Perfidious Polynomial

Computed eigenvalues of the companion matrix.

◦ exact eigenvalues
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Roots of Wilkinson’s Perfidious Polynomial

Pseudospectra for N = 25.

◦ exact eigenvalues
• computed eigenvalues



Roots of Wilkinson’s Perfidious Polynomial

3d plot of the resolvent norm reveals the a local minimum.

Re z

Im z

‖(z − A)−1‖

◦ exact eigenvalues
• computed eigenvalues



3. Bounding Norms of Functions of Matrices



Behavior of Matrices

We are primarily interested in using pseudospectra (and other tools)
to study the behavior of a nonnormal matrix.

In particular, we seek to quantify (or bound) how nonnormality affects
the value of functions of matrices.

Much research has been devoted to functions of matrices over the past decade;
see the book by Nick Higham [Hig08]. We focus on functions that are analytic
on the spectrum of A.

Theorem (Spectral Mapping Theorem)

Suppose f is analytic on σ(A). Then

σ(f (A)) = f (σ(A)).

Thus ‖f (A)‖ ≥ max
µ∈σ(f (A))

|µ| = max
λ∈σ(A)

|f (λ)|.

See [Huhtanen, 1999] for work on lower bounds.



Spectral Representation of a Matrix

Theorem (See Kato, 1980)

Any matrix with m distinct eigenvalues can be written in the form

A =
mX

j=1

λj Pj + Dj

where, for Jordan curves Γj surrounding λj and no other eigenvalues,

I Pj =
1

2πi

Z
Γj

(z − A)−1 dz is a spectral projector;

I Dj =
1

2πi

Z
Γj

(z − λj )(z − A)−1 dz is nilpotent;

I Pj A = APj = λj Pj ;

I Pj Pk = 0 if j 6= k;

I Dj = 0 if λj is not defective.

The resolvent plays a fundamental role in the structure of the matrix A.



Functions of a Matrix

If A is diagonalizable (i.e., no defective eigenvalues), then

A =
mX

j=1

λj Pj .

If f is any function that is analytic on σ(A) and on/inside all contours Γj , then

f (A) =
mX

j=1

f (λj )Pj .

For all matrices, we have a more general formula.

Theorem (Cauchy Integral Formula for Matrices)

Let Γ be a finite union of Jordan curves containing σ(A) in its interior, and
suppose f is a function analytic on Γ and its interior. Then

f (A) =
1

2πi

Z
Γ

f (z)(z − A)−1 dz .



Resolvent Bounds

Suppose the eigenvalues of A ∈ Cn×n are distinct.

Apply the previous formula to f (ζ) = (z − ζ)−1:

f (A) = (z − A)−1 =
nX

j=1

1

z − λj
Pj .

If λj has right eigenvector vj and left eigenvector uj , then

Pj =
vj u
∗
j

u∗j vj

and the norm of Pj is

κ(λj ) := ‖Pj‖ =
‖vj‖‖uj‖
|u∗j vj |

the condition number of the eigenvalue λj .

Hence for z near λj ,

‖(z − A)−1‖ ≈ κ(λj )

|z − λj |
.



Containment Regions for Pseudospectra

Hence for small ε > 0 and diagonalizable matrices, we can approximate

σε(A) ≈ ∪n
j=1λj + ∆εκ(λj ),

where ∆r := {z ∈ C : |z | < r}.

Theorem (Bauer–Fike, 1963)

If A ∈ C n×n is diagonalizable, then for all ε > 0,

σε(A) ⊆
n[

j=1

λj + ∆nεκ(λj ).

Unlike the earlier version of Bauer–Fike, the radii of the disks vary with j .

Near a defective eigenvalue of index d , Rellich’s perturbation theory requires
that the pseudospectrum behave like a disk whose radius scales like ε1/d as
ε→ 0.



Bounds on ‖f (A)‖

Suppose A is diagonalizable, A = VΛV−1. Then

f (A) =
nX

j=1

f (λj )Pj = Vf (Λ)V−1.

This immediately suggests several upper bounds on ‖f (A)‖:

‖f (A)‖ = ‖Vf (Λ)V−1‖ ≤ ‖V‖‖V−1‖ max
λ∈σ(A)

|f (λ)|

= κ(V) max
λ∈σ(A)

|f (λ)|;

‖f (A)‖ ≤
nX

j=1

|f (λj )|‖Pj‖ =
nX

j=1

κ(λj )|f (λj )|.

We seek bounds that provide a more flexible way of handling nonnormality.



Pseudospectral Bounds on ‖f (A)‖

Theorem (Cauchy Integral Formula for Matrices)

f (A) =
1

2πi

Z
Γ

f (z)(z − A)−1 dz .

Take norms of the expression for f (A):

‖f (A)‖ =
‚‚‚ 1

2πi

Z
Γ

f (z)(z − A)−1 dz
‚‚‚ ≤ 1

2π

Z
Γ

|f (z)‖(z − A)−1‖|dz |.

Now pick Γ to be the boundary of σε(A)

‖f (A)‖ ≤ 1

2π

Z
∂σε

|f (z)‖(z − A)−1‖|dz |

=
1

2πε

Z
∂σε

|f (z)||dz |

≤ 1

2πε
sup

z∈σε(A)

|f (z)|
Z
∂σε

|dz | ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|

where Lε denotes the arc-length of ∂σε(A) [Trefethen 1990].
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Pseudospectral Bounds on ‖f (A)‖

Theorem

Let f be analytic on σε(A) for some ε > 0. Then

‖f (A)‖ ≤ Lε
2πε

sup
z∈σε(A)

|f (z)|,

where Lε denotes the countour length of the boundary of σε(A).

Some key observations:

I This should be regarded as a family of bounds that vary with ε;

I The best choice for ε will depend on the problem;

I Sometimes it is excellent; usually it is decent; on occasion it is poor;

I The choice of ε has nothing to do with rounding errors; do not expect the
bound to be most descriptive when ε = εmach or ε = ‖A‖εmach.



GMRES Convergence

Example

We wish to use the pseudospectral analysis just presented to bound the norm
of the residual in the GMRES algorithm for iteratively solving Ax = b.

GMRES produces optimal iterates xk whose residuals rk = b− Axk satisfy

‖rk‖ ≤ min
p∈Pk
p(0)=1

‖p(A)b‖,

where Pk denotes the set of polynomials of degree k or less.

Applying the previous analysis yields

‖rk‖
‖b‖ ≤

Lε
2πε

min
p∈Pk
p(0)=1

sup
z∈σε(A)

|p(z)|.

Different ε values give the best bounds at different stages of convergence.

Illustrations and applications: [Trefethen 1990; E. 2000; Sifuentes, E., Morgan 2011].



GMRES Convergence: Example

Pseudospectral bound for convection–diffusion problem, n = 2304.

ε = 10−3.5, 10−3, 10−3.5, . . . , 10−13

�	
ε = 10−3.5

-
ε =
10−13

Bound σε(A) with a circle centered at c, use pk (z) = (1− z/c)k .



Bounds on the Matrix Exponential

To understand behavior of x′(t) = Ax(t) [and LTI control systems], we wish to
use pseudospectra to bound ‖etA‖.

Definition

The spectral abscissa is the rightmost point in the spectrum:

α(A) := max
λ∈σ(A)

Re z .

The ε-pseudospectral abscissa is the supremum of the real parts of z ∈ σε(A):

αε(A) := sup
z∈σε(A)

Re z .

Applying the Cauchy integral bound to f (z) = etz gives an upper bound.

Theorem (Upper Bound)

For any A ∈ C n×n and ε > 0,

‖etA‖ ≤ Lε
2πε

etαε(A),

where Lε denotes the contour length of the boundary of σε(A).
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Upper Bound on Matrix Powers

A =

26666664

−1 2

−1
. . .

. . . 2
−1 2

−1

37777775 ∈ C20×20.

Question: can you estimate σε(A) for this matrix?
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A =

26666664

−1 2

−1
. . .

. . . 2
−1 2

−1

37777775 ∈ C20×20.

Question: can you estimate σε(A) for this matrix?

ε = 10−20 ε = 10−1



Lower Bounds on the Matrix Exponential

We would like to guarantee the potential for transient growth.

Theorem (Lower bound on etA)

Suppose α(A) < 0. Then for all ε > 0,

sup
t≥0
‖etA‖ ≥ αε(A)

ε
.

Proof.

Z ∞
0

etAe−ztdt = (z − A)−1.

Suppose ‖etA‖ ≤ M for all t ≥ 0. Then for any z ∈ σε(A), Re z > 0:

1

ε
< ‖(z − A)−1‖ =

‚‚‚Z ∞
0

etAe−zt dt
‚‚‚

≤
Z ∞

0

‖etA‖|e−zt | dt ≤ M

Z ∞
0

e−(Re z)t dt =
M

Re z
.

Hence M ≥ (Re z)/ε. Take the sup over all z ∈ σε(A) to get the bound.
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Lower Bound on the Matrix Exponential

A =

26666664

−1 2

−1
. . .

. . . 2
−1 2

−1

37777775 ∈ C20×20.

ε = 10−5

ε = 10−1



Matrix Powers

Definition

The spectral radius is the largest point in the spectrum:

ρ(A) := max
λ∈σ(A)

|z |.

The ε-pseudospectral radius is the supremum of magnitudes of points in σε(A):

ρε(A) := sup
z∈σε(A)

|z |.

Theorem (Upper Bound)

For any A ∈ C n×n and ε > 0,

‖Ak‖ ≤ ρε(A)k+1

ε

Proof: Apply the Cauchy integral bound, taking Γ to be the circle of radius
ρε(A) centered at the origin.
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A20 = 0, but lower powers show transient growth.



Upper Bound on Matrix Powers

A =

26666664

0 2

0
. . .

. . . 2
0 2

0

37777775 ∈ C20×20.

A20 = 0, but lower powers show transient growth.

ε = 100

ε = 10−20



Lower Bounds on Matrix Powers

Theorem (Lower bound on power growth)

Suppose ρ(A) < 1. Then for all ε > 0,

sup
k≥0
‖Ak‖ ≥ ρε(A)− 1

ε
.

Proof. Since ρ(A) < 1, Ak → 0 as k →∞. Let M denote the maximum value
of ‖Ak‖, k ≥ 0, and suppose z ∈ σε(A) for |z | > 1. Then

1

ε
< ‖(z − A)−1‖ =

‚‚‚ 1

|z |

“
1 +

1

|z |A +
1

|z |2 A2 + · · ·
”‚‚‚

≤ 1

|z |

“
M +

M

|z | +
M

|z |2 + · · ·
”

=
M

|z |
1

1− 1/|z | =
M

|z | − 1
.

Rearrange to obtain M ≥ (|z | − 1)/ε for all z ∈ σε(A) with |z | > 1.
Take the supremum of |z | over all z ∈ σε(A) to get the result.
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Lower Bound on Matrix Powers

A =

26666664

0 2

0
. . .

. . . 2
0 2

0

37777775 ∈ C20×20.

ε = 10−5.5

ε = 10−5.75

ε = 10−4

ε = 10−2

ε = 100



Pseudospectra are not a Panacea

(in the 2-norm)

Key question: “Do pseudospectra determine behavior of a matrix?”
[Greenbaum & Trefethen, 1993].

Greenbaum and Trefethen define “behavior” to mean “norms of polynomials”.

They prove that pseudospectra do not determine behavior.

A1 =

266664
0 1

0 1
0

0 0
0

377775 , A2 =

266664
0 1

0 1
0

0 α
0

377775 .

If α ∈ (1,
√

2], then σε(A1) = σε(A2) for all ε > 0,

1 = ‖A1‖ 6= ‖A2‖ =
√

2.

Ransford et al. [2007, 2009] have gone on to prove a host of similarly
pessimistic results along these lines, e.g., relating ‖Ak

1‖ to ‖Ak
2‖,

even for matrices with superidentical pseudospectra.

However: Greenbaum and Trefethen [1993] do show that pseudospectra
determine behavior in the Frobenius norm (σε(A) defined via resolvent norms).
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Complex versus Real Perturbations

In many applications A contains only real entries; uncertainties in physical
parameters will only induce real perturbations.

Perhaps instead of the usual definition

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}

we should have

σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Rn×n with ‖E‖ < ε}

cf. [Hinrichsen & Pritchard, 1990, 1992, 2005].

Similarly, one can study structured perturbations that preserve other properties:
stochasticity, nonnegativity, symplecticity, Toeplitz or companion structure. . .

For analysis involving more sophisticated structured perturbations,
see the work of Michael Karow et al. [2003 – 2011. . . ]



Complex versus Real Perturbations

The size of a complex perturbation required to make z an eigenvalue of A is:

dC(A, z) =
“
σ1

`
(z − A)−1´”−1

.

The size of a real perturbation required to make z an eigenvalue of A is:

dR(A, z) =

 
inf

γ∈(0,1]
σ2

 "
Re(z − A)−1 −γ Im(z − A)−1

γ−1Im(z − A)−1 Re(z − A)−1

#!!−1

[Qiu, Berhardsson, Rantzer, Davison, Young, Doyle, 1995].

The real structured pseudospectrum can be computed via the definition

σR
ε (A) = {z ∈ C : dR(A, z) < ε}

[Karow, 2003].



Complex versus Real Perturbations: Example 1

Consider the following Toeplitz matrix studied by Demmel [1987]:

A =

266664
−1 −M −M2 −M3 −M4

0 −1 −M −M2 −M3

0 0 −1 −M −M2

0 0 0 −1 −M
0 0 0 0 −1

377775
with M = 10.

The matrix is stable but small perturbations can move eigenvalues significantly.

How do the real structured pseudospectra compare
to the (unstructured) pseudospectra?



Complex versus Real Perturbations: Example 1

Complex and real pseudospectra for 5× 5 matrix, ε = 10−2, 10−3, . . . , 10−8
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Complex versus Real Perturbations: Example 2

Real perturbations need not describe transient behavior of dynamical systems.

Consider the matrix

A =

»
−1 M2

−1 −1

–
,M ∈ R

with spectrum σ(A) = {−1± iM}. For M = 100:
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Complex versus Real Perturbations

Consider the dynamical system

x′(t) =

»
−1 M2

−1 −1

–
x(t)

with M = 100.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

t

‖etA‖

Real perturbations suggest this system is far from unstable,
yet transient growth on the order of M is observed.



4. Balanced Truncation, Lyapunov Equations



Balanced Truncation and Lyapunov Equations

Consider the SISO linear dynamical system:

x′(t) = Ax(t) + bu(t)

y(t) = cx(t) + d u(t),

A ∈ Cn×n, b, cT ∈ Cn, d ∈ C. We assume that A is stable: α(A) < 0.

We wish to reduce the dimension of the dynamical system by projecting onto
well-chosen subspaces.

Balanced truncation: Change basis to match states that are
easy to reach and easy to observe,
then project onto that prominent subspace.

Characterize how difficult it is to reach or observe a state via the infinite
controllability and observability gramians P and Q:

P :=

Z ∞
0

etAbb∗etA∗ dt, Q :=

Z ∞
0

etA∗c∗cetA dt.

See, e.g., [Antoulas, 2005], Tuesday’s lectures. . . .



Balanced Truncation and Lyapunov Equations

The gramians

P :=

Z ∞
0

etAbb∗etA∗ dt, Q :=

Z ∞
0

etA∗c∗cetA dt

(Hermitian positive definite, for a controllable and observable stable system)
can be determined by solving the Lyapunov equations

AP + PA∗ = −bb∗, A∗Q + QA = −c∗c.

If x0 = 0, the minimum energy of u required to drive x to state bx is

bx∗P−1bx.
Starting from x0 = bx with u(t) ≡ 0, the energy of output y is

bx∗Qbx.
bx∗P−1bx: bx is hard to reach if it is rich in the lowest modes of P.bx∗Qbx: bx is hard to observe if it is rich in the lowest modes of Q.

Balanced truncation transforms the state space coordinate system to make
these two gramians the same, then it truncates the lowest modes.



Balanced Truncation and Lyapunov Equations

Consider a generic coordinate transformation, for S invertible:

(Sx)′(t) = (SAS−1)(Sx(t)) + (Sb)u(t)

y(t) = (cS−1)(Sx(t)) + du(t), (Sx)(0) = Sx0.

With this transformation, the controllability and observability gramians arebP = SPS∗, bQ = S−∗QS−1.

For balancing, we seek S so that bP = bQ are diagonal.

Observation (How does nonnormality affect balancing?)

I σε/κ(S)(SAS−1) ⊆ σε(A) ⊆ σεκ(S)(SAS−1).

I The choice of internal coordinates will affect P, Q, . . .

I but not the Hankel singular values: bPbQ = SPQS−1,

I and not the transfer function:

d + (cS−1)(z − SAS−1)−1(Sb) = d + c(z − A)−1b,

I and not the system moments:

d = d , (cS−1)(Sb) = cb, (cS−1)(SAS−1)(Sb) = cAb, . . . .
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Decay of Singular Values of Lyapunov Solutions

Consider the Lyapunov equation

AX + XA∗ = −bb∗.

for stable A and controllable (A, b).

In many cases (since the right-hand side bb∗ is low-rank), the singular values of
X decay rapidly [Gudmundsson and Laub 1994; Penzl 2000].
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Normal example: A = tridiag(−1, α, 1) with spectrum

σ(A) ⊆ {α + iy : y ∈ [−2, 2]}.

Convergence slows as α ↑ 0, i.e., eigenvalues move toward imaginary axis.
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Decay of Singular Values of Lyapunov Solutions

Let sk denote the kth singular value of X, sk ≥ sk+1.

I For Hermitian A, bounds on sk/s1 have been derived by
Penzl [2000], Sabino [2006] (see Ellner & Wachspress [1991]).

I For diagonalizable A = VΛV−1, Antoulas, Sorensen, and Zhou [2002] prove

sk+1 ≤ κ(V)2δk+1‖b‖2(N − k)2, δk =
−1

2Reλk

k−1Y
j=1

|λk − λj |2

|λk + λj |2
.

The κ(V)2 term imposes a significant penalty for nonnormality;
cf. [Truhar, Tomljanović, Li 2009].

We seek a bound that gives a more flexible approach, by enlarging
the set over which we study rational functions like δk .



Decay of Singular Values of Lyapunov Solutions

I sk+1 ≤ κ(V)2δk+1‖b‖2(N − k)2, δk =
−1

2Reλk

k−1Y
j=1

|λk − λj |2

|λk + λj |2
.

I The ADI iteration [Wachspress 1988; Penzl 2000] constructs a rank-k
approximation Xk to X that satisfies

X− Xk = φ(A)Xφ(A)∗,

with X0 = 0 and

φ(z) =
kY

j=1

µj − z

µj + z
.

Using the fact that rank(Xk ) ≤ k, we obtain the bound

sk+1

s1
≤ min

µ1,...,µk

‖φ(A)‖2
2 ≤

„
Lε

2πε

«2

min
µ1,...,µk

sup
z∈σε(A)

kY
j=1

|µj − z |
|µj + z | ,

where Lε is the boundary length of a contour enclosing σε(A)
[Beattie, E., Sabino; cf. Beckermann (2004)].



Examples of the Decay Bound Based on Pseudospectra
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Examples of the Decay Bound Based on Pseudospectra
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Examples of the Decay Bound Based on Pseudospectra
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Any Decay Possible for Any Spectrum

Theorem (Penzl, 2000)

Let A be stable and b some vector such that (A, b) is controllable. Given any
Hermitian positive definite X, there exists some invertible matrix S such that

(SAS−1)X + X(SAS−1) = −(Sb)(Sb)∗.

Any prescribed singular value decay is possible for a matrix with any
eigenvalues.

Proof. The proof is a construction.

I Solve AY + YA∗ = −bb∗ for Y.
(Y is Hermitian positive definite, since (A, b) controllable.)

I Set S := X1/2Y−1/2.
I Notice that SYS∗ = X1/2Y−1/2 YY−1/2X1/2 = X.
I Define bA := SAS−1, bb := Sb.

Now it is easy to verify that X solves the desired Lyapunov equation:bAX + XbA∗ = (SAS−1)(SYS∗) + (SYS∗)(S−∗AS∗)

= S(AY + YA)S∗ = −(Sb)(Sb)∗ = −bbbb∗.



A Nonnormal Anomaly

The pseudospectral bound and the bound of Antoulas, Sorensen, and Zhou
both predict that the decay rate slows as nonnormality increases.

However, for the solutions to Lyapunov equations this intuition can be wrong
[Sabino 2006].

Consider

A =

»
−1 α
0 −1

–
, b =

»
t
1

–
, t ∈ R.

As α grows, A’s departure from normality grows.
All bounds suggest that the ‘decay’ rate should worsen as α increases.

The Lyapunov equation AX + XA∗ = −bb∗ has the solution

X =
1

4

»
2t2 + 2αt + α2 α + 2t

α + 2t 2

–
.

For each α, we wish to pick t to maximize the ‘decay’, i.e., s2/s1.
This is accomplished for t = −α/2, giving

s2

s1
=


α2/4, 0 < α ≤ 2;
4/α2, 2 ≤ α.
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Jordan block: 2 × 2 case, numerical illustration
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The effect of nonnormality on Lyapunov solutions
remains only partially understood.
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5. Moment Matching Model Reduction



Krylov methods for moment matching model reduction

We now turn to a model reduction approach where nonnormality plays a crucial
role. Once again, begin with the SISO system

x′(t) = Ax(t) + bu(t)

y(t) = cx(t) + du(t),

with A ∈ Cn×n and b, cT ∈ Cn and initial condition x(0) = x0.

Compress the state space to dimension k � n via a projection method:

bx′(t) = bAbx(t) + bbu(t)by(t) = bcbx(t) + du(t),

where bA = W∗AV ∈ Ck×k , bb = W∗b ∈ Ck×1, bc = cV ∈ C1×k

for some V,W ∈ Cn×k with W∗V = I.

The matrices V and W are constructed by a Krylov subspace method.



Krylov methods for moment matching model reduction

bA = W∗AV ∈ Ck×k , bb = W∗b ∈ Ck×1, bc = cV ∈ C1×k

Arnoldi Reduction

If V = W and the columns of V span the kth Krylov subspace,

Ran(V) = Kk (A, b) = span{b,Ab, . . . ,Ak−1b},

then the reduced model matches k moments of the system:

bcbAjbb = cAj b, j = 0, . . . , k − 1.

Bi-Lanczos Reduction

If the columns and V and W span the Krylov subspaces

Ran(V) = Kk (A, b) = span{b,Ab, . . . ,Ak−1b}
Ran(W) = Kk (A∗, c∗) = span{c∗,A∗c∗, . . . , (A∗)k−1c∗},

then the reduced model matches 2k moments of the system:

bcbAjbb = cAj b, j = 0, . . . , 2k − 1.



Stability of Reduced Order Models

Question

Does the reduced model inherit properties of the original system?

Properties include stability, passivity, second-order structure, etc.

In this lecture we are concerned with stability – and, more generally, the
behavior of eigenvalues of the reduced matrix bA.

Observation

For Arnoldi reduction, the eigenvalues of bA are contained in the numerical range

W (A) = {x∗Ax : ‖x‖ = 1} .

Proof: If bAz = θz for ‖z‖ = 1, then θ = z∗V∗AV∗z = (Vz)∗A(Vz), where
‖Vz‖ = ‖z‖ = 1

No such bound for Bi-Lanczos: the decomposition may not even exist.
For the famous ‘CD Player’ model, cb = 0: method breaks down at first step.
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Stability and Bi-Lanczos

For Bi-Lanczos, the stability question is rather more subtle.

For example, if b and c are nearly orthogonal,
the (1,1) entry in bA = W∗AV will generally be very large.

Given a fixed b, one has much freedom to rig poor results via c:

[A]ny three-term recurrence (run for no more than (n +2)/2 steps,
where n is the size of the matrix) is the two-sided Lanczos algo-
rithm for some left starting vector. [Greenbaum, 1998]



Example: Arnoldi Reduction for Normal versus Nonnormal

The eigenvalues of bA are known as Ritz values.

normal matrix nonnormal matrix

Eigenvalues (•), Ritz values (◦), and numerical range for isospectral matrices.



A Remedy for Unstable Arnoldi Models?

One can counteract instability by restarting the Arnoldi algorithm
to shift out unstable eigenvalues [Grimme, Sorensen, Van Dooren, 1994];
cf. [Jaimoukha and Kasenally, 1997].

I bA := V∗AV has eigenvalues θ1, . . . , θk (Ritz values for A)

I Suppose θ1, . . . , θp are in the right half plane.

I Replace the starting vector b by the filtered vector

b+ = ψ(A)b, ψ(z) =

pY
j=1

(z − θj ),

where the filter polynomial ψ “discourages” future Ritz values near the
shifts θ1, . . . , θp.

I Build new matrices V, bA with starting vector b+ (implicit restart).

I Now modified moments, b∗ψ(A)∗Ajψ(A)b, will be matched.

Repeat this process until bA has no unstable modes.



Matching the Moments of a Nonnormal Matrix

Model of flutter in a Boeing 767 from SLICOT (n = 55),
stabilized by Burke, Lewis, Overton [2003].
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Matching the Moments of a Nonnormal Matrix

Model of flutter in a Boeing 767 from SLICOT (n = 55),
stabilized by Burke, Lewis, Overton [2003].
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see [Trefethen & E. 2005]



Reduction via Restarted Arnoldi
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Aggregate Filter Polynomials
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Aggregate Filter Polynomials
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Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.

third restart



Aggregate Filter Polynomials

Color indicates relative size of log10 |ψ(z)|.
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Another Example: a Nonlinear Heat Equation

Linear models often arise as linearizations of nonlinear equations.

Consider the nonlinear heat equation on x ∈ [−1, 1] with u(−1, t) = u(1, t) = 0

ut(x , t) = νuxx (x , t)

+
√
νux (x , t) + 1

8
u(x , t) + u(x , t)p

with ν > 0

and p > 1 [Demanet, Holmer, Zworski].

The linearization L, an advection–diffusion operator,

Lu = νuxx +
√
νux + 1

8
u

has eigenvalues and eigenfunctions

λn = −1

8
− n2π2ν

4
, un(x) = e−x/(2

√
ν) sin(nπx/2);

see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ν > 0, but has interesting transients . . . .
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Nonnormality in the Linearization
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Evolution of a Small Initial Condition
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Transient Behavior
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Transient Behavior: Reduction of the Linearized Model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, m = 10 (red).

[Many Ritz values capture spurious eigenvalues of the discretization of the left.]
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Transient Behavior: Reduction of the Linearized Model
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after a restart to remove the spurious eigenvalue.

[This effectively pushes Ritz values to the left.]



Transient Behavior: Reduction of the Linearized Model
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Transient Behavior: Reduction of the Linearized Model
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6. GEPs and DAEs



Generalized Eigenvalue Problems

Problem

How should one adapt the definition of the ε-pseudospectrum to the
generalized eigenvalue problem

Ax = λBx ?

Equivalent definitions of σε(A) lead to different meanings for σε(A,B).

I Approach 1: eigenvalues of perturbations
σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}

I Approach 2: matrix behavior
σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε}
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GEPs: Eigenvalue Perturbation Approach

Approach 1: eigenvalues of perturbations

I σε(A) = {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}

Frayssé, Gueury, Nicoud, Toumazou [1996] proposed:

σε(A,B) = {z ∈ C : (A + E0)x = z(B + E1)x for some

x 6= 0 and E0, E1 with ‖E0‖ < εα0, ‖E1‖ < εα1},

where, e.g., either α0 = α1 = 1, or α0 = ‖A‖ and α1 = ‖B‖.

I This has an equivalent resolvent-like formulation:

σε(A,B) = {z ∈ C : ‖(Bz − A)−1‖(α0 + α1|z |) > 1/ε}.

I Generalized to matrix polynomials by Tisseur & N. Higham [2001, 2002];
see also Lancaster & Psarrakos [2005].

I Cf. [Boutry, Elad, Golub, Milanfar, 2005] for rectangular pencils.
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GEPs: Eigenvalue Perturbation Approach

A =

»
−1 −5M
0 −5

–
, B =

»
1 M
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–
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GEPs: Eigenvalue Perturbation Approach

Consider solutions to Bx′(t) = Ax(t) for the previous example:

A =

»
−1 −5M
0 −5

–
, B =

»
1 M
0 1

–
Note that

B−1A =

»
−1 0
0 −5

–
.

I Since B−1A is normal and stable, solutions to Bx′(t) = Ax(t) cannot
exhibit growth.

I The parameter M affects the stability of eigenvalues of the pencil,
but has no influence on the solution of Bx′(t) = Ax(t).
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GEPs: Matrix Behavior Approach

I More generally, premultiplying

Bx′(t) = Ax(t)

by some invertible matrix S

SBx′(t) = SAx(t)

affects the perturbation theory of the pencil (SA,SB),
but not the system driven by (SB)−1(SA) = B−1A.

This fact suggests an alternative definition.

Approach 2: matrix behavior

I [Ruhe, 1995], [Riedel, 1994] proposed:
For A ∈ Cn×n and invertible B ∈ Cn×n,

σε(A,B) = σε(B−1A).
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Comparison of GEP Pseudospectra
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GEP: Behavior in Different Norms

Ruhe’s definition is closely related to Riedel’s [1994]:

I If B is Hermitian positive definite with Cholesky factorization B = LL∗,
then the ε-pseudospectrum of the matrix pencil (A,B) is the set

σε(A,B) = σε(L−1AL−∗).

This definition is the same as Ruhe’s definition, but in a different norm. Let

〈x, y〉B = y∗Bx, ‖x‖2
B = x∗Bx.

Then
‖(z − L−1AL−∗)−1‖2 = ‖(z − B−1A)−1‖B.



Pseudospectra for DAEs

Suppose B is singular, but (A,B) is regular (det(zB−A) 6= 0 for some z ∈ C).

Bx′(t) = Ax(t) is a differential-algebraic equation (DAE).

Simple example:

x ′1(t) = −x1(t)

x1(t) = x2(t)

»
1 0
0 0

– »
x ′1(t)
x ′2(t)

–
=

»
−1 0
−1 1

– »
x1(t)
x2(t)

–

I Campbell & Meyer [1979], Campbell [1980]

I Kunkel & Mehrmann [2006]

I Descriptor systems: Benner, Byers, Mehrmann, Stykel, . . .



DAEs, Simplest Case: A Invertible

Suppose that A is invertible, so that we can write

Bx′(t) = Ax(t)

in the form
A−1Bx′(t) = x(t).

First take a (generalized) Schur decomposition,

A−1B = QTQ∗ =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
,

where Q is unitary, G is invertible, and N is nilpotent.
(The degree of nilpotency corresponds to the index of the DAE.)

This decomposition reveals the algebraic structure of the problem:

Bx′(t) = Ax(t), x(0) = x0 has a solution if and only if x0 ∈ Range Q1.



DAEs, Simplest Case: A Invertible

A−1B =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
We wish to write the solution to the DAE as

x(t) = Q1y(t) + Q2z(t).

One can show that z(t) = 0 for all t, so we seek:

Gy′(t) = y(t), z(t) = 0.

Hence write x(t) = Q1etG−1

y(0), i.e.,

x(t) = Q1etG−1

Q∗1 x0.

Special case: B invertible =⇒ Q1 = I and G = A−1B, so

x(t) = et G−1

x0 = et B−1Ax0.



Pseudospectra of (A, B) for Transient Analysis of DAEs

Suppose x0 ∈ Range Q1, with the columns of Q1 forming an orthonormal basis
for the invariant subspace of the pencil associated with finite eigenvalues. Then

x(t) = Q1etG−1

Q∗1 x0,

where G = Q∗1 A−1BQ1 ∈ Cm×m (m = # of finite eigenvalues).

We can bound the norm of the solution by

‖x(t)‖ ≤ ‖etG−1

‖‖x0‖.

Definition (Pseudospectra of a Regular Pencil, A invertible)

Consider the matrix pencil A− λB with A invertible, and Schur factorization

A−1B =
ˆ

Q1 Q2

˜ » G D
0 N

– »
Q∗1
Q∗2

–
for N nilpotent and 0 6∈ σ(G).
The ε-pseudospectrum of the matrix pencil (A,B) is

σε(A,B) := σε((Q∗1 A−1BQ1)−1).
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Examples: Stability Analysis for Imcompressible Flow

Pseudospectra for a matrix pencil derived from incompressible flow
over a backward facing step, discretized via IFISS.
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Examples: Stability Analysis for Imcompressible Flow

Pseudospectra for a matrix pencil derived from incompressible flow
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Summary



Overview of Lectures

These lectures address modern tools
for the spectral analysis of dynamical systems.

We shall cover a mix of theory, computation, and applications.

Goal: By the end, you should be equipped to understand phenomena that
many people find quite mysterious when encountered in the wild.

Lecture 1:

I Normality and Nonnormality

I Pseudospectra

I Bounding Functions of Matrices

Lecture 2:

I Balanced Truncation and Lyapunov Equations

I Moment Matching Model Reduction

I Differential Algebraic Equations



Exercises



Exercises for the Afternoon

I Download EigTool (http://www.cs.ox.ac.uk/pseudospectra/eigtool)
Run eigtool from a MATLAB prompt.
Experiment with menu option: Demos/Dense/...

For dense matrices, experiment with menu option: Transients

For dense matrices, experiment with menu option: Numbers

For dense matrices, experiment with Pmode+epsilon button
Experiment with menu option: Demos/Sparse/...

I Computation of pseudospectra of a vibrating string in energy norm.

I Population dynamics: design a transiently growing population.

I Analysis of a nonlinear dynamical system.

I Estimate pseudospectral bounds on ‖Ak‖ and ‖etA‖.


