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Differential Riccati Equations

Consider the linear quadratic optimal control problem:

min
u
J (y , u) =

1

2

 tf∫
0

yTy + uTu dt + yT
tf Qytf

 ,

subject to Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

where A, E , B, and C may depend on t as well and the states x(t) ∈ Rn, inputs
u(t) ∈ Rm, and outputs y(t) ∈ Rq.
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yTy + uTu dt + yT
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 ,

subject to Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t)

where A, E , B, and C may depend on t as well.

Feedback law e.g. [Locatelli ’01]

u(t) = −BTX (t)Ex(t),

where X (t) is the solution of the Differential Riccati Equation (DRE)

ET Ẋ (t)E = CTC + ATX (t)E + ETX (t)A− ETX (t)BBTX (t)E := R(X (t)),

X (t = tf ) := Q.
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Differential Lyapunov Equation

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation (DLE):

ET Ẋ (t)E = CTC + ATX (t)E + ETX (t)A,

X (t = tf ) := Xf .

Application in Model Order Reduction:

→ used for Linear Time-Variant (LTV) Balanced Truncation.
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Time integration methods

The DLE is a matrix-valued ordinary differential equation.

The DRE is a non-linear, matrix-valued, and highly stiff ordinary differential
equation.

Implicit time integrators [Mena ’07, Benner/Mena ’12]

Backward differentiation formula (BDF)

Linear implicit Runge-Kutta (Rosenbrock) methods

Midpoint and Trapezoidal rule

Numerical issues

Methods are fairly time and storage consuming for large-scale problems.

High accuracy requires small time steps or high order methods.

At every time step a number of algebraic matrix equations needs to be solved.
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Rosenbrock Methods

Restriction by Parareal:

Only single-step integrators are well suited.

General Rosenbrock Scheme

The s-stage Rosenbrock method applied to a matrix differential equation of the
form Ẋ = F (X ) is given as

Xk+1 = Xk + τk

s∑
`=1

b`K
(k)
` ,

K
(k)
i = F (Xk + τk

i−1∑
`=1

αi,`K
(k)
` ) + τkJk

i∑
`=1

γi,`K
(k)
` , ∀i = 1, . . . , s.

s : order of the method

τk : time step

Jk : Fréchet derivative of F at Xk

αi,`, γi,`, µ` : determining coefficients

Fréchet derivative of R(X ) is a Lyapunov operator.
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Fréchet derivative of R(X ) is a Lyapunov operator.
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form Ẋ = F (X ) is given as

Xk+1 = Xk + τk

s∑
`=1

b`K
(k)
` ,

K
(k)
i = F (Xk + τk

i−1∑
`=1

αi,`K
(k)
` ) + τkJk

i∑
`=1

γi,`K
(k)
` , ∀i = 1, . . . , s.

s : order of the method

τk : time step
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Rosenbrock Methods [Mena ’07, Benner/Mena ’12]

We only consider the DRE, where ET ẊE = R(X ):

1st order Rosenbrock scheme (Ros1)

Xk+1 = Xk + τkK
(k)
1

2nd order Rosenbrock scheme (Ros2) [Dekker/Verwer ’84]

Xk+1 = Xk +
3

2
τkK

(k)
1 +

1

2
τkK

(k)
2

ÃTK
(k)
1 E + ETK

(k)
1 Ã = −R(Xk)

ÃTK
(k)
2 E + ETK

(k)
2 Ã = −R(Xk + τkK

(k)
1 ) + 2ETK

(k)
1 E
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1 Ã = −R(Xk)
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1st order Rosenbrock scheme (Ros1)

Xk+1 = Xk + τkK
(k)
1
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Solve two ALEs inside the 2-stage Rosenbrock method.
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Rosenbrock Methods [Mena ’07, Benner/Mena ’12]
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3rd order scheme based on ode23s (numerically unstable)

3rd order scheme based on Ros3P [Lang, Verwer ’01]

4th order scheme [Shampine ’82]

Higher Order Schemes:
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Optimize before Parallelize

High Computational Cost

Need the solution of s algebraic Lyapunov equations per time step.
→ Bartels-Stewart algorithm requires a QZ decomposition.

Mostly matrix-matrix products.

Redundant Information

Each right hand side of the Lyapunov equation includes R(Xk).

Redundant information in the linear part of R(Xk + τkKj + . . .).

Solutions of the Lyapunov equations Kj are symmetric.

Strategies

Computational Cost: Use level-3 BLAS enabled algorithms.

Redundant Information: Reformulation of the right hand sides.
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Level-3 BLAS enabled Algorithms

Matrix-Matrix Products

Use Intel® MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT: [Penzl ’97]

All stages have the same coefficient matrices.

Only one QZ decomposition per time step and reuse it.

But QZ is mostly a level-2 BLAS algorithm.

Bartels-Stewart algorithm is level-2 BLAS as well.

Need for an efficient Lyapunov solver

Matrix Sign Function Iteration [Quintana-Ort́ı/ Benner ’99]

→ Without QZ decomposition, but no advantage out of operator repetition.

Reuse of the QZ decomposition and level-3 BLAS block generalized Bartels-Stewart
algorithm. [GLYAP3: K./Saak ’14 ’15]
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Right-Hand-Side Rearrangement

Consider the stages of the 2nd order Rosenbrock scheme:

ÃT
k K1E + ETK1Ãk = −R(Xk)

and

ÃT
k K2E + ETK2Ãk = −R(Xk + τkK1) + 2ETK1E

with Ã := γτk(A− BBTXkE)− 1
2
E .
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Consider the stages of the 2nd order Rosenbrock scheme:

ÃT
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and

ÃT
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γ

(
ÃT

k K1E + ETK1Ãk

)
− 1

γ
ETK1E

+ τ 2kE
TK1BB

TK1E + 2ETK1E

= − (1− 1

γ
)R(Xk) + τ 2kE
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TK1E + (2− 1

γ
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Right-Hand-Side Rearrangement

Using the linearity of the Lyapunov-Equation we reformulate the 2nd order Rosenbrock
scheme as:

Xk+1 = Xk +
3

2
τkK1 +

1

2
τkK2,

ÃT
k K1E + ETK1Ãk = −R(Xk),

ÃT
k K̃2E + ET K̃2Ãk = τ 2kE

TK1BB
TK1E + (2− 1

γ
)ETK1E ,

K2 = K̃2 + (1− 1

γ
)K1.

The 3rd and 4th order scheme can be rearranged in the same way.

Symmetric terms are computed like

ETKjBB
TKjE = K

(j)
E

T
K

(j)
E with K

(j)
E := BTKjE .
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ETKjBB
TKjE = K

(j)
E

T
K

(j)
E with K

(j)
E := BTKjE .
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Parareal Implementation

Following [Maday/Lions/Turinici ’01] we use

X
(k+1)
0 := X (t = tf ),

X (k+1)
p := F (tp−1, tp,X

(k)
p−1) + G (tp−1, tp,X

(k+1)
p−1 )− G (tp−1, tp,X

(k)
p−1)

as parareal-scheme, where F (tp, tp+1,Xs) and G (tp, tp+1,Xs) integrate the DRE
from tp to tp+1 with the initial value Xs .

Coarse and Fine Solvers

Use our four Rosenbrock methods as coarse and the fine solvers:

The coarse solver G performs one time step from tp to tp+1.

The fine solver F performs f time steps from tp to tp+1.

We obtain 16 combinations for Parareal setup.
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Parareal Implementation

Classical Pipeline Implementation: Stage-Code

1: for it:=1 to maxit do
2: Receive X

(it)
s from ProcessID-1

3: X
(it)
G = G(X

(it)
s )

4: if it = 1 then
5: Send X

(it)
G to ProcessID+1

6: else
7: X (it) := X

(it)
G + X

(it−1)
F − X

(it−1)
G

8: end if
9: X

(it)
F = F (X

(it−1)
s )

10: if ||X (it) − X (it−1)|| < δ||X (it)|| then
11: Stop.
12: end if
13: end for

Can be easily implemented on

distributed systems using MPI,

shared memory systems using OpenMP or PThreads.
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Large Scale Problems

For large scale problems n ≥ 1 000 we approximate X (t) ≈ L(t)D(t)L(t)T , where
L(t) ∈ Rn×p and D ∈ Rp×p diagonal with p ≪ n.

Use the LDLT -ADI for solving the Lyapunov equations. [Lang/Mena/Saak ’15]

Replace the Parareal update

X (i) := X
(i)
G + X

(i−1)
F − X

(i−1)
G

by

L(i)D(i)L(i)
T

= L
(i)
G D

(i)
G L

(i)
G

T
+ L

(i−1)
F D

(i−1)
F L

(i−1)
F

T
− L

(i−1)
G D

(i−1)
G L

(i−1)
G

T

=
[
L
(i)
G L

(i−1)
F L

(i−1)
G

]
︸ ︷︷ ︸

L(i)

D
(i)
G

D
(i−1)
F

−D(i−1)
G


︸ ︷︷ ︸

D(i)

 L
(i)
G

L
(i−1)
F

L
(i−1)
G


T

︸ ︷︷ ︸
L(i)T

.
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Martin Köhler Solving Differential Matrix Equations using Parareal 13/19



Large Scale Problems

The size of the factor L(i) increases in every iteration.

Redundant information in L
(i)
G , L

(i−1)
G , and L

(i−1)
F on convergence.

Truncate L(i) and D(i):

L(i)D(i)L(i)
T

=

SVD of L(i)︷ ︸︸ ︷
UΣV T D(i)VΣUT

≈ UkΣkV
T
k D(i)VkΣkU

T
k k = rank

(
L(i), δ

)

=

EVD of V T
k D(i)Vk︷ ︸︸ ︷

UkΣk Ṽ
T
k D̃(i)ṼkΣkU

T
k︸ ︷︷ ︸

L̃(i)

= L̃(i)D̃(i)L̃(i)
T

→ Only proof of concept due to bad load balancing in the pipeline parallelism.
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Experimental Results

Model Problem [Oberwolfach Rail]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematical model: boundary control for
linearized 2D heat equation:

c · ρ ∂
∂t

x = λ∆x , x ∈ Ω

λ
∂

∂n
x = κ(uk − x), x ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, x ∈ Γ7.

FEM discretization with n = 371 states, m = 7
inputs, and q = 6 outputs

computations with τ = 0.1ms on [0, 45]s

evaluations for one component of the feedback
K(t) = −BTX (t)E

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92
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Experimental Results

Hardware Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HPC-Cluster otto

450 Intel® Xeon® Westmere-EP cores @ 2.66GHz with 4 GB RAM each

QDR-Infiniband interconnect

Software

Intel® Parallel Studio 2015 XE

OpenMPI 1.8.1 with threading support

Intel® MKL 11.2.1

Reference Result

450 000 steps with τ = 0.1ms with Ros4 in 3.46 days

Memory requirements for the trajectory: X (t) – 1.4 TB, K (t) – 9 GB
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Experimental Results

Sequential Runtimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rosenbrock Order SLICOT GLYAP 3 ratio

1 4.40 d 2.87 d 1.53
2 6.15 d 3.06 d 2.01
3 7.84 d 3.27 d 2.40
4 9.55 d 3.46 d 2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov solvers.

First observations

A fast solver for the Lyapunov equations is a key ingredient,

Choosing the correct Lyapunov solver already gains a speed up of 2.75,

But 3.46 days are still too long for a accurate solution of such a small
problem.
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Experimental Results

Distributed Parallel Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Stopping criteria: δ = 10−6
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Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Stopping criteria: δ = 10−6

PPPPPPPPFine
Coarse Ros1 Ros2 Ros3 Ros4

Time Iter Time Iter Time Iter Time Iter
Ros1 3.30 h 9 2.97 h 8 3.29 h 9 1.74 h 4
Ros2 3.59 h 9 3.27 h 8 3.61 h 9 1.89 h 4
Ros3 3.87 h 9 3.51 h 8 3.88 h 9 2.02 h 4
Ros4 4.17 h 9 3.78 h 8 4.18 h 9 2.19 h 4

Table: Runtime and maximum iteration number.
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Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Stopping criteria: δ = 10−6

PPPPPPPPFine
Coarse

Ros1 Ros2 Ros3 Ros4

Ros1 2.01e-05 2.01e-05 2.01e-05 2.01e-05
Ros2 2.07e-05 2.07e-05 2.07e-05 2.07e-05
Ros3 2.07e-05 2.07e-05 2.07e-05 2.07e-05
Ros4 1.27e-09 3.00e-10 9.71e-08 6.10e-14

Table: Relative 1-norm error between the Parareal solution and the reference.
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Distributed Parallel Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parareal Setup

450 coarse steps, τcoarse = 100ms

1000 fine steps per coarse step, τ = 0.1ms

Maximum number of iterations: 10

Stopping criteria: δ = 10−6

PPPPPPPPFine
Coarse

Ros1 Ros2 Ros3 Ros4

Ros1 * 7.69e-05 7.68e-05 7.68e-05
Ros2 * 7.81e-05 7.80e-05 7.80e-05
Ros3 * 7.81e-05 7.80e-05 7.80e-05
Ros4 * 3.14e-11 5.76e-09 1.14e-14

Table: Relative 1-norm error between the Parareal solution and the reference for K(t)1,77.
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Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have seen that:

“optimize before parallelize” already gains nearly a factor of up to 3,

Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

(our) Parareal implementation requires the same computational complexity
for each evaluation of the coarse or the fine solver,

we have relatively long startup phase until all processors work in parallel,

we are restricted to one-step methods on the coarse level.

Thank you for your attention! Questions?
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