

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Solving Differential Matrix Equations using Parareal

Martin Köhler

joint work with Jens Saak and Norman Lang GAMM Annual Meeting March 7th – 11th 2016

Partners:

Sc Differential Riccati Equations

Consider the linear quadratic optimal control problem:

$$\min_{u} \mathcal{J}(y, u) = \frac{1}{2} \left(\int_{0}^{t_{f}} y^{T}y + u^{T}u \, \mathrm{d}t + y_{t_{f}}^{T} Qy_{t_{f}} \right),$$

subject to $E\dot{x}(t) = Ax(t) + Bu(t),$
 $y(t) = Cx(t)$

where A, E, B, and C may depend on t as well and the states $x(t) \in \mathbb{R}^n$, inputs $u(t) \in \mathbb{R}^m$, and outputs $y(t) \in \mathbb{R}^q$.

Sc Differential Riccati Equations

Consider the linear quadratic optimal control problem:

$$\min_{u} \mathcal{J}(y, u) = \frac{1}{2} \left(\int_{0}^{t_{f}} y^{T}y + u^{T}u \, \mathrm{d}t + y_{t_{f}}^{T} Qy_{t_{f}} \right)$$

subject to $E\dot{x}(t) = Ax(t) + Bu(t),$
 $y(t) = Cx(t)$

where A, E, B, and C may depend on t as well.

Feedback law

e.g. [Locatelli '01]

$$u(t) = -B^T X(t) E x(t),$$

Sc Differential Riccati Equations

Consider the linear quadratic optimal control problem:

$$\min_{u} \mathcal{J}(y, u) = \frac{1}{2} \left(\int_{0}^{t_{f}} y^{T}y + u^{T}u \, \mathrm{d}t + y_{t_{f}}^{T} Qy_{t_{f}} \right)$$

subject to $E\dot{x}(t) = Ax(t) + Bu(t),$
 $y(t) = Cx(t)$

where A, E, B, and C may depend on t as well.

Feedback law

e.g. [Locatelli '01]

$$u(t) = -B^T X(t) E x(t),$$

where X(t) is the solution of the Differential Riccati Equation (DRE)

$$E^{\mathsf{T}}\dot{X}(t)E = C^{\mathsf{T}}C + A^{\mathsf{T}}X(t)E + E^{\mathsf{T}}X(t)A - E^{\mathsf{T}}X(t)BB^{\mathsf{T}}X(t)E := \mathcal{R}(X(t)),$$

$$X(t = t_f) := Q.$$

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation (DLE):

$$E^T \dot{X}(t) E = C^T C + A^T X(t) E + E^T X(t) A,$$

$$X(t = t_f) := X_f.$$

Simplification of the DRE

By setting B = 0 in the DRE we get the Differential Lyapunov Equation (DLE):

$$E^{\mathsf{T}}\dot{X}(t)E = C^{\mathsf{T}}C + A^{\mathsf{T}}X(t)E + E^{\mathsf{T}}X(t)A,$$
$$X(t = t_f) := X_f.$$

Application in Model Order Reduction:

 \rightarrow used for *Linear Time-Variant (LTV)* Balanced Truncation.

- The **DLE** is a matrix-valued ordinary differential equation.
- The **DRE** is a non-linear, matrix-valued, and highly stiff ordinary differential equation.

• The **DLE** is a matrix-valued ordinary differential equation.

The DRE is a non-linear, matrix-valued, and highly stiff ordinary differential equation.

Implicit time integrators

Backward differentiation formula (BDF)

- Linear implicit Runge-Kutta (Rosenbrock) methods
- Midpoint and Trapezoidal rule

• The **DLE** is a matrix-valued ordinary differential equation.

The DRE is a non-linear, matrix-valued, and highly stiff ordinary differential equation.

Implicit time integrators

Backward differentiation formula (BDF)

- Linear implicit Runge-Kutta (Rosenbrock) methods
- Midpoint and Trapezoidal rule

■ The **DLE** is a matrix-valued ordinary differential equation.

The DRE is a non-linear, matrix-valued, and highly stiff ordinary differential equation.

Implicit time integrators

- Backward differentiation formula (BDF)
- Linear implicit Runge-Kutta (Rosenbrock) methods
- Midpoint and Trapezoidal rule

Numerical issues

- Methods are fairly time and storage consuming for large-scale problems.
- High accuracy requires small time steps or high order methods.
- At every time step a number of algebraic matrix equations needs to be solved.

Restriction by Parareal:

Only single-step integrators are well suited.

Restriction by Parareal:

Only single-step integrators are well suited.

General Rosenbrock Scheme

The s-stage Rosenbrock method applied to a matrix differential equation of the form $\dot{X} = F(X)$ is given as

$$X_{k+1} = X_k + \tau_k \sum_{\ell=1}^{s} b_\ell K_\ell^{(k)},$$

$$K_i^{(k)} = F(X_k + \tau_k \sum_{\ell=1}^{i-1} \alpha_{i,\ell} K_\ell^{(k)}) + \tau_k \mathcal{J}_k \sum_{\ell=1}^{i} \gamma_{i,\ell} K_\ell^{(k)}, \quad \forall i = 1, \dots, s.$$

s : order of the method τ_k : time step **J**_k : Fréchet derivative of F at X_k $\alpha_{i,\ell}, \gamma_{i,\ell}, \mu_\ell$: determining coefficients

Restriction by Parareal:

Only single-step integrators are well suited.

General Rosenbrock Scheme

The s-stage Rosenbrock method applied to a matrix differential equation of the form $\dot{X} = F(X)$ is given as

$$X_{k+1} = X_k + \tau_k \sum_{\ell=1}^{s} b_\ell K_\ell^{(k)},$$

$$K_i^{(k)} = F(X_k + \tau_k \sum_{\ell=1}^{i-1} \alpha_{i,\ell} K_\ell^{(k)}) + \tau_k \mathcal{J}_k \sum_{\ell=1}^{i} \gamma_{i,\ell} K_\ell^{(k)}, \quad \forall i = 1, \dots, s.$$

Fréchet derivative of $\mathcal{R}(X)$ is a Lyapunov operator.

1st order Rosenbrock scheme (Ros1)

$$X_{k+1} = X_k + \tau_k K_1^{(k)}$$

1st order Rosenbrock scheme (Ros1)

$$\begin{aligned} X_{k+1} &= X_k + \tau_k \mathcal{K}_1^{(k)} \\ \mathcal{E}^\top \mathcal{K}_1^{(k)} \mathcal{E} - \tau_k \mathcal{R}' |_{X_k} (\mathcal{K}_1^{(k)}) = \mathcal{R}(X) \end{aligned}$$

1st order Rosenbrock scheme (Ros1)

$$X_{k+1} = X_k + \tau_k K_1^{(k)}$$

 $\boldsymbol{E}^{\mathsf{T}}\boldsymbol{K}_{1}^{(k)}\boldsymbol{E} - \tau_{k}(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{X}_{k}\boldsymbol{E})^{\mathsf{T}}\boldsymbol{K}_{1}^{(k)}\boldsymbol{E} - \tau_{k}\boldsymbol{E}^{\mathsf{T}}\boldsymbol{K}_{1}^{(k)}(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{B}^{\mathsf{T}}\boldsymbol{X}_{k}\boldsymbol{E}) = \mathcal{R}(\boldsymbol{X})$

1st order Rosenbrock scheme (Ros1)

$$X_{k+1} = X_k + \tau_k K_1^{(k)}$$

$$(\tau_k(A - BB^T X_k E) - \frac{1}{2}E)^T K_1^{(k)} E + E^T K_1^{(k)} (\tau_k(A - BB^T X_k E) - \frac{1}{2}E) = -\mathcal{R}(X)$$

 1^{st} order Rosenbrock scheme (Ros1)

$$X_{k+1} = X_k + \tau_k K_1^{(k)}$$
$$\tilde{A}^T K_1^{(k)} E + E^T K_1^{(k)} \tilde{A} = -\mathcal{R}(X_k)$$

$$\tilde{A} := \tau_k (A - BB^T X_k E) - \frac{1}{2}E$$

Solve one Algebraic Lyapunov Equation (ALE) inside the 1-stage Rosenbrock method.

1st order Rosenbrock scheme (Ros1)

$$egin{aligned} X_{k+1} &= X_k + au_k K_1^{(k)} \ ilde{A}^ op K_1^{(k)} E + E^ op K_1^{(k)} ilde{A} &= -\mathcal{R}(X_k) \end{aligned}$$

2nd order Rosenbrock scheme (Ros2)

[Dekker/Verwer '84]

$$X_{k+1} = X_k + \frac{3}{2}\tau_k K_1^{(k)} + \frac{1}{2}\tau_k K_2^{(k)}$$
$$\tilde{A}^T K_1^{(k)} E + E^T K_1^{(k)} \tilde{A} = -\mathcal{R}(X_k)$$
$$\tilde{A}^T K_2^{(k)} E + E^T K_2^{(k)} \tilde{A} = -\mathcal{R}(X_k + \tau_k K_1^{(k)}) + 2E^T K_1^{(k)} E$$

$$\tilde{A} := \gamma \tau_k (A - BB^T X_k E) - \frac{1}{2} E$$

 1^{st} order Rosenbrock scheme (Ros1)

$$egin{aligned} X_{k+1} &= X_k + au_k K_1^{(k)} \ ilde{A}^ op K_1^{(k)} E + E^ op K_1^{(k)} ilde{A} &= -\mathcal{R}(X_k) \end{aligned}$$

2nd order Rosenbrock scheme (Ros2)

[Dekker/Verwer '84]

$$X_{k+1} = X_k + \frac{3}{2}\tau_k K_1^{(k)} + \frac{1}{2}\tau_k K_2^{(k)}$$
$$\tilde{A}^T K_1^{(k)} E + E^T K_1^{(k)} \tilde{A} = -\mathcal{R}(X_k)$$
$$\tilde{A}^T K_2^{(k)} E + E^T K_2^{(k)} \tilde{A} = -\mathcal{R}(X_k + \tau_k K_1^{(k)}) + 2E^T K_1^{(k)} E$$

Solve two ALEs inside the 2-stage Rosenbrock method.

$$\tilde{A}^{T} K_{1}^{(k)} E + E^{T} K_{1}^{(k)} \tilde{A} = -\mathcal{R}(X_{k})$$
$$\tilde{A}^{T} K_{2}^{(k)} E + E^{T} K_{2}^{(k)} \tilde{A} = -\mathcal{R}(X_{k} + \tau_{k} K_{1}^{(k)}) + 2E^{T} K_{1}^{(k)} E$$

ord

1

High Computational Cost

- Need the solution of *s* algebraic Lyapunov equations per time step. \rightarrow Bartels-Stewart algorithm requires a QZ decomposition.
- Mostly matrix-matrix products.

High Computational Cost

- Need the solution of *s* algebraic Lyapunov equations per time step. → Bartels-Stewart algorithm requires a QZ decomposition.
- Mostly matrix-matrix products.

Redundant Information

- Each right hand side of the Lyapunov equation includes $\mathcal{R}(X_k)$.
- Redundant information in the linear part of $\mathcal{R}(X_k + \tau_k K_j + \ldots)$.
- Solutions of the Lyapunov equations K_j are symmetric.

High Computational Cost

- Need the solution of *s* algebraic Lyapunov equations per time step. \rightarrow Bartels-Stewart algorithm requires a QZ decomposition.
- Mostly matrix-matrix products.

Redundant Information

- Each right hand side of the Lyapunov equation includes $\mathcal{R}(X_k)$.
- Redundant information in the linear part of $\mathcal{R}(X_k + \tau_k K_j + ...)$.
- Solutions of the Lyapunov equations K_j are symmetric.

Strategies

- Computational Cost: Use level-3 BLAS enabled algorithms.
- Redundant Information: Reformulation of the right hand sides.

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.
- But QZ is mostly a level-2 BLAS algorithm.

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.
- But QZ is mostly a level-2 BLAS algorithm.
- Bartels-Stewart algorithm is level-2 BLAS as well.

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.
- But QZ is mostly a level-2 BLAS algorithm.
- Bartels-Stewart algorithm is level-2 BLAS as well.

Need for an efficient Lyapunov solver

Martin Köhler

[Penzl '97]

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.
- But QZ is mostly a level-2 BLAS algorithm.
- Bartels-Stewart algorithm is level-2 BLAS as well.

Need for an efficient Lyapunov solver

- Matrix Sign Function Iteration
 - \rightarrow Without QZ decomposition, but no advantage out of operator repetition.

Martin Köhler

[QUINTANA-ORTÍ/ BENNER '99]

[Penzl '97]

Matrix-Matrix Products

Use Intel[®] MKL, AMD ACML, BLIS, OpenBLAS or ATLAS.

Lyapunov Equations

Generalized Bartels-Stewart algorithm available in SLICOT:

- All stages have the same coefficient matrices.
- Only one QZ decomposition per time step and reuse it.
- But QZ is mostly a level-2 BLAS algorithm.
- Bartels-Stewart algorithm is level-2 BLAS as well.

Need for an efficient Lyapunov solver

- Matrix Sign Function Iteration [QUINTANA-ORTÍ/ BENNER '99] → Without QZ decomposition, but no advantage out of operator repetition.
- Reuse of the QZ decomposition and level-3 BLAS block generalized Bartels-Stewart algorithm. [GLYAP3: K./SAAK '14 '15]

Consider the stages of the 2^{nd} order Rosenbrock scheme:

$$\tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k = -\mathcal{R}(X_k)$$

and

$$\tilde{A}_k^T K_2 E + E^T K_2 \tilde{A}_k = -\mathcal{R}(X_k + \tau_k K_1) + 2E^T K_1 E$$

with $\tilde{A} := \gamma \tau_k (A - BB^T X_k E) - \frac{1}{2} E$.

Consider the stages of the 2^{nd} order Rosenbrock scheme:

$$\tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k = -\mathcal{R}(X_k)$$

and

$$\begin{split} \tilde{A}_k^T \kappa_2 E + E^T \kappa_2 \tilde{A}_k &= -\mathcal{R}(X_k + \tau_k \kappa_1) + 2E^T \kappa_1 E \\ &= -\mathcal{R}(X_k) - \tau_k \left((A^T - BB^T X_k E)^T \kappa_1 E + E^T \kappa_1 (A^T - BB^T X_k E) \right) \\ &+ \tau_k^2 E^T \kappa_1 BB^T \kappa_1 E + 2E^T \kappa_1 E \end{split}$$

Consider the stages of the 2^{nd} order Rosenbrock scheme:

$$\tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k = -\mathcal{R}(X_k)$$

and

$$\begin{split} \tilde{A}_{k}^{T} K_{2} E + E^{T} K_{2} \tilde{A}_{k} &= -\mathcal{R}(X_{k} + \tau_{k} K_{1}) + 2E^{T} K_{1} E \\ &= -\mathcal{R}(X_{k}) - \tau_{k} \left((A^{T} - BB^{T} X_{k} E)^{T} K_{1} E + E^{T} K_{1} (A^{T} - BB^{T} X_{k} E) \right) \\ &+ \tau_{k}^{2} E^{T} K_{1} BB^{T} K_{1} E + 2E^{T} K_{1} E \\ &= -\mathcal{R}(X_{k}) - \frac{1}{\gamma} \left(\tilde{A}_{k}^{T} K_{1} E + E^{T} K_{1} \tilde{A}_{k} \right) - \frac{1}{\gamma} E^{T} K_{1} E \\ &+ \tau_{k}^{2} E^{T} K_{1} BB^{T} K_{1} E + 2E^{T} K_{1} E \end{split}$$

Consider the stages of the 2^{nd} order Rosenbrock scheme:

 $\tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k = -\mathcal{R}(X_k)$

and

$$\begin{split} \tilde{A}_{k}^{T} K_{2} E &+ E^{T} K_{2} \tilde{A}_{k} = -\mathcal{R}(X_{k} + \tau_{k} K_{1}) + 2E^{T} K_{1} E \\ &= -\mathcal{R}(X_{k}) - \tau_{k} \left((A^{T} - BB^{T} X_{k} E)^{T} K_{1} E + E^{T} K_{1} (A^{T} - BB^{T} X_{k} E) \right) \\ &+ \tau_{k}^{2} E^{T} K_{1} BB^{T} K_{1} E + 2E^{T} K_{1} E \\ &= -\mathcal{R}(X_{k}) - \frac{1}{\gamma} \left(\tilde{A}_{k}^{T} K_{1} E + E^{T} K_{1} \tilde{A}_{k} \right) - \frac{1}{\gamma} E^{T} K_{1} E \\ &+ \tau_{k}^{2} E^{T} K_{1} BB^{T} K_{1} E + 2E^{T} K_{1} E \\ &= -(1 - \frac{1}{\gamma}) \mathcal{R}(X_{k}) + \tau_{k}^{2} E^{T} K_{1} BB^{T} K_{1} E + (2 - \frac{1}{\gamma}) E^{T} K_{1} E. \end{split}$$

Using the linearity of the Lyapunov-Equation we reformulate the 2^{nd} order Rosenbrock scheme as:

$$\begin{aligned} X_{k+1} &= X_k + \frac{3}{2}\tau_k K_1 + \frac{1}{2}\tau_k K_2, \\ \tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k &= -\mathcal{R}(X_k), \\ \tilde{A}_k^T \tilde{K}_2 E + E^T \tilde{K}_2 \tilde{A}_k &= \tau_k^2 E^T K_1 B B^T K_1 E + (2 - \frac{1}{\gamma}) E^T K_1 E, \\ K_2 &= \tilde{K}_2 + (1 - \frac{1}{\gamma}) K_1. \end{aligned}$$

Using the linearity of the Lyapunov-Equation we reformulate the 2^{nd} order Rosenbrock scheme as:

$$\begin{aligned} X_{k+1} &= X_k + \frac{3}{2}\tau_k K_1 + \frac{1}{2}\tau_k K_2, \\ \tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k &= -\mathcal{R}(X_k), \\ \tilde{A}_k^T \tilde{K}_2 E + E^T \tilde{K}_2 \tilde{A}_k &= \tau_k^2 E^T K_1 B B^T K_1 E + (2 - \frac{1}{\gamma}) E^T K_1 E, \\ K_2 &= \tilde{K}_2 + (1 - \frac{1}{\gamma}) K_1. \end{aligned}$$

Using the linearity of the Lyapunov-Equation we reformulate the 2^{nd} order Rosenbrock scheme as:

$$\begin{aligned} X_{k+1} &= X_k + \frac{3}{2} \tau_k K_1 + \frac{1}{2} \tau_k K_2, \\ \tilde{A}_k^T K_1 E + E^T K_1 \tilde{A}_k &= -\mathcal{R}(X_k), \\ \tilde{A}_k^T \tilde{K}_2 E + E^T \tilde{K}_2 \tilde{A}_k &= \tau_k^2 E^T K_1 B B^T K_1 E + (2 - \frac{1}{\gamma}) E^T K_1 E \\ K_2 &= \tilde{K}_2 + (1 - \frac{1}{\gamma}) K_1. \end{aligned}$$

• The 3rd and 4th order scheme can be rearranged in the same way.

Using the linearity of the Lyapunov-Equation we reformulate the 2^{nd} order Rosenbrock scheme as:

$$\begin{aligned} X_{k+1} &= X_k + \frac{3}{2}\tau_k K_1 + \frac{1}{2}\tau_k K_2, \\ \tilde{A}_k^T \mathcal{K}_1 E + E^T \mathcal{K}_1 \tilde{A}_k &= -\mathcal{R}(X_k), \\ \tilde{A}_k^T \tilde{\mathcal{K}}_2 E + E^T \tilde{\mathcal{K}}_2 \tilde{A}_k &= \tau_k^2 E^T \mathcal{K}_1 B B^T \mathcal{K}_1 E + (2 - \frac{1}{\gamma}) E^T \mathcal{K}_1 E \\ \mathcal{K}_2 &= \tilde{\mathcal{K}}_2 + (1 - \frac{1}{\gamma}) \mathcal{K}_1. \end{aligned}$$

• The 3rd and 4th order scheme can be rearranged in the same way.

Symmetric terms are computed like

$$E^{\mathsf{T}}K_{j}BB^{\mathsf{T}}K_{j}E = K_{E}^{(j)}{}^{\mathsf{T}}K_{E}^{(j)} \quad \text{with} \quad K_{E}^{(j)} := B^{\mathsf{T}}K_{j}E.$$

Following [MADAY/LIONS/TURINICI '01] we use

$$\begin{split} X_0^{(k+1)} &:= X(t = t_f), \\ X_p^{(k+1)} &:= F(t_{p-1}, t_p, X_{p-1}^{(k)}) + G(t_{p-1}, t_p, X_{p-1}^{(k+1)}) - G(t_{p-1}, t_p, X_{p-1}^{(k)}) \end{split}$$

as parareal-scheme, where $F(t_p, t_{p+1}, X_s)$ and $G(t_p, t_{p+1}, X_s)$ integrate the DRE from t_p to t_{p+1} with the initial value X_s .

Following [MADAY/LIONS/TURINICI '01] we use

$$\begin{split} X_0^{(k+1)} &:= X(t = t_f), \\ X_p^{(k+1)} &:= F(t_{p-1}, t_p, X_{p-1}^{(k)}) + G(t_{p-1}, t_p, X_{p-1}^{(k+1)}) - G(t_{p-1}, t_p, X_{p-1}^{(k)}) \end{split}$$

as parareal-scheme, where $F(t_p, t_{p+1}, X_s)$ and $G(t_p, t_{p+1}, X_s)$ integrate the DRE from t_p to t_{p+1} with the initial value X_s .

Coarse and Fine Solvers

Use our four Rosenbrock methods as coarse and the fine solvers:

- The coarse solver G performs one time step from t_p to t_{p+1} .
- The fine solver F performs f time steps from t_p to t_{p+1} .

Following [MADAY/LIONS/TURINICI '01] we use

$$\begin{split} X_0^{(k+1)} &:= X(t = t_f), \\ X_p^{(k+1)} &:= F(t_{p-1}, t_p, X_{p-1}^{(k)}) + G(t_{p-1}, t_p, X_{p-1}^{(k+1)}) - G(t_{p-1}, t_p, X_{p-1}^{(k)}) \end{split}$$

as parareal-scheme, where $F(t_p, t_{p+1}, X_s)$ and $G(t_p, t_{p+1}, X_s)$ integrate the DRE from t_p to t_{p+1} with the initial value X_s .

Coarse and Fine Solvers

Use our four Rosenbrock methods as coarse and the fine solvers:

- The coarse solver G performs one time step from t_p to t_{p+1} .
- The fine solver F performs f time steps from t_p to t_{p+1} .

We obtain 16 combinations for Parareal setup.

Sc Parareal Implementation

Classical Pipeline Implementation: Stage-Code

1: for it:=1 to maxit do
2: Receive
$$X_s^{(it)}$$
 from ProcessID-1
3: $X_G^{(it)} = G(X_s^{(it)})$
4: if it = 1 then
5: Send $X_G^{(it)}$ to ProcessID+1
6: else
7: $X^{(it)} := X_G^{(it)} + X_F^{(it-1)} - X_G^{(it-1)}$
8: end if
9: $X_F^{(it)} = F(X_s^{(it-1)})$
10: if $||X^{(it)} - X^{(it-1)}|| < \delta ||X^{(it)}||$ then
11: Stop.
12: end if
13: end for

Classical Pipeline Implementation: Stage-Code

1: for it:=1 to maxit do
2: Receive
$$X_s^{(it)}$$
 from ProcessID-1
3: $X_G^{(it)} = G(X_s^{(it)})$
4: if it = 1 then
5: Send $X_G^{(it)}$ to ProcessID+1
6: else
7: $X^{(it)} := X_G^{(it)} + X_F^{(it-1)} - X_G^{(it-1)}$
8: end if
9: $X_F^{(it)} = F(X_s^{(it-1)})$
10: if $||X^{(it)} - X^{(it-1)}|| < \delta ||X^{(it)}||$ then
11: Stop.
12: end if
13: end for

Can be easily implemented on

- distributed systems using MPI,
- shared memory systems using OpenMP or PThreads.

■ Use the *LDL^T*-ADI for solving the Lyapunov equations. [LANG/MENA/SAAK '15]

Use the LDL^T-ADI for solving the Lyapunov equations. [LANG/MENA/SAAK '15]
Replace the Parareal update

$$X^{(i)} := X_G^{(i)} + X_F^{(i-1)} - X_G^{(i-1)}$$

by

$$L^{(i)}D^{(i)}L^{(i)}^{T} = L^{(i)}_{G}D^{(i)}_{G}L^{(i)}_{G}^{T} + L^{(i-1)}_{F}D^{(i-1)}_{F}L^{(i-1)}_{F} - L^{(i-1)}_{G}D^{(i-1)}_{G}L^{(i-1)}_{G}$$

Use the LDL^T-ADI for solving the Lyapunov equations. [LANG/MENA/SAAK '15]
Replace the Parareal update

$$X^{(i)} := X_G^{(i)} + X_F^{(i-1)} - X_G^{(i-1)}$$

by

$$L^{(i)}D^{(i)}L^{(i)}^{T} = L_{G}^{(i)}D_{G}^{(i)}L_{G}^{(i)}^{T} + L_{F}^{(i-1)}D_{F}^{(i-1)}L_{F}^{(i-1)}^{T} - L_{G}^{(i-1)}D_{G}^{(i-1)}L_{G}^{(i-1)}^{T}$$
$$= \underbrace{\left[L_{G}^{(i)} \quad L_{F}^{(i-1)} \quad L_{G}^{(i-1)}\right]}_{L^{(i)}} \underbrace{\left[\begin{array}{c}D_{G}^{(i)} \\ D_{F}^{(i-1)} \\ D_{F}^{(i)} \end{array}\right]}_{D^{(i)}} \underbrace{\left[\begin{array}{c}L_{G}^{(i)} \\ L_{G}^{(i-1)} \\ L_{G}^{(i)} \end{array}\right]}_{L^{(i)}} \underbrace{\left[\begin{array}{c}L_{G}^{(i)} \\ L_{G}^{(i)} \\ L_{G}$$

• The size of the factor $L^{(i)}$ increases in every iteration.

• The size of the factor $L^{(i)}$ increases in every iteration.

Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

CSC Large Scale Problems

- The size of the factor $L^{(i)}$ increases in every iteration.
- Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

$$L^{(i)}D^{(i)}L^{(i)^{T}} = \overbrace{U\Sigma V^{T}}^{\mathsf{SVD of } L^{(i)}}D^{(i)}V\Sigma U^{T}$$

Sc Large Scale Problems

- The size of the factor $L^{(i)}$ increases in every iteration.
- Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

$$L^{(i)}D^{(i)}L^{(i)^{T}} = \underbrace{\nabla \nabla V}_{V} D^{(i)}V \Sigma U^{T}$$
$$\approx U_{k}\Sigma_{k}V_{k}^{T}D^{(i)}V_{k}\Sigma_{k}U_{k}^{T} \qquad k = \operatorname{rank}\left(L^{(i)},\delta\right)$$

CSC Large Scale Problems

• The size of the factor $L^{(i)}$ increases in every iteration.

Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

$$L^{(i)}D^{(i)}L^{(i)}^{T} = \underbrace{\widetilde{U\Sigma}V^{T}}_{U\Sigma}D^{(i)}V\Sigma U^{T}$$
$$\approx U_{k}\Sigma_{k}V_{k}^{T}D^{(i)}V_{k}\Sigma_{k}U_{k}^{T} \qquad k = \operatorname{rank}\left(L^{(i)}, \delta\right)$$
$$= \underbrace{U_{k}\Sigma_{k}\widetilde{V}_{k}^{T}\widetilde{D}^{(i)}V_{k}}_{\widetilde{I}^{(i)}}\widetilde{V}_{k}\Sigma_{k}U_{k}^{T}$$

Sc Large Scale Problems

- The size of the factor $L^{(i)}$ increases in every iteration.
- Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

$$L^{(i)}D^{(i)}L^{(i)^{T}} = \underbrace{\widetilde{U\Sigma V^{T}}}_{U\Sigma V^{T}}D^{(i)}V\Sigma U^{T}$$

$$\approx U_{k}\Sigma_{k}V_{k}^{T}D^{(i)}V_{k}\Sigma_{k}U_{k}^{T} \qquad k = \operatorname{rank}\left(L^{(i)},\delta\right)$$

$$= \underbrace{U_{k}\Sigma_{k}\widetilde{V_{k}^{T}}\widetilde{D}^{(i)}\widetilde{V_{k}}}_{\widetilde{L}^{(i)}}\Sigma_{k}U_{k}^{T}$$

$$= \widetilde{L}^{(i)}\widetilde{D}^{(i)}\widetilde{L}^{(i)}^{T}$$

CSC Large Scale Problems

- The size of the factor $L^{(i)}$ increases in every iteration.
- Redundant information in $L_G^{(i)}$, $L_G^{(i-1)}$, and $L_F^{(i-1)}$ on convergence.

Truncate $L^{(i)}$ and $D^{(i)}$:

$$L^{(i)}D^{(i)}L^{(i)^{T}} = \underbrace{\widetilde{U\Sigma V^{T}}}_{U\Sigma V^{T}}D^{(i)}V\Sigma U^{T}$$

$$\approx U_{k}\Sigma_{k}V_{k}^{T}D^{(i)}V_{k}\Sigma_{k}U_{k}^{T} \qquad k = \operatorname{rank}\left(L^{(i)},\delta\right)$$

$$= \underbrace{U_{k}\Sigma_{k}\widetilde{V_{k}^{T}}\widetilde{D}^{(i)}\widetilde{V_{k}}}_{\widetilde{L}^{(i)}}\Sigma_{k}U_{k}^{T}$$

$$= \widetilde{I}^{(i)}\widetilde{D}^{(i)}\widetilde{I}^{(i)}^{T}$$

ightarrow Only proof of concept due to bad load balancing in the pipeline parallelism.

Model Problem

 Mathematical model: boundary control for linearized 2D heat equation:

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad x \in \Omega$$

$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad x \in \Gamma_k, \ 1 \le k \le 7,$$

$$\frac{\partial}{\partial n} x = 0, \quad x \in \Gamma_7.$$

- FEM discretization with *n* = 371 states, *m* = 7 inputs, and *q* = 6 outputs
- computations with $\tau = 0.1 ms$ on [0, 45]s
- evaluations for one component of the feedback $K(t) = -B^T X(t) E$

[OBERWOLFACH RAIL]

Hardware Environment

HPC-Cluster otto

- 450 Intel[®] Xeon[®] Westmere-EP cores @ 2.66GHz with 4 GB RAM each
- QDR-Infiniband interconnect

Software

- Intel[®] Parallel Studio 2015 XE
- OpenMPI 1.8.1 with threading support
- Intel[®] MKL 11.2.1

Hardware Environment

HPC-Cluster otto

- 450 Intel[®] Xeon[®] Westmere-EP cores @ 2.66GHz with 4 GB RAM each
- QDR-Infiniband interconnect

Software

- Intel[®] Parallel Studio 2015 XE
- OpenMPI 1.8.1 with threading support
- Intel[®] MKL 11.2.1

Reference Result

- 450 000 steps with $\tau = 0.1$ ms with Ros4 in **3.46 days**
- Memory requirements for the trajectory: X(t) 1.4 TB, K(t) 9 GB

Sequential Runtimes

Rosenbrock Order	SLICOT	GLYAP 3	ratio
1	4.40 d	2.87 d	1.53
2	6.15 d	3.06 d	2.01
3	7.84 d	3.27 d	2.40
4	9.55 d	3.46 d	2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov solvers.

Sequential Runtimes

Rosenbrock Order	SLICOT	GLYAP 3	ratio
1	4.40 d	2.87 d	1.53
2	6.15 d	3.06 d	2.01
3	7.84 d	3.27 d	2.40
4	9.55 d	3.46 d	2.75

Table: Sequential Runtime of the Rosenbrock methods with different Lyapunov solvers.

First observations

- A fast solver for the Lyapunov equations is a key ingredient,
- Choosing the correct Lyapunov solver already gains a speed up of 2.75,
- But 3.46 days are still too long for a accurate solution of such a small problem.

Parareal Setup

- 450 coarse steps, $\tau_{coarse} = 100 \mathrm{ms}$
- 1000 fine steps per coarse step, $\tau = 0.1 \mathrm{ms}$
- Maximum number of iterations: 10
- Stopping criteria: $\delta = 10^{-6}$

Parareal Setup

- 450 coarse steps, $\tau_{coarse} = 100 \mathrm{ms}$
- 1000 fine steps per coarse step, $\tau = 0.1 \text{ms}$
- Maximum number of iterations: 10
- Stopping criteria: $\delta = 10^{-6}$

	Coarse	Ros1		Ros	s2 Ros		3	Ros	4
Fine		Time	lter	Time	lter	Time	lter	Time	lter
	Ros1	3.30 h	9	2.97 h	8	3.29 h	9	1.74 h	4
	Ros2	3.59 h	9	3.27 h	8	3.61 h	9	1.89 h	4
	Ros3	3.87 h	9	3.51 h	8	3.88 h	9	2.02 h	4
	Ros4	4.17 h	9	3.78 h	8	4.18 h	9	2.19 h	4

Table: Runtime and maximum iteration number.

Parareal Setup

- 450 coarse steps, $\tau_{coarse} = 100 \mathrm{ms}$
- 1000 fine steps per coarse step, $\tau = 0.1 \text{ms}$
- Maximum number of iterations: 10
- Stopping criteria: $\delta = 10^{-6}$

Coarse Fine	Ros1	Ros2	Ros3	Ros4
Ros1	2.01e-05	2.01e-05	2.01e-05	2.01e-05
Ros2	2.07e-05	2.07e-05	2.07e-05	2.07e-05
Ros3	2.07e-05	2.07e-05	2.07e-05	2.07e-05
Ros4	1.27e-09	3.00e-10	9.71e-08	6.10e-14

Table: Relative 1-norm error between the Parareal solution and the reference.

Parareal Setup

- 450 coarse steps, $\tau_{coarse} = 100 \text{ms}$
- 1000 fine steps per coarse step, $\tau = 0.1 \text{ms}$
- Maximum number of iterations: 10
- Stopping criteria: $\delta = 10^{-6}$

Coarse Fine	Ros1	Ros2	Ros3	Ros4
Ros1	*	7.69e-05	7.68e-05	7.68e-05
Ros2	*	7.81e-05	7.80e-05	7.80e-05
Ros3	*	7.81e-05	7.80e-05	7.80e-05
Ros4	*	3.14e-11	5.76e-09	1.14e-14

Table: Relative 1-norm error between the Parareal solution and the reference for $K(t)_{1,77}$.

Conclusions and Open Problems

Conclusions

We have seen that:

- "optimize before parallelize" already gains nearly a factor of up to 3,
- Parareal shrinks the runtime down to 2.19h with accurate results.

CSC Conclusions and Open Problems

Conclusions

We have seen that:

- "optimize before parallelize" already gains nearly a factor of up to 3,
- Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

- (our) Parareal implementation requires the same computational complexity for each evaluation of the coarse or the fine solver,
- we have relatively long startup phase until all processors work in parallel,
- we are restricted to one-step methods on the coarse level.

CSC Conclusions and Open Problems

Conclusions

We have seen that:

- "optimize before parallelize" already gains nearly a factor of up to 3,
- Parareal shrinks the runtime down to 2.19h with accurate results.

We observed that:

- (our) Parareal implementation requires the same computational complexity for each evaluation of the coarse or the fine solver,
- we have relatively long startup phase until all processors work in parallel,
- we are restricted to one-step methods on the coarse level.

Thank you for your attention! Questions?