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Introduction
Model Reduction — Abstract Definition

Problem
Given a physical problem with dynamics described by the states x ∈ Rn,
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Introduction

Introduction
Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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Introduction

Model Reduction for Dynamical Systems
Parameter-Dependent Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:

Repeated simulation for varying material or geometry parameters,
boundary conditions,

Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.
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Introduction

Model Reduction for Dynamical Systems
Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.
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Model Reduction for Dynamical Systems
Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Linear, Time-Invariant Parametric Systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),
y(t; p) = C (p)x(t; p) + D(p)u(t),

where A(p),E (p) ∈ Rn×n,B(p) ∈ Rn×m,C (p) ∈ Rq×n,D(p) ∈ Rq×m.
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Introduction

Application Areas
Structural Mechanics / Finite Element Modeling since ∼1960ies

 

Resolving complex 3D geometries ⇒ millions of degrees of freedom.

Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,
combined with Guyan reduction (static condensation)  Craig-Bampton
method.
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Introduction

Application Areas
(Optimal) Control since ∼1980ies

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n.

Practical controllers require small N (N ∼ 10, say) due to
– real-time constraints,

– increasing fragility for larger N.

=⇒ reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Introduction

Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75) states that the number of on-chip transistors
doubles each 24 months.

 

Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore’sLaw_-_2011.svg
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Intel 4004 (1971) Intel Core 2 Extreme (quad-core) (2007)

1 layer, 10µ technology 9 layers, 45nm technology
2,300 transistors > 8, 200, 000 transistors
64 kHz clock speed > 3 GHz clock speed.
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Introduction

Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.
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Introduction

Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Here: mostly MOR for linear systems, they occur in micro electronics
through modified nodal analysis (MNA) for RLC networks. e.g., when

decoupling large linear subcircuits,
modeling transmission lines,
modeling pin packages in VLSI chips,
modeling circuit elements described by Maxwell’s equation using
partial element equivalent circuits (PEEC).
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 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.

Max-Planck-Institute Magdeburg Peter Benner, MOR for Dynamical Systems 10/14



Introduction

Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:
Krylov subspace / Padé approximation / rational interpolation methods.

Max-Planck-Institute Magdeburg Peter Benner, MOR for Dynamical Systems 10/14



Introduction

Application Areas

Many other disciplines in computational sciences and engineering like

computational fluid dynamics (CFD),

computational electromagnetics,

chemical process engineering,

design of MEMS/NEMS (micro/nano-electrical-mechanical
systems),

computational acoustics,

. . .
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Introduction

Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer R© test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270.593, m = p = 2 ⇒
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

– Main computational cost for set-up data ≈ 22min.
– Computation of reduced models from set-up data: 44–49sec. (r = 20–70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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Bode Plot (Amplitude)

10
−2

10
0

10
2

10
4

10
−1

10
0

10
1

10
2

ω

σ
m

a
x
(G

(j
ω

))

Transfer functions of original and reduced systems

 

 

original

ROM 20
ROM 30

ROM 40

ROM 50
ROM 60

ROM 70

Hankel Singular Values

50 100 150 200 250 300 350

10
−20

10
−15

10
−10

10
−5

10
0

Computed Hankel singular values

index

m
a

g
n

it
u

d
e

Max-Planck-Institute Magdeburg Peter Benner, MOR for Dynamical Systems 12/14



Introduction

Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Original model: n = 270.593, m = p = 2 ⇒
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Introduction

Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Source: http://en.wikipedia.org/wiki/Neuron
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Introduction

Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

FE model of second order:
N = 17.361 n = 34.722, m = 1, p = 12.

Sensor for position control based on
acceleration and rotation.

Application: inertial navigation.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
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Introduction

Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: M(d)ẍ(t) + D(Φ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t).

Max-Planck-Institute Magdeburg Peter Benner, MOR for Dynamical Systems 14/14



Introduction

Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)ẍ(t) + D(Φ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t),

wobei

M(d) = M1 + dM2,

D(Φ, d , α, β) = Φ(D1 + dD2) + αM(d) + βT (d),

T (d) = T1 +
1

d
T2 + dT3,

with

width of bearing: d ,

angular velocity: Φ,

Rayleigh damping parameters: α, β.
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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