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Introduction
Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states x € R”",
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Model Reduction for Dynamical Systems

Dynamical Systems

[ x(%) f(t,x(t),u(t)), x(to) = xo,
z'{ y(t) = gltx(1), u(t))

with
o states x(t) € R”,
o inputs u(t) € R",
o outputs y(t) € RP.
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Model Reduction for Dynamical Systems

f x(t) = f(t,x(t), u(t)),
o {Y(t) = g(t, x(t), u(t)).

o states x(t) € R,

@ inputs u(t) € R”,

@ outputs y(t) € RP.

T
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Model Reduction for Dynamical Systems

Reduced-Order Model (ROM)

Xx(t) = f(t,x(t),u(t)),
= (- e
o states x(t) € R,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

s [ X(t) = F(t,%(t), u(t)),
> {y(r) — &(6,2(2), u(D)).

o states X(t) eR", r < n
@ inputs u(t) € R”,

@ outputs y(t) € R”.
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Reduced-Order Model (ROM)

J x(e) = f(t,x(t), u(t)), o [ k() = F(t,%(t), u(t)),
> {y(t) = g(t,x(t), u(?)). T {y(t) 2t 300, (D)),

o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R",

@ outputs y(t) € RP. @ outputs y(t) € R”.

lly = ¥l < tolerance - ||ul| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.
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Model Reduction for Dynamical Systems

Parameter-Dependent Dynamical Systems

Dynamical Systems

[ Es(tp) = Fex(tp)u(thp), )=  (a)
E(p); | EEAER Z Memelattheh dw=a B

with
o (generalized) states x(t; p) € R" (E € R™"),
o inputs u(t) € R,
@ outputs y(t; p) € R, (b) is called output equation,
o pcQcRYis a parameter vector, Q is bounded.

Applications:

@ Repeated simulation for varying material or geometry parameters,
boundary conditions,

@ Control, optimization and design.
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Parameter-Dependent Dynamical Systems

Dynamical Systems

[ Es(tp) = Fex(tp)u(thp), )=  (a)
E(p); | EEAER Z Memelattheh dw=a B

with
o (generalized) states x(t; p) € R" (E € R™"),
o inputs u(t) € R,
@ outputs y(t; p) € R, (b) is called output equation,
o pcQcRYis a parameter vector, Q is bounded.

Applications:

@ Repeated simulation for varying material or geometry parameters,
boundary conditions,

@ Control, optimization and design.
Requirement: keep parameters as symbolic quantities in ROM.
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Model Reduction for Dynamical Systems

Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR"™", B e R"™™
y = g(t,x,u) = Cx+ Du, CeRP*" D € RPXm,
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Model Reduction for Dynamical Systems

Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+Bu, AeR"™", B e R"™™
y = g(t,x,u) = Cx+ Du, CeRP*" D € RPXm,

Time-Invariant Parametric Systems

E(p)x(t; p) A(p)x(t; p) + B(p)u(t),
y(t:p) = C(p)x(t;p) + D(p)u(t),

where A(p), E(p) € R"™", B(p) € R"™*™, C(p) € R9*" D(p) € RI*™.
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Application Areas

Structural Mechanics / Finite Element Modeling since ~1960ies

s rndet o ey

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.
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Application Areas

Structural Mechanics / Finite Element Modeling since ~1960ies

s rndet o ey

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,

combined with Guyan reduction (static condensation) ~~ Craig-Bampton
method.
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Application Areas

(Optimal) Control since ~1980ies

Feedback Controllers
X=Ax+Bu

A feedback controller (dynamic y=C
compensator) is a linear system of
order N, where

@ input = output of plant,

@ output = input of plant. = By
Modern (LQG—/H2—/HOO_) Contr0| u=Hv+Ky
design: N > n.
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Application Areas
(Optimal) Control since ~1980ies

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,

@ output = input of plant. e By
Modern (LQG—/H2—/HOO_) Contr0| u=Hv+Ky
design: N > n.

Practical controllers require small N (N ~ 10, say) due to
— real-time constraints,
— increasing fragility for larger N.

= reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas

Micro Electronics/Circuit Simulation since ~1990ies

Progressive miniaturization

o Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) states that the number of on-chip transistors
doubles each 24 months.

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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100,000,000

10,000,000

Transistor count

1971 1980 1990 2000 2011

Date of introduction

Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore’ sLaw_-_2011.svg

itute Magdeburg Peter Benner, MOR for Dynamical Systems 10/14



http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore's Law_-_2011.svg

Introduction

0000

Application Areas
Micro Electronics/Circuit Simulation

Progressive miniaturization

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,

network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Max-Planck-Institute Magdeburg Peter Benner, MOR for Dynamical Systems

since ~1990ies

10/14



Introduction

00000080000

Application Areas

Micro Electronics/Circuit Simulation since ~1990ies

Progressive miniaturization

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,
network topology (Kirchhoff's laws) and characteristic element/semi-
conductor equations.

@ Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Intel 4004 (1971) | Intel Core 2 Extreme (quad-core) (2007)
1 layer, 10u technology | 9 layers, 45nm technology

2,300 transistors > 8,200,000 transistors

64 kHz clock speed > 3 GHz clock speed.
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Micro Electronics/Circuit Simulation

Progressive miniaturization

since ~1990ies

o Verification of VLSI/ULSI chip design requires high number of simulations

for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,
network topology (Kirchhoff's laws) and characteristic element/semi-

conductor equations.

@ Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not

disturb signal transmission.

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.
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Application Areas

Micro Electronics/Circuit Simulation since ~1990ies

Progressive miniaturization

o Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,
network topology (Kirchhoff's laws) and characteristic element/semi-
conductor equations.

@ Here: mostly MOR for linear systems, they occur in micro electronics
through modified nodal analysis (MNA) for RLC networks. e.g., when

o decoupling large linear subcircuits,

o modeling transmission lines,

o modeling pin packages in VLSI chips,

o modeling circuit elements described by Maxwell's equation using
partial element equivalent circuits (PEEC).
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Micro Electronics/Circuit Simulation

Progressive miniaturization

o Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,

network topology (Kirchhoff's laws) and characteristic element/semi-
conductor equations.

~~ Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.
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Application Areas
Micro Electronics/Circuit Simulation

Progressive miniaturization

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Moore’s Law (1965/75) ~~ steady increase of describing equations, i.e.,

network topology (Kirchhoff's laws) and characteristic element/semi-
conductor equations.

~~ Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:
Krylov subspace / Padé approximation / rational interpolation methods.
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since ~1990ies
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Application Areas

Many other disciplines in computational sciences and engineering like
e computational fluid dynamics (CFD),
@ computational electromagnetics,
@ chemical process engineering,
(*]

design of MEMS/NEMS (micro/nano-electrical-mechanical
systems),

computational acoustics,
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

@ SIMPLORER® test circuit with 2 transistors.

@ Conservative thermic sub-system in SIMPLORER:
voltage ~» temperature, current ~~ heat flow.
@ Original model: n=270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system , < 1min for reduced system.
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[Source: Evgenii Rudnyi, CADFEM GmbH]

@ Original model: n =270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.

Bode Plot (Amplitude) Hankel Singular Values

. Transfer functions of original and reduced systems Computed Hankel singular values

‘max
magnitude

o || —original 10
——ROM 20
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——ROM 40
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Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

@ Original model: n =270.593, m=p=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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absolute model reduction error

relative model reduction error
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

@ Simple model for neuron (de-)activation [CHATURANTABUT/SORENSEN 2009]

eve(x, t) = €vi(x, t) 4+ F(v(x, 1)) — w(x, t) + g,
we(x, t) = hv(x,t) — yw(x, t) + g,

with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions

v(x,0) =0, w(x,0) =0, x €[0,1]
v«(0,t) = —io(2), vx(1,t) =0, t>0,

where € = 0.015,h = 0.5,v = 2, g = 0.05, ip(t) = 50000¢> exp(—15t).

Source: http://en.wikipedia.org/wiki/Neuron
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

@ Simple model for neuron (de-)activation [CHATURANTABUT/SORENSEN 2009]
eve(x, t) = €vi(x, t) 4+ F(v(x, 1)) — w(x, t) + g,
Wt(X7 t) = hV(X7 t) - ny(X7 t) + &,
with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
v(x,0) =0, w(x,0) =0, x €[0,1]
v«(0,t) = —io(2), vx(1,t) =0, t>0,
where ¢ = 0.015, h = 0.5,v = 2, g = 0.05, ip(t) = 50000 exp(—15t).
@ Parameter g handled as an additional input.

@ Original state dimension n =2 - 400, QBDAE dimension N = 3 - 400,
reduced QBDAE dimension r = 26, chosen expansion point o = 1.
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Phase Space Diagram, n=2-400, r=26
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Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly

@ Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

@ FE model of second order:
N =17.361 ~» n=34.722, m=1, p=12.

@ Sensor for position control based on
acceleration and rotation.

@ Application: inertial navigation.

=

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
v
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Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gy

Parametric FE model: M(d)x(t) + D(®, d, a, B)x(t) + T(d)x(t) = Bu(t).
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gy

Parametric FE model:

M(d)x(t) + D(®, d, o, B)x(t) + T(d)x(t) = Bu(t),

wobei
M(d) = M+ dMy,

D(®,d,a,8) = &(D1+ dDy) + aM(d)+ BT(d),
T(d) = Ti+ %Tz + dT3,

with

@ width of bearing: d,

@ angular velocity: @,

@ Rayleigh damping parameters: «, .
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Original. . . and reduced-order model.
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