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Modal Truncation

Basic method:

Assume A is diagonalizable, T~YAT = Dj,, project state-space onto A-invariant
subspace V = span(ti, ..., t;), tx = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V=TG1:r)=[t,....t,], W =T *'1:r,:), W=WWVW),
reduced-order model is

A= W AV =diag{\1,...,\,}, B:=W"B,

(@%

=CV

Also computable by truncation:

~

S | A
THAT =

]’ T_IB:[B]’ CT=[C, G], b=bD.
2 2
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reduced-order model is

A= W AV =diag{\1,...,\,}, B:=W"B,

(@%

=CV

Also computable by truncation:

~

TIAT = A TB= B CT=[C,C D=D
- A ) — B2 ) —[ 5 2]a - °
2

Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace
methods (Lanczos, Arnoldi), Jacobi-Davidson method.
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Modal Truncation

A . R
T‘lATz[ p ] T‘le[B ] CT=[C &), D=nD.
2 2

Error bound:

1
minAeA(Az) |Re()\)| ’

IG = Glle < ICIll| B2l

Proof:
C(sl —A) 1B+ D=CTT (sl — A ITT B+ D
CT(sl — TIAT)'T- 1B+ D

(sl — A)~1

G(s)

n—r @ [ E
(Sl —A ) 2
G(S) CZ(SI"_’ ! ‘2) E2’

= [C Gl ]+D
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Modal Truncation

A . R
T‘lATz[ p ] T‘le[B ] CT=[C &), D=nD.
2 2

Error bound:

1
minAeA(Az) |Re()\)| ’

IG = Glle < IC|ll|Bell

Proof:
G(s) = G(s)+ Go(slhr — A2) !By,
observing that ||G — G|oo = sup,,cp Tmax(C2(jwlh—r — A2)~1B,), and
-1 . 1 1
CQ(]LU/,,_, —A2) By = CGydiag ey B>.
Jw — Ary1 Jw — Ap
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Modal Truncation

Basic method:

Assume A is diagonalizable, T~YAT = Dj,, project state-space onto A-invariant
subspace V = span(ti, ..., t;), tx = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then reduced-order model is

A=W AV =diag{\1,...,\,}, B=w'B, C=cV

Also computable by truncation:

~

T_lAT:[ ., ] T_IB_[B], CT=1[¢,G], D=Db.
2 2

Difficulties:

o Eigenvalues contain only limited system information.

>
|
T o
A

@ Dominance measures are difficult to compute.
([Lrrz '79] use Jordan canoncial form; otherwise merely heuristic criteria,
e.g., [VARGA '95]. Recent improvement: dominant pole algorithm.)

@ Error bound not computable for really large-scale problems.

4
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Modal Truncation

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n = 348, m = p = 1, reduced usingA13 dominant complex
conjugate eigenpairs, error bound yields |G — G| < 1.21-103

Bode plots of transfer functions and error function

Bode Diagram Bode Diagram
—— =348 (ful-order) 2 —G-G,
—~=-r=26 (modal)
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MATLAB® demo.
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Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function

n

G(S) - Z S I—?k)\k

k=1

with residues Ry := (Cxk)(y; B) € CP*™.
As ansatz functions, use right/left eigenvectors to dominant poles, i.e..
(Aj, xj, y;) with largest

[[Rell
IR

The dominant modes have most important influence on the
input-output behavior of the system and are responsible for the
"peaks”’ in the frequency response.
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Dominant Poles
Random SISO Example (B, CT € R")

[— exact model, n = 217 }
10 .
3
=
o
= 5 )
O | | | | | | | | |
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Dominant Poles
Random SISO Example (B, CT € R")

— exact model, n = 217
= 3(\) of dominant poles

1G(w)ll2
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Dominant Poles
Random SISO Example (B, CT € R")

— exact model, n = 217
= 3(\) of dominant poles
- -- k =46 dominant poles

on e k = 46, smallest R()\) + static modes ||

1G(w)ll2
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Dominant Poles
Random SISO Example (B, CT € R")

Algorithms for computing dominant poles and eigenvectors:

@ Subspace Accelerated Dominante Pole Algorithm

(SADPA), hodes
o Rayleigh-Quotient-Iteration (RQI),
o Jacobi-Davidson-Method.
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Balanced Truncation

Basic principle:
o A stable system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C =0,

satisfy: P = Q = diag(o1,...,05) with o1 > 00> ... >0, > 0.
/\(PQ)% ={o1,..., on} are the Hankel singular values (HSVs) of X.
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Balanced Truncation

Basic principle:
o A stable system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,05) with o1 > 00> ... >0, > 0.
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)

_ Aun A B
- (& &l [&] e el0)
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Balanced Truncation

Basic principle:

o A stable system X, realized by (A, B, C, D), is called balanced, if the
Gramians, i.e., solutions P, @ of the Lyapunov equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,05) with o1 > 00> ... >0, > 0.
o A(PQ)z = {o1,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
o Au A By
= ([a a2 [&8]re @1o)

o Truncation ~» (/A4, B, C, LAD) = (A1, B, G, D).

7/7
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Balanced Truncation

The HSVs A (PQ)? = {o1,...,0,} are system invariants: they are
preserved under

T : (A B,C,D)— (TAT Y, TB,CT %, D)
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Balanced Truncation

The HSVs A (PQ)z = {01,...,0,} are system invariants: they are
preserved under

T:(AB,C,D)— (TAT 1, TB,CT,D)
in transformed coordinates, the Gramians satisfy

(TAT N(TPTT) + (TPTT)(TAT ) +(TB)(TB)”
(TAT Y (TTQT )+ (T "QT ' WTAT H)+(cT H(cT™) = 0

Il
()

= (TPT'YT TQT 1) =TPQT},

hence A (PQ) = A((TPTT)(T-TQT1)).
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.
Compute SVD

ROM is (WT AV, WT B, CV, D), where

(NI

W=RTWVY,?, V=S"u,%;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
> T

@ Compute SVD SRT = [ Uy, U] | [ v ] .

| LV

ROM is (WT AV, WT B, CV, D), where

W=RTWVY,?, V=S"u,%;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

T Zi Vi’
@ Compute SVD SR' =[U;, U] |-
22 V2
Q@ ROMis (WTAV, WTB, CV, D), where

W=RTVT?, V=sTus; .
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %, V=STuz; "
Note:

VIw = (5 EU7S)(RTVE, )
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ U, Us] [ 4 ] .
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %, V=STuz; "
Note:

1 _1 _1 _1
Viw = (Z,2U/S)(R"TWiZ, %) = £, 20/ USVT Vi3, 2
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

Zl VT
@ Compute SVD SRT = [ Uy, Uy] { L ] )
Y, V)
© ROM is (WTAV, WTB, CV, D), where
W=RTVT,?,  V=STUT, "

Note:

(NI

a 4 1
VIw = (I, 20/ S)(RTWiZ, 2) = %, 20/ UxVT vz, 2

1
-1 21 I, _
¥, 2[1,, 0] ~|lo|=
2

Nl
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P =SS, @ = R"R.

> T

@ Compute SVD SRT = [ Uy, Uy] ! { V1T ] )
Y v,

Q@ ROMis (WTAV, WTB, CV, D), where
W=RTVis[?, V=5Tux %
Note:

a 1 4 4
(L, 2U) S)(R™ Wiz, ?) = ¥, 20/ usvT vz, ?

_1 > I, _1 _1 _1
T, ?[ I, 0] - [O]zlzzzlzzlzlzzl,
2

<
=

S

[

= VWY is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
v

77
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Balanced Truncation

@ Reduced-order model is stable with HSVs o7, ..., 0,.

Adaptive choice of r via computable error bound:

ly=9l2< (232 o) llullo
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