
Winterterm 2012/2013
Otto-von-Guericke-University Magdeburg
Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods for Systems and Control Theory

Dr. Jens Saak, Dipl.-Math. Martin Köhler
Website: http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

Scientific Computing 1
4th Homework

Handout: 10/24/2012 Return: 11/01/2012

Make sure you follow the basic rule:

“When reading the code in about six months and asking yourself: who wrote this crap?
The answer should not be: YOU!”

Basically that means:

• Try to always use meaningful names for functions, variables, . . .

• Write documentation wherever necessary.

• Use indentation to increase readability of the code.

• Add a short statement describing its purpose and basic behavior to each function.

• . . .

Exercise 1: (5 Points)

We consider an array int *f of n integers. Write a program which reads the array from a file containing
one integer per line. The first entry is the total number of integers to read.
Analyze the array and determine the two indices i, j ∈ {0, n− 1}, i ≤ j such that

Sij :=

j∑
k=i

f[k]

is maximized. Think about an efficient solution.
Example data sets are available: http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_
WS_SC/data/sum_data.tar.gz

Example: Consider the following array of length 10:

Index 0 1 2 3 4 5 6 7 8 9
Value -1 3 4 -2 5 1 -9 4 2 -2

Then the maximum of Sij is S15 = 11 beginning at i = 1 and ending at j = 5.

Exercise 2: (4 Points)

The BLAS library provides the function ddot to compute the scalar product of two n-dimensional vectors.
Download this routine from http://www.netlib.org/blas/ and write a C interface for it. Demon-
strate the usage with two small vectors and verify the result.

http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/
http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/data/sum_data.tar.gz 
http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/data/sum_data.tar.gz 
http://www.netlib.org/blas/


Exercise 3: (5 Points)

Write a function min element which takes an integer array f[] and two indices i and j as input. The
function has to return

argmini≤k<j f[k].

Implement an easy sorting algorithm on top of min element and the swap function from the lecture.

Demonstrate the algorithm the following way:

• Read an example file from Exercise 1.

• Sort the array.

• Write the sorted array to a file.

Exercise 4: (5 Points)

Write the following functions without using library functions from string.h:

a.) A function called str length which takes a string as input and returns its length without the trailing
0-byte. Write a preprocessor macro IS NUL which returns true if a given character is the 0-byte.

b.) A function called str find which takes two strings as inputs and returns true if the second string
is found in the first one or false otherwise.

Demonstrate both functions in a small main program.

Exercise 5: (4 Points)

Makefiles support the developer to build large projects easily. Write a separate Makefile for each of
the previous Exercises on this sheet.

Exercise 6: (2 Points)

You will get a C program from the previous exercise via e-mail. Take a look at it and comment it. Think
about:

• Is the code readable or well formed?

• Is the purpose obvious?

• Are unclear statements documented?

• Are function and variable names meaningful?

• Are there parts which can be implemented better or more efficient?

• . . .

Overall Points: 25


