
Winterterm 2012/2013
Otto-von-Guericke-University Magdeburg
Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods for Systems and Control Theory

Dr. Jens Saak, Dipl.-Math. Martin Köhler
Website: http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

Scientific Computing 1
10th Homework

Handout: 12/06/2012 Return: 12/13/2012

Exercise 1: (5 Points)

Prove that
κ2(A) = 1

holds for all unitary matrices A ∈ Cn×n. In which way does this influence the design of numerical algo-
rithms?

Exercise 2: (8 Points)

Consider the linear system Ax = b with

A =

 2 −1 1
−1 10−10 10−10

1 10−10 10−10

 and b =

 2(1 + 10−10)
−10−10

10−10

 .
a.) Compute the solution x of the linear system.

b.) Show that κ∞(A) = 2 · 1010 holds.

c.) Consider a disturbed linear system (A+ ∆A)x̂ = b with |∆A| ≤ 10−8|A|. Prove that the solution x̂
of the disturbed system fulfills

|x− x̂| ≤ 10−7 |x|.

d.) Let D = diag(10−5, 105, 105). Check that κ∞(DAD) ≤ 5 is true.

Exercise 3: (12 Points)

The solution of triangular linear systems Lx = b is a key operation for many high level linear algebra
operations. The matrix L ∈ Rn×n is stored in the my matrix st structure, which was presented in
the lecture. A skeleton code which provides a read, a print, a random matrix function and a Makefile is
available from the lecture website. There also exist some example data sets.
Implement the following functions inside the main.c file:

a.) The function

void L solvev(struct my matrix st ∗L, double ∗b)

which takes a lower triangular matrix L ∈ Rn×n and a right hand side b ∈ Rn as inputs and overwrites
b with the solution of Lx = b. Implement the naive forward elimination scheme.

http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

b.) The function

void L solvev trsv(struct my matrix st ∗L, double ∗b)

which overwrites b with the solution of Lx = b. Use the BLAS level 2 routine DTRSV instead of
implementing the forward elimination scheme.

c.) The function

void L solvem(struct my matrix st ∗L, struct my matrix st ∗B)

which solves LX = B for multiple right hand sides, i.e. B ∈ Rn×p, using the triangular solve from a.

d.) The function

void L solvem trsv(struct my matrix st ∗L, struct my matrix st ∗B)

which solves LX = B for multiple right hand sides, i.e. B ∈ Rn×p, using the triangular solve from b.

e.) The function

void L solvem trsm(struct my matrix st ∗L, struct my matrix st ∗B)

which solves LX = B for multiple right hand sides, i.e. B ∈ Rn×p, using the BLAS level 3 triangular
solve DTRSM.

Generate a random matrix B ∈ Rn×100 and measure the time for one solve LX = B where L ∈ Rn×n is
one of the demo matrices. What can you recognize?
Hints:

• In order to get fast BLAS level 3 subroutines install the libopenblas-dev package inside the
virtual machine using:

sudo apt-get install libopenblas-dev

The neccessary password is “user”.

• The function headers for the BLAS subroutines DTRSV and DTRSM are prepared in the skeleton
code.

• The runtime of a piece of code can be measured using the wtime function from the skeleton code:

double tic, toc;
tic = wtime();
... Your Code...
toc = wtime();
printf("The code took %lg seconds\n", toc-tic);

• The skelton code provides a Makefile which does all the compilation steps.

Overall Points: 25

