Otto-von-Guericke-University Magdeburg Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods for Systems and Control Theory

Dr. Jens Saak, Dipl.-Math. Martin Köhler Website: http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

Scientific Computing 1 10th Homework

Handout: 12/06/2012

Exercise 1:

Prove that

 $\kappa_2(A) = 1$

holds for all unitary matrices $A \in \mathbb{C}^{n \times n}$. In which way does this influence the design of numerical algorithms?

Exercise 2:

Consider the linear system Ax = b with

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 10^{-10} & 10^{-10} \\ 1 & 10^{-10} & 10^{-10} \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 2(1+10^{-10}) \\ -10^{-10} \\ 10^{-10} \end{bmatrix}.$$

- a.) Compute the solution x of the linear system.
- b.) Show that $\kappa_{\infty}(A) = 2 \cdot 10^{10}$ holds.
- c.) Consider a disturbed linear system $(A + \Delta A)\hat{x} = b$ with $|\Delta A| \le 10^{-8}|A|$. Prove that the solution \hat{x} of the disturbed system fulfills

$$|x - \hat{x}| \le 10^{-7} |x|.$$

d.) Let $D = \text{diag}(10^{-5}, 10^5, 10^5)$. Check that $\kappa_{\infty}(DAD) \le 5$ is true.

Exercise 3:

The solution of triangular linear systems Lx = b is a key operation for many high level linear algebra operations. The matrix $L \in \mathbb{R}^{n \times n}$ is stored in the my_matrix_st structure, which was presented in the lecture. A skeleton code which provides a read, a print, a random matrix function and a Makefile is available from the lecture website. There also exist some example data sets.

Implement the following functions inside the main.c file:

a.) The function

which takes a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ and a right hand side $b \in \mathbb{R}^n$ as inputs and overwrites b with the solution of Lx = b. Implement the naive forward elimination scheme.

(8 Points)

(5 Points)

(12 Points)

Return: 12/13/2012

b.) The function

void L_solvev_trsv(struct my_matrix_st *L, double *b)

which overwrites b with the solution of Lx = b. Use the BLAS level 2 routine DTRSV instead of implementing the forward elimination scheme.

c.) The function

```
void L_solvem(struct my_matrix_st *L, struct my_matrix_st *B)
```

which solves LX = B for multiple right hand sides, i.e. $B \in \mathbb{R}^{n \times p}$, using the triangular solve from **a**.

d.) The function

```
void L_solvem_trsv(struct my_matrix_st *L, struct my_matrix_st *B)
```

which solves LX = B for multiple right hand sides, i.e. $B \in \mathbb{R}^{n \times p}$, using the triangular solve from **b**.

e.) The function

```
void L_solvem_trsm(struct my_matrix_st *L, struct my_matrix_st *B)
```

which solves LX = B for multiple right hand sides, i.e. $B \in \mathbb{R}^{n \times p}$, using the BLAS level 3 triangular solve DTRSM.

Generate a random matrix $B \in \mathbb{R}^{n \times 100}$ and measure the time for one solve LX = B where $L \in \mathbb{R}^{n \times n}$ is one of the demo matrices. What can you recognize? **Hints:**

• In order to get fast BLAS level 3 subroutines install the libopenblas-dev package inside the virtual machine using:

sudo apt-get install libopenblas-dev

The neccessary password is "user".

- The function headers for the BLAS subroutines DTRSV and DTRSM are prepared in the skeleton code.
- The runtime of a piece of code can be measured using the wtime function from the skeleton code:

```
double tic, toc;
tic = wtime();
... Your Code...
toc = wtime();
printf("The code took %lg seconds\n", toc-tic);
```

• The skelton code provides a Makefile which does all the compilation steps.

Overall Points: 25