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Exercise 1: (3 Points)

Let V,W ∈ Rn×k, k < n, be two matrices of rank k. Show that

A = VW T ∈ Rn×n

has exactly rank k.

Exercise 2: (10 Points)

The outer product Gaussian elimination defines one possible way to compute an LU decomposition of a
matrix.

a.) Implement this algorithm as a C function with the following header:

void LU(struct my matrix st A);

The input A should be overwritten by its LU decomposition as shown in the lecture. Use the
scale col and the r1 update functions from Homework 11/Exercise 3 to perform the neces-
sary operations.

b.) Write a solver function that takes the LU decomposed matrix from a and a right hand side b ∈ Rn

as inputs and overwrites b with the solution of LUx = b. Use the BLAS function DTRSV for this
purpose. The function header should be

void LU solve(struct my matrix st LU, double *b);

c.) Solve the following linear system to check your code:
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What can you recognize? Is the solution sufficiently accurate when you think about the possibilities
of double precision floating point numbers?

http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/


Hint: A skeleton code with a reference implementation of scale col and r1 update is available on the
web page.

Exercise 3: (8 Points)

The accuracy of the solution of a linear system can be improved using iterative refinement. Implement this
procedure as a C function

int refine(struct my matrix st A, double *b, int maxiter, double tol);

where the right hand side b is overwritten with the solution. The maxiter parameter defines the maximum
number of iterations. The tol argument stops the iteration when

||b−Axi||2 < tol.

The return value of the function is the number of actually performed iteration steps.
Solve the linear system from Exercise 2 with this function and compare the results.

Hints:

• Use DGESV from LAPACK to solve the linear system.

• DGESV overwrites its input matrix.

• The 2-norm of a vector is computed by the BLAS function DNRM2

Exercise 4: (4 Points)

The Jacobi method is a classical splitting technique to solve linear systems iteratively. It splits a matrix
A ∈ Rn×n into the diagonal D = diag{a11, a22, . . . , ann} and off-diagonal elements and repeatedly solves
the equation

xi+1 = MJxi +D−1b

where the iteration matrix is
MJ = D−1(D −A).

Show that the Jacobi method converges to the solution x = A−1b if the matrix A is strictly diagonal-
dominant, i.e.,

n∑
j=1, j 6=i

|aij | < |aii| , ∀i = 1, . . . , n.

Hint: Use Theorem 5.24.

Overall Points: 25


