
Winterterm 2012/2013
Otto-von-Guericke-University Magdeburg
Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods for Systems and Control Theory

Dr. Jens Saak, Dipl.-Math. Martin Köhler
Website: http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

Scientific Computing 1
13th Homework

Handout: 01/10/2012 Return: 01/17/2013

Exercise 1: (12 Points)

One efficient storage scheme for sparse matrices is the Compressed Sparse Row (CSR) format introduced
in the lecture. In this scheme the matrix is stored using two integer arrays, rowptr and colptr, and a
values array containing the entry values. This storage scheme can be realized using a C structure:

struct sparse_matrix_st {
int cols;
int rows;
int nnz;
int *rowptr;
int *colptr;
double *values;

};

The skeleton implementation available from the lecture homepage contains a function to read the matrix
from a file into CSR format called sparse matrix read . Additionally the sparse matrix print
function prints a sparse matrix to the screen.

Based on the Compressed Row Storage implement the following functions:

a.) The sparse matrix vector product
y = Ax

as a C function:

void sparse mvp(struct sparse matrix st *A, double *x, double *y);

b.) The Conjugate Gradient Algorithm to solve Ax = b as a C function

int cg(struct sparse matrix st *A, double *x, double * b, int maxit,
double tol);

The return value should be used to indicate if the algorithm has converged or not. Use the matrix
vector product implementation from a.) and BLAS for all other linear algebra operations. The pa-
rameter maxit gives the maximum number of iterations allowed and the parameter tol stops the
iteration if

||ri||2 < tol · ||b||2
is fulfilled. The parameter x is used as x0 on input and contains the solution x∗ on output.

c.) The Preconditioned Conjugate Gradient Algorithm with diagonal preconditioning as a C function:

int pcg(struct sparse matrix st *A, double *x, double * b, int maxit,
double tol);

http://www.mpi-magdeburg.mpg.de/mpcsc/lehre/2012_WS_SC/

The parameters have the same meanings as in b.). Think about an efficient implementation of the
preconditioner.

d.) Demonstrate both functions in a main program. Use x0 =


0
...

0

 and b = A ·


1
...

1

 to check if the

algorithm works properly.

A skeleton code with some symmetric positive definite matrices is available on the website.

Exercise 2: (4 Points)

Consider a sparse matrix A ∈ R1 000 000×1 000 000 with 4 996 000 non zeros elements stored in double pre-
cision. We compute the sparse matrix vector y = Ax on a CPU with a peak double precision performance
of 42 GFlop/s (Intel® Core-2 Quad @ 2.66 GHz).

a.) We measured that one matrix-vector product takes 0.0143s. Compute the flops per second for the
computation of one matrix vector product with this matrix. Calculate the efficiency of the matrix
vector product (the ratio between the achieved performance and the peak performance).

b.) Compute the memory transfer rate for the matrix from the flop rate. Does the result explain the
efficiency from a.)?

Exercise 3: (2 Points)

Consider the following matrix vector product

y =
(
ATZZT + ZZTA− ZZTBBTZZT + CTC

)︸ ︷︷ ︸
A

x

with A ∈ Rn×n, B ∈ Rn×q, C ∈ Rr×n and Z ∈ Rn×p. Assume that p� n, q � n and r � n holds.

a.) How many floating point operations are necessary to compute y naively?

b.) Rearrange the evaluation such that it takes less floating point operations. Hint: It is necessary to
introduce some extra variables.

Exercise 4: (2 Points)

Consider the full-rank matrices A ∈ Rn×n, Vm ∈ Rn×m and Wm ∈ Rn×m.

a.) Prove that
P := I −AVm(WH

mAVm)−1WH
m

defines a projection.

b.) Show that
PAVm = 0

holds.

Overall Points: 20

