
Why use accelerators? Memory

Chapter 4

GPU Computing and
Accelerators: Part I

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 171/337

Why use accelerators? Memory

Why use accelerators?

(a) Floating point operations (b) Memory bandwidth

Figure: Throughput comparison of Multicore CPUs and CUDA enabled GPUs
(taken from CUDA C Programming Guide)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 172/337

Why use accelerators? Memory

Why use accelerators?

Architecture GFLOPS GFLOPS/Watt Utilization

Core i7-960 96 1.14 95%

Nvidia®GTX280 410 2.6 66%
Cell 200 5.0 88%

Nvidia®GTX480 940 5.4 70%
TI C66x DSP 74 7.4 57%

Table: Power efficieny comparison of Multicore CPUs and accelerator chips
(taken from Conference Poster by F. Igual and M. Ali)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 173/337

Why use accelerators? Memory

Memory Hierarchy with Accelerators
Common Features

system bus

Main Memory

P1

cache

. . . Pn

cache

Accelerator Device

Interconnect

I/O

Figure: Schematic of a general parallel system

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 174/337

Why use accelerators? Memory

Memory Hierarchy with Accelerators
Graphics Processing Units (GPUs)

Memory Optimizations

www.nvidia.com
CUDA C Best Practices Guide DG-05603-001_v5.0 | 23

bit of metadata (or as hard-coded information in the program) for each pointer.
Using UVA, on the other hand, the physical memory space to which a pointer
points can be determined simply by inspecting the value of the pointer using
cudaPointerGetAttributes().

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical
host and device pointers, so it is not necessary to call cudaHostGetDevicePointer()
for such allocations. Host memory allocations pinned after-the-fact via
cudaHostRegister(), however, will continue to have different device pointers than
their host pointers, so cudaHostGetDevicePointer() remains necessary in that case.

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data
directly across the PCIe bus for supported GPUs in supported configurations, bypassing
host memory.

See the CUDA C Programming Guide for further explanations and software requirements
for UVA and P2P.

6.2 Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include global,
local, shared, texture, and registers, as shown in Figure 2 Memory spaces on a CUDA
device.

Figure 2 Memory spaces on a CUDA deviceFigure: Memory configuration of a CUDA Device (taken from CUDA C
Programming Guide)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 175/337

Why use accelerators? Memory

Memory Hierarchy with Accelerators
Field Programmable Gate Arrays (FPGAs)

Figure: Comparison of CPUs and FPGA execution models.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 176/337

