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(a) Floating point operations (b) Memory bandwidth

Figure: Throughput comparison of Multicore CPUs and CUDA enabled GPUs
(taken from CUDA C Programming Guide)
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Architecture GFLOPS GFLOPS/Watt Utilization

Core i7-960 96 1.14 95%

Nvidia®GTX280 410 2.6 66%
Cell 200 5.0 88%

Nvidia®GTX480 940 5.4 70%
TI C66x DSP 74 7.4 57%

Table: Power efficieny comparison of Multicore CPUs and accelerator chips
(taken from Conference Poster by F. Igual and M. Ali)
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Memory Hierarchy with Accelerators
Common Features
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Figure: Schematic of a general parallel system
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Memory Hierarchy with Accelerators
Graphics Processing Units (GPUs)

Memory Optimizations
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bit of metadata (or as hard-coded information in the program) for each pointer.
Using UVA, on the other hand, the physical memory space to which a pointer
points can be determined simply by inspecting the value of the pointer using
cudaPointerGetAttributes().

Under UVA, pinned host memory allocated with cudaHostAlloc() will have identical
host and device pointers, so it is not necessary to call cudaHostGetDevicePointer()
for such allocations. Host memory allocations pinned after-the-fact via
cudaHostRegister(), however, will continue to have different device pointers than
their host pointers, so cudaHostGetDevicePointer() remains necessary in that case.

UVA is also a necessary precondition for enabling peer-to-peer (P2P) transfer of data
directly across the PCIe bus for supported GPUs in supported configurations, bypassing
host memory.

See the CUDA C Programming Guide for further explanations and software requirements
for UVA and P2P.

6.2  Device Memory Spaces
CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include global,
local, shared, texture, and registers, as shown in Figure 2  Memory spaces on a CUDA
device.

Figure 2  Memory spaces on a CUDA deviceFigure: Memory configuration of a CUDA Device (taken from CUDA C
Programming Guide)
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Memory Hierarchy with Accelerators
Field Programmable Gate Arrays (FPGAs)

Figure: Comparison of CPUs and FPGA execution models.
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