Why use accelerators?

GPU Computing and Accelerators: Part I

Why use accelerators?

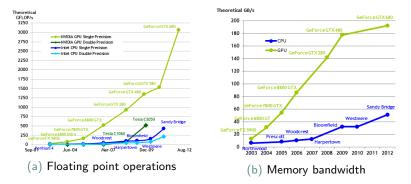


Figure: Throughput comparison of Multicore CPUs and CUDA enabled GPUs (taken from CUDA C Programming Guide)

Why use accelerators?

Architecture	GFLOPS	GFLOPS/Watt	Utilization
Core i7-960	96	1.14	95%
Nvidia [®] GTX280	410	2.6	66%
Cell	200	5.0	88%
Nvidia [®] GTX480	940	5.4	70%
TI C66x DSP	74	7.4	57%

Table: Power efficient comparison of Multicore CPUs and accelerator chips (taken from Conference Poster by F. Igual and M. Ali)

Memory Hierarchy with Accelerators

Common Features

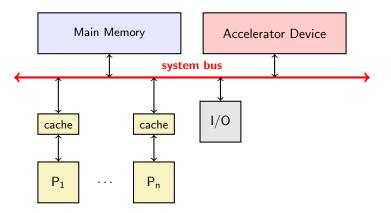


Figure: Schematic of a general parallel system

Memory Hierarchy with Accelerators Graphics Processing Units (GPUs)

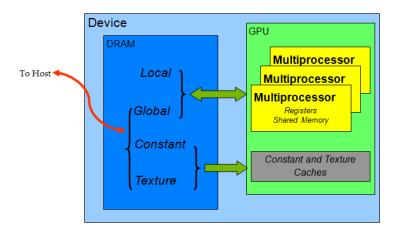


Figure: Memory configuration of a CUDA Device (taken from CUDA C Programming Guide)

Memory Hierarchy with Accelerators

Field Programmable Gate Arrays (FPGAs)

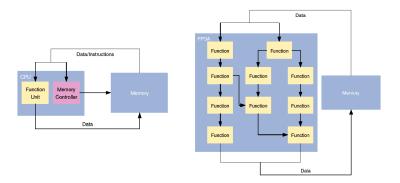


Figure: Comparison of CPUs and FPGA execution models.

