
Chapter 4

GPU Computing and
Accelerators: Part III

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 195/337

Compute Unified Device Architecture (CUDA)
Compute Capabilities

Feature Support Compute Capability

(Features differently supported) 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Atomic functions on 32-bit integer values in global memory No Yes

atomicExch() on 32-bit floating point values in global memory No Yes

Atomic functions on 32-bit integer values in shared memory No Yes

atomicExch() on 32-bit floating point values in shared memory No Yes

Atomic functions on 64-bit integer values in global memory No Yes

Warp vote functions No Yes

Double-precision floating-point numbers No Yes

Atomic functions operating on 64-bit integer values in shared memory No Yes

Atomic addition operating on 32-bit floating point values in global and
shared memory

No Yes

ballot() (Warp Vote Functions) No Yes

threadfence system() No Yes

syncthreads count() No Yes

syncthreads and() No Yes

syncthreads or() No Yes

Surface functions No Yes

3D grid of thread blocks No Yes

Funnel shift (see reference manual) No Yes

Table: Compute Capabilities: Features by Compute Capability Version (from
CUDA C Programming Guide version 5.0)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 196/337

Compute Unified Device Architecture (CUDA)
Compute Capabilities

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum dimensionality of grid of thread blocks 2 3

Maximum x-dimension of a grid of thread blocks 65535 = 216 − 1 231 − 1

Maximum y- or z-dimension of a grid of thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32

Maximum number of resident blocks per multiprocessor 8 16

Maximum number of resident warps per multiprocessor 24 32 48 64

Maximum number of resident threads per multiprocessor 768 1024 1536 2048

Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 64 K

Maximum number of 32-bit registers per thread 128 63 255

Maximum amount of shared memory per multiprocessor 16 KB 48 KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Cache working set per multiprocessor for constant memory 8 KB

Cache working set per multiprocessor for texture memory Device dependent, between 6 KB and 8 KB

Maximum number of instructions per kernel 2 million 512 million

Table: Compute Capabilities: Selected Technical Specifications (from CUDA C
Programming Guide version 5.0)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 197/337

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Compute capabilities 1.3

We have learned from Table 3 that double precision floating point
numbers have been added in Version 1.3 of the CUDA compute
capabilities. It additionally provides a fused multiply add operation
merging multiplication and addition to be faster and more accurate, but
non IEEE 754 compliant.

Compute Capabilities 2.0 and above

Compute capabilities 2.0 introduces IEEE 754 compliance for most parts
of the standard as the default. The compiler switches
-ftz=false|true, -prec-div=true|false, -prec-sqrt=
true|false influence IEEE compliance of the computation. If the
second option is used everywhere one switches to fast mode. The first
options are the default though.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 198/337

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

IEEE 754 Rounding Modes

IEEE 754 defines four rounding modes

round to nearest,

round towards zero,

round towards +∞,

round towards −∞,

all of which are supported by CUDA. However in contrast to x86 CPUs
where they can be dynamically switched, CUDA uses them statically.

Compiler intrinsics can be used to change the mode for individual
operations, though.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 199/337

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially
all NaNs are silent)

no status flags indicating the exceptions exist

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 200/337

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially
all NaNs are silent)

no status flags indicating the exceptions exist

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 200/337

Compute Unified Device Architecture (CUDA)
CUDA and IEEE 754 Floating Point Computations

Main Differences to x86 CPUs

no dynamical control of rounding modes

floating point exceptions not handled (especially
all NaNs are silent)

no status flags indicating the exceptions exist

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 200/337

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Local versus Remote memory

Viewing from the host perspective, the device memory is remote memory
that can only be accessed via the comparably slow system bus.

Looking at things from the device perspective the same hold for the hosts
memory. Going even further, already the device memory may be
considered slow from the view of the streaming multiprocessors. The
local memory of the multiprocessors should be used to implement a user
controlled cache.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 201/337

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as
possible

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 202/337

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as
possible

If they are necessary, try to overlap communication and
computations

(a) bad pattern causing waiting
times due to communication.

GPU task

transfer to host

(b) good pattern.

Figure: Execution patterns for CUDA programs

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 202/337

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Consequences for CUDA Programs

Keep data movements between device and host as little as
possible

If they are necessary, try to overlap communication and
computations

Make use of multiprocessors local shared memory to cache
buffer kernel operations and avoid frequent access to
global device memory

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 202/337

Compute Unified Device Architecture (CUDA)
Data Communication Issues

Example

../Material/CUDAbyExample/chapter05/dot.cu
Note:

automatic scaling of blocksPerGrid

usage of local shared buffer cache

synchronization in reduction block

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 203/337

../Material/CUDAbyExample/chapter05/dot.cu

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface

We ave seen some elements of the CUDA API in the examples before:

qualifiers: global , device , host , shared ,
constant

launch size specifiers <<<grid, block size>>>

type dim3

predefined variables: threadIdx.x, blockIdx.x,
blockDim.x, gridDim.x

memory functions: cudaMalloc(), cudaFree(),
cudaMemcpy()

thread synchronization mechanism: syncthreads();

Some have been introduced earlier. For the others and a few more we
will go into some more detail now.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 204/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the
device and associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the
source and destination memory locations. The direction of operation
is specified by kind and can be either
cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to
specify the number of data items to be copied.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 205/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the
device and associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the
source and destination memory locations. The direction of operation
is specified by kind and can be either
cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to
specify the number of data items to be copied.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 205/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Important Memory Operations

cudaError_t cudaFree (void* devPtr)

Frees the memory on the device that is refered to by devPtr.

cudaError_t cudaMalloc (void** devPtr, size_t size)

Allocate an amount corresponding to size of memory on the
device and associate it to devPtr.

cudaError_t cudaMemcpy (void* dst, const void* src, size_t count,
cudaMemcpyKind kind)

Copy data between host and device. src and dst represent the
source and destination memory locations. The direction of operation
is specified by kind and can be either
cudaMemcpyHostToDevice, or
cudaMemcpyDeviceToHost. The count argument is used to
specify the number of data items to be copied.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 205/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDeviceCount (int* count)

Returns the number of compute-capable devices available in the
system.

cudaError_t cudaChooseDevice (int* device, const cudaDeviceProp*
prop)

Select compute-device which best matches criteria specified in
prop. These can, e.g., be int major, int minor version
numbers of the compute capabilities, or whether the chip is int
integrated in the chipset or a plugged in device, but also simply
the char name[256] of the device, and many more.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 206/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDeviceCount (int* count)

Returns the number of compute-capable devices available in the
system.

cudaError_t cudaChooseDevice (int* device, const cudaDeviceProp*
prop)

Select compute-device which best matches criteria specified in
prop. These can, e.g., be int major, int minor version
numbers of the compute capabilities, or whether the chip is int
integrated in the chipset or a plugged in device, but also simply
the char name[256] of the device, and many more.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 206/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently being used.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was
set, the host thread will block until the device has finished its work.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 207/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently being used.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was
set, the host thread will block until the device has finished its work.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 207/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Device Management Basics

cudaError_t cudaGetDevice (int* device)

Returns which device is currently being used.

cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions

cudaError_t cudaDeviceSynchronize (void)

Wait for compute device to finish. If for the current device the
synchronization flag cudaDeviceScheduleBlockingSync was
set, the host thread will block until the device has finished its work.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 207/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t
error)

Returns the message string from the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime
calls in the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but doe not reset the error code.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 208/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t
error)

Returns the message string from the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime
calls in the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but doe not reset the error code.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 208/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Error Handling

const __cudart_builtin__ char* cudaGetErrorString (cudaError_t
error)

Returns the message string from the error code given in error.

cudaError_t cudaGetLastError (void)

Returns the last error that has been produced by any of the runtime
calls in the same host thread and resets it to cudaSuccess.

cudaError_t cudaPeekAtLastError (void)

As above but doe not reset the error code.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 208/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t
stream = 0)

Record event. The record may take some time so before evaluation
it is recommended to use cudaEventSynchronize() to make
sure it has terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with
a resolution of around 0.5 microseconds).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 209/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t
stream = 0)

Record event. The record may take some time so before evaluation
it is recommended to use cudaEventSynchronize() to make
sure it has terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with
a resolution of around 0.5 microseconds).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 209/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t
stream = 0)

Record event. The record may take some time so before evaluation
it is recommended to use cudaEventSynchronize() to make
sure it has terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with
a resolution of around 0.5 microseconds).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 209/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Events and Performance Measures

cudaError_t cudaEventCreate (cudaEvent_t* event)

Creates, i.e., initializes the event object event.

cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t
stream = 0)

Record event. The record may take some time so before evaluation
it is recommended to use cudaEventSynchronize() to make
sure it has terminated.

cudaError_t cudaEventSynchronize (cudaEvent_t event)

Wait until event has completed operations.

cudaError_t cudaEventElapsedTime (float* ms, cudaEvent_t start,
cudaEvent_t end)

Computes the elapsed time between two events (in milliseconds with
a resolution of around 0.5 microseconds).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 209/337

Compute Unified Device Architecture (CUDA)
The CUDA Application Programmers Interface: Events and Performance Measures

Example

A minimal performance measurement configuration:

cudaEvent_t start, stop;
cudaEventCreate(start);
cudaEventCreate(stop);
cudaEventRecord(start, 0);

// complete some tasks

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

float etime;
cudaEventElapsedTime(&etime, start, stop);

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 210/337

