
Chapter 4

GPU Computing and
Accelerators: Part IV

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 211/337



Compute Unified Device Architecture (CUDA)
Streams

Definition (Stream)

Streams are a mechanism that introduces another level of parallelism into
the CUDA framework. While the basic setup, we have seen until here, is
SIMD or more precisely SIMT, using streams one can have the GPU do
different things at the same time. Streams are not as flexible and general
purpose as tasks on the host CPU, though.

The basic power of streams is to have memory transfers and
computational operations overlap in an asynchronous way. Note, however
that not all CUDA enabled devices support overlapping these operations.
On top of that not all CUDA enabled devices that do support the
overlapping execution do so in the same way.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 212/337



Compute Unified Device Architecture (CUDA)
Page-Locked Memory on the Host

Asynchronous data transfers in CUDA are not only performed without
synchronization to the actual computation, they are also intended to
interact with the computation as little as possible. Especially they should
not interrupt the CPU from performing useful work in the program. They
are therefore set up to use direct memory access (DMA) circumventing
CPU interaction.

However, in order to do this, we need to use a special portion of host
memory, that is guaranteed to stay in place during the operation. The
default portion of host memory that we allocate using malloc() is
paged memory. It can be anywhere in the virtual memory of the host and
is allowed to move around (e.g., swapped to disk when more space is
required).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 213/337



Compute Unified Device Architecture (CUDA)
Page-Locked Memory on the Host

Definition (page-locked memory)

Page-locked memory is a portion of memory that is guaranteed to keep
its position in the virtual memory. It is not available for any kind of
paging operations, such as swapping. Therefore, it is sometimes also
called pinned memory.

Advantages of pinned memory:

can be used for DMA safely

transfer speeds can be up to 2× faster than to/from pageable
memory

Disadvantages:

memory fragmentation increases and thus the usability deteriorates.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 214/337



Compute Unified Device Architecture (CUDA)
Streams and Compute Capabilities

Over the years Nvidia® has changed the way things are implemented.
This is not only regarding the API in the CUDA toolkit, but also the
underlying device hardware. The very first CUDA enabled devices could
not overlap transfers and executions at all. Then some devices used
separate engines for copy and kernel executions. Modern hardware usually
has even two engines for performing transfers in direction to the host and
to the device separately. Basically we can classify the devices as follows:

Comp. Capab. Properties

1.0 No overlap
1.1- 1 copy engine and 1 kernel execution engine
2.x- 1 kernel execution engine, 1 copy to host engine and

1 copy to device engine
3.5- eliminates the differences in asynchronous execution

Table: classification of CUDA enabled devices with respect to the ability of
overlapping memory transfers and computations.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 215/337



Compute Unified Device Architecture (CUDA)
Streams and Compute Capabilities

Hwo can i know what my device can do?

The cudaDeviceProp structure can be used to find out whether a
device supports overlapped operation and how many execution engines
are available. The important members are

int deviceOverlap indicating the availability of overlapped
operations

int asyncEngineCount storing the number of asynchronous
execution engines available.

The important information, which type of asynchronous execution model
is implemented in the hardware can thus be fetched with the
cudaGetDeviceProperties() function.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 216/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example

We are following 5 What we want to do is

copy data to the device

perform some task (kernel) on it

get the result back to the host

Example

The the critical portion of the code would look like

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a)
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

according to what we have learned until now. This is regarding the
default execution stream.

5https://developer.nvidia.com/content/
how-overlap-data-transfers-cuda-cc

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 217/337

https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc
https://developer.nvidia.com/content/how-overlap-data-transfers-cuda-cc


Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Non-Default Streams

Example (Creation and Destruction of Streams)

Consider we have the two variables

cudaStream_t stream1;
cudaError_t result;

Then we can create a new stream using

result = cudaStreamCreate(&stream1)

and later get rid of it via

result = cudaStreamDestroy(stream1)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 218/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Non-Default Streams

Example (Memory transfers)

Once we have acquired a new stream we have to tell the asynchronous
copy routines to use it. The basic command cudaMemcpyAsync()
takes the same arguments as cudaMemcpy. Only, it has an additional
argument specifying the stream to use:

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, stream1)

Example (Kernel Execution)

We need to use the extended launch size specification here:

<<< block distr., thread distr., dynamic memory per block,
associated stream >>>

The third argument can be used to allocate additional dynamic shared
memory per block. We will use 0 here.

kernel<<<1,N,0,stream1>>>(d_a)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 219/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

The influence of the number of engines (especially for copying data) is
best displayed in a simple example.

Consider we have a group of streams cooperating on kernel(). Think
of a situation where splitting the problem data into chunks is necessary
to fit the data into the device memory. We basically have two ways to
implement the cooperation,

1 loop over the entire copy-work-copy block
2 loop over the work and copies separately

Note that the asynchronous copy acts different on the control flow than
the cudaMemcpy(). Where in the basic default stream using
cudaMemcpy() we can rely on the fact that as soon as the command
returns, all data has been transferred, in the case of
cudaMemcpyAsync() does not even guarantee that the copy
operation has started at all. It will only have scheduled the operation in a
first in first out (FIFO) list of pending operation on the corresponding
asynchronous execution engine.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 220/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Example (Asynchronous Execution Version 1)

Looping over the entire block of copy-work-copy operations is described
by the following code fragment

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, stream[i]);
kernel<<>>(d_a, offset);
cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, stream[i]);

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 221/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Example (Asynchronous Execution Version 2)

Looping over the single tasks in contrast looks like

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &a[offset],

streamBytes, cudaMemcpyHostToDevice, stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&a[offset], &d_a[offset],

streamBytes, cudaMemcpyDeviceToHost, stream[i]);
}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 222/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Figure: Execution time line on a device with a single copy engine.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 223/337



Compute Unified Device Architecture (CUDA)
An Introductory Asynchronous Transfer Example: Asynchronous Execution Engines

Figure: Execution time line on a device with separate copy engines for device to
host (D2H) and host to device (H2D) operations.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 224/337



Compute Unified Device Architecture (CUDA)

Interoperability with Graphics

Using the same GPU for computations and graphical display of results is
possible. See, e.g. CUDA by Example (Chapter 8), or CUDA C
Programming Guide.

Usage of Multiple GPUs

Usage of multiple GPUs in a single program requires the concepts of
zero-copy host memory, and portable pinned memory. An introduction
can be found in CUDA by Example (Chapter 11).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 225/337



Compute Unified Device Architecture (CUDA)

Interoperability with Graphics

Using the same GPU for computations and graphical display of results is
possible. See, e.g. CUDA by Example (Chapter 8), or CUDA C
Programming Guide.

Usage of Multiple GPUs

Usage of multiple GPUs in a single program requires the concepts of
zero-copy host memory, and portable pinned memory. An introduction
can be found in CUDA by Example (Chapter 11).

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 225/337


