
OpenCL Linear Systems Software

Chapter 4

GPU Computing and
Accelerators: Part V

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 226/337

OpenCL Linear Systems Software

Open Computing Language (OpenCL)

Main Message

The abstraction for the programming and hardware models are very
similar to the CUDA concepts. Mainly OpenCL delivers slightly more
flexible implementations due to vendor independence and uses slightly
different vocabulary for the single ingredients of the concept.

CUDA OpenCL

thread (Work) item
block (Work) group
streaming multiprocessor compute unit
(CUDA) processor processing unit

Table: A short CUDA to OpenCL dictionary

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 227/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Algorithm 6: Gaussian elimination – Block outer product formulation

Input: A ∈ Rn×n allowing LU decomposition, r prescribed block size
Output: A = LU with L,U stored in A

1 k = 1;
2 while k ≤ n do
3 ` = min(n, k + r − 1);

4 Compute A(k : `, k : `) = L̃Ũ via Algorithm 7;

5 Solve L̃Z = A(k : `, `+ 1 : n) and store Z in A;

6 Solve W Ũ = A(`+ 1 : n, k : `) and store W in A;

7 Perform the rank-r update:
A(`+ 1 : n, `+ 1 : n) = A(`+ 1 : n, `+ 1 : n)−WZ ;

8 k = `+ 1;

The block size r can be further exploited in the computation of W and Z and
the rank-r update. It is used to optimize the data portions for the cache.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 228/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

A

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

A11

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

A(1 : `, ` + 1 : n)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Z

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Z

A(` + 1 : n, 1 : `)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Z

W

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Z

W A(` + 1 : n, ` + 1 : n)−WZ

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

A22

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

1

3

5

2

4

2 4

3

3

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 229/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

The central question for the hybrid CPU/GPU version of the algorithm
now is where to execute the single steps of the algorithm compared to
the DAG scheduled version.

Requirements

Keep data transfers between host and device limited

optimize usage of both host and device features

assume that the entire matrix fits into the device memory.

The assumption on the matrix size may be loosened but will then lead to
a completely different algorithm.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 230/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

1

3

5

2

4

2 4

3

3

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 231/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

CPU

CPU

CPU

GPU

GPU

GPU GPU

GPU

GPU

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 231/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
The block outer product LU decomposition revisited

In each outer iteration step perform the leading ` blocks LU
decomposition

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 232/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
Iterative Linear System Solvers

Algorithm 6: Conjugate Gradient Method

Input: A ∈ Rn×n, b ∈ Rn, x0 ∈ Rn

Output: x = A−1b
1 p0 = r0 = b − Ax0, α0 = ||r0||22;
2 for m = 0, . . . , n − 1 do
3 if αm 6= 0 then
4 vm = Apm;
5 λm = αm

(vm,pm)
;

6 xm+1 = xm + λmpm;
7 rm+1 = rm − λmvm;

8 αm+1 = ||rm+1||22;

9 pm+1 = rm+1 +
αm+1
αm

pm;

10 else
11 STOP;

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 233/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
Iterative Linear System Solvers

There is mainly two observations we can draw from the algorithm.

1 The single steps need to be executed mainly sequentially
2 basically all operations are vector operations.

There is not much to distribute between host and device. To exploit the
devices vector features all operations should be executed on the device.
In case the matrix can not be stored in device memory completely it may
be beneficial to use streams to split the operation into chunks that can
be stored and operate on those streams in a round robin fashion.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 234/337

OpenCL Linear Systems Software

Hybrid Linear System Solvers
Sparse Iterative Eigenvalue Approximation

Basic Idea
Very similar to iterative linear solvers based on Krylov subspaces.

Main ingredient is to use the basis of the subspace to project the
eigenvalue problem to a much smaller space and solve it with dense
methods there, i.e. A ∈ Rn×n large and sparse U ∈ Rm×n, m� n
orthogonal, then

UAUT︸ ︷︷ ︸
m×m

x = λx

is an m-dimensional dense eigenproblem.

Here one can offload the solution of the small eigenvalue problem to the
host, while the device is already extending the basis further. The host
can then decide whether the approximation is good enough, or the
extension is required and the computation needs to continue.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 235/337

OpenCL Linear Systems Software

Relevant Software and Libraries
The CUDA Related Libraries

CUDA Math provides basically all math functions in math.h as
device functions.

CUBLAS the CUDA deice based implementation of BLAS

CUFFT CUDA based Fast Fourier Transforms, i.e., divide and
conquer based computation of Fourier transforms of complex and
real valued data sets.

CURAND The CURAND library provides facilities that focus on the
simple and efficient generation of high-quality pseudorandom and
quasirandom numbers.

CUSPARSE Vector-vector and matrix-vector operations where at
least one participant is sparse.

Thurst A C++ template library based on the Standard Template
library (STL) for minimal effort implementation of parallel programs.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 236/337

OpenCL Linear Systems Software

Relevant Software and Libraries

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)a

ahttp://icl.cs.utk.edu/magma/index.html

“The MAGMA project aims to develop a dense linear algebra library
similar to LAPACK but for heterogeneous/hybrid architectures, starting
with current ”Multicore+GPU” systems.
The MAGMA research is based on the idea that, to address the complex
challenges of the emerging hybrid environments, optimal software
solutions will themselves have to hybridize, combining the strengths of
different algorithms within a single framework. Building on this idea, we
aim to design linear algebra algorithms and frameworks for hybrid
manycore and GPU systems that can enable applications to fully exploit
the power that each of the hybrid components offers.”

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 237/337

http://icl.cs.utk.edu/magma/index.html

OpenCL Linear Systems Software

Relevant Software and Libraries

Formal Linear Algebra Methodology Environment (FLAME)a

ahttp://www.cs.utexas.edu/˜flame/web/

“The objective of the FLAME project is to transform the development of
dense linear algebra libraries from an art reserved for experts to a science
that can be understood by novice and expert alike. Rather than being
only a library, the project encompasses a new notation for expressing
algorithms, a methodology for systematic derivation of algorithms,
Application Program Interfaces (APIs) for representing the algorithms in
code, and tools for mechanical derivation, implementation and analysis of
algorithms and implementations.”

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 238/337

http://www.cs.utexas.edu/~flame/web/

OpenCL Linear Systems Software

Relevant Software and Libraries

CUSPa

ahttps://github.com/cusplibrary

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems. Get Started with Cusp
today!”

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 239/337

https://github.com/cusplibrary

OpenCL Linear Systems Software

Relevant Software and Libraries

CUSPa

ahttps://github.com/cusplibrary

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems. Get Started with Cusp
today!”

Matrix formats:

Coordinate (COO)

Compressed Sparse Row (CSR)

Diagonal (DIA)

ELL (ELL)

Hybrid (HYB)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 239/337

https://github.com/cusplibrary

OpenCL Linear Systems Software

Relevant Software and Libraries

CUSPa

ahttps://github.com/cusplibrary

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems. Get Started with Cusp
today!”

More Features:

Format conversion

Dense Arrays

File I/O (Matrix Market format)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 239/337

https://github.com/cusplibrary

OpenCL Linear Systems Software

Relevant Software and Libraries

CUSPa

ahttps://github.com/cusplibrary

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems. Get Started with Cusp
today!”

Supported Iterative Solvers:

Conjugate-Gradient (CG)

Biconjugate Gradient (BiCG)

Biconjugate Gradient Stabilized (BiCGstab)

Generalized Minimum Residual (GMRES)

Multi-mass Conjugate-Gradient (CG-M)

Multi-mass Biconjugate Gradient stabilized (BiCGstab-M)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 239/337

https://github.com/cusplibrary

OpenCL Linear Systems Software

Relevant Software and Libraries

CUSPa

ahttps://github.com/cusplibrary

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems. Get Started with Cusp
today!”

Preconditioners:

Algebraic Multigrid (AMG) based on Smoothed Aggregation

Approximate Inverse (AINV)

Diagonal

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 239/337

https://github.com/cusplibrary

OpenCL Linear Systems Software

Relevant Software and Libraries

CULA toolsa

ahttp://www.culatools.com

“CULA is a set of GPU-accelerated linear algebra libraries utilizing the
NVIDIA CUDA parallel computing architecture to dramatically improve
the computation speed of sophisticated mathematics.”

They have separate packages for sparse and dense operation. The
libraries are however commercial.

Besides those, there are many scientific computing packages that support
GPU operations in one way or the other. Also python has packages for
both CUDA (pyCUDA) and OpenCL (pyOpenCL) and MATLAB®

supports (basically dense only) operation on CUDA devices.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 240/337

http://www.culatools.com

