
OpenMP

Chapter 3

Multicore and
Multiprocessor Systems:

Part III

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 97/337

OpenMP

Open Multi-Processing (OpenMP)
This is OpenMP: The Mission

Mission
“The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all
architectures, including Unix platforms and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors, OpenMP
is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer.”a

aThe Mission statement from http://openmp.org/wp/about-openmp/

The OpenMP Architecture Review Board (ARB)

The ARB is a non-profit enterprise owning the OpenMP brand and
responsible for overseeing, producing and approving the OpenMP
standards.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 98/337

http://openmp.org/wp/about-openmp/

OpenMP

Open Multi-Processing (OpenMP)
This is OpenMP: The Mission

Mission
“The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all
architectures, including Unix platforms and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors, OpenMP
is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer.”a

aThe Mission statement from http://openmp.org/wp/about-openmp/

The OpenMP Architecture Review Board (ARB)

The ARB is a non-profit enterprise owning the OpenMP brand and
responsible for overseeing, producing and approving the OpenMP
standards.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 98/337

http://openmp.org/wp/about-openmp/

OpenMP

Open Multi-Processing (OpenMP)
This is OpenMP: The Contributors

Permanent Members of the ARB: (status: April 29, 2013)

AMD (Dibyendu Das)

CAPS-Entreprise (Francois Bodin)

Convey Computer (John Leidel)

Cray (James Beyer)

Fujitsu (Eiji Yamanaka)

HP (Sujoy Saraswati)

IBM (Kelvin Li)

Intel (Jay Hoeflinger)

NEC (Kazuhiro Kusano)

NVIDIA (Yuan Lin)

Oracle Corporation (Nawal Copty)

The Portland Group, Inc. (Michael Wolfe)

Texas Instruments (Andy Fritsch)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 99/337

OpenMP

Open Multi-Processing (OpenMP)
This is OpenMP: The API standard

History

Oct. 1997 OpenMP 1.0 for Fortran,

Oct. 1998 OpenMP 1.0 for C/C++,

Nov. 2000 OpenMP 2.0 for Fortran,

March 2002 OpenMP 2.0 for C/C++,

May 2005 OpenMP 2.5 (first joint Fortran/C/C++ version),

May 2008 OpenMP 3.0,

Sept. 2011 OpenMP 3.1 (current standard),

March 2013 OpenMP 4.0 release Candidate 2.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 100/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP can do for us

Easy shared memory parallel adaption of existing
sequential codes

Easy preservation of sequential implementations

Easy porting to different platforms and compilers

Parallel implementation of only fragments

No extra runtime environment

Easy to learn and apply

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 101/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for data dependencies, data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 102/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for data dependencies, data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 102/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for data dependencies, data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 102/337

OpenMP

Open Multi-Processing (OpenMP)
What OpenMP is NOT for!

Distributed memory parallel systems (by itself)

Most efficient use of shared memory systems

Automatic checking for data dependencies, data
conflicts, race conditions, or deadlocks

Automatic synchronization of input and output

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 102/337

OpenMP

Open Multi-Processing (OpenMP)
The Structure of the Standard

OpenMP language
extensions

parallel control
structures

work sharing
data

environment
synchronization

runtime
functions, env.

variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

omp_set_num_threads()

Figure: Classification of the OpenMP extensions by tasks of the elements4.

4Image Source: http://commons.wikimedia.org/wiki/File:
OpenMP_language_extensions.svg

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 103/337

http://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg
http://commons.wikimedia.org/wiki/File:OpenMP_language_extensions.svg

OpenMP

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1 Directives:
Basic control structures that initialize/end the parallel

environments

2 Clauses:
Fine tuning parameters to the directives.

3 Environment Variables:
Variables in the calling shell used to control the parallel

environment without recompilation.

4 Runtime Library Routines:
runtime usable functions to determine and modify parameters

of the parallel environment.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 104/337

OpenMP

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1 Directives:
Basic control structures that initialize/end the parallel

environments

2 Clauses:
Fine tuning parameters to the directives.

3 Environment Variables:
Variables in the calling shell used to control the parallel

environment without recompilation.

4 Runtime Library Routines:
runtime usable functions to determine and modify parameters

of the parallel environment.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 104/337

OpenMP

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1 Directives:
Basic control structures that initialize/end the parallel

environments

2 Clauses:
Fine tuning parameters to the directives.

3 Environment Variables:
Variables in the calling shell used to control the parallel

environment without recompilation.

4 Runtime Library Routines:
runtime usable functions to determine and modify parameters

of the parallel environment.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 104/337

OpenMP

Open Multi-Processing (OpenMP)
The Structure of the Standard

The standard divides the extensions into four classes:

1 Directives:
Basic control structures that initialize/end the parallel

environments

2 Clauses:
Fine tuning parameters to the directives.

3 Environment Variables:
Variables in the calling shell used to control the parallel

environment without recompilation.

4 Runtime Library Routines:
runtime usable functions to determine and modify parameters

of the parallel environment.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 104/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

The #pragma directive was introduced in C89 as the universal method
for extending the space of directives. It was further standardized in C99,
where especially the token STDC was reserved for standrard C extensions.

Example (standard C #pragma usage)

In part 1 of the Scientific Computing lecture we have seen the floating
point environment for, e.g., checking the exception flags in IEEE
arithmetic:

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
/* starting here the compiler needs to assume we are accessing the
floating point status and mode registers*/

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 105/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. For the
GNU C compiler (gcc) and the Intel® C compiler OpenMP support
must be enabled by the -fopenmp switch. Otherwise the omp pragmas
are ignored and the sequential code version is compiled.

A list of compilers supporting OpenMP can be found at
http://openmp.org/wp/openmp-compilers/

The gcc compiler suite implements OpenMP 3.1 starting from
version 4.7.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 106/337

http://openmp.org/wp/openmp-compilers/

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. For the
GNU C compiler (gcc) and the Intel® C compiler OpenMP support
must be enabled by the -fopenmp switch. Otherwise the omp pragmas
are ignored and the sequential code version is compiled.

A list of compilers supporting OpenMP can be found at
http://openmp.org/wp/openmp-compilers/

The gcc compiler suite implements OpenMP 3.1 starting from
version 4.7.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 106/337

http://openmp.org/wp/openmp-compilers/

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. For the
GNU C compiler (gcc) and the Intel® C compiler OpenMP support
must be enabled by the -fopenmp switch. Otherwise the omp pragmas
are ignored and the sequential code version is compiled.

A list of compilers supporting OpenMP can be found at
http://openmp.org/wp/openmp-compilers/

The gcc compiler suite implements OpenMP 3.1 starting from
version 4.7.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 106/337

http://openmp.org/wp/openmp-compilers/

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

OpenMP is an extension in the sense of C89 and enabled by the

#pragma omp

preprocessor directive. It applies to the succeeding structural code block.

Compilers that do not know the omp pragma simply ignore it. For the
GNU C compiler (gcc) and the Intel® C compiler OpenMP support
must be enabled by the -fopenmp switch. Otherwise the omp pragmas
are ignored and the sequential code version is compiled.

A list of compilers supporting OpenMP can be found at
http://openmp.org/wp/openmp-compilers/

The gcc compiler suite implements OpenMP 3.1 starting from
version 4.7.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 106/337

http://openmp.org/wp/openmp-compilers/

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel

The parallel construct initializes a group of threads and starts parallel
execution:

#pragma omp parallel [clause[[,]clause]...]

The clauses can be used to influence the behavior of the parallel
execution. They will be explained later.

Available clauses for parallel:
if(scalar expression)

num threads(integer expression)

default(shared| none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(operation:list)

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 107/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives

Example (A minimal OpenMP parallel “hello world” program)

#include <stdio.h>

int main(void)
{
#pragma omp parallel

printf("Hello, world.\n");
return 0;

}

The example automatically lets OpenMP tune the number of threads
used to the number of available processors. Afterward the parallel
execution environment is started and all threads execute the printf
statement.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 108/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Loop

The loop construct specifies that the iterations of the loop should be
distributed among the active threads.

#pragma omp for [clause[[,]clause]...]
for loops

The for-loop construct needs to be used inside a structured code block
of parallel construct.

Available clauses for for:
private(list)

firstprivate(list)

lastprivate(list)

reduction(operator:list)

schedule(kind[,chunk size])

collapse(n)

ordered

nowait

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 109/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Since often the parallel environment is used to introduce a for-loop
construction only, a shortcut parallel for exists for this special task

#pragma omp parallel for [clause[[,] clause]...]

With the exception of the nowait clause all clauses accepted by
parallel and for can be used with parallel for with the
identically same behaviors and restrictions.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 110/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Example (OpenMP parallel vector triad)

double triad(double *a, double *b, double *c, double *d, int length){
int i,j;
const int repeat=100;
double start, end;

get_walltime(&start);
for (j=0; j<repeat; j++){

#pragma omp parallel for
for (i=0 ; i<length; i++){
a[i]=b[i] + c[i] * d[i];

} /*end of parallel section*/
}
get_walltime(&end);
return repeat*length*2.0 / ((end-start) * 1.0e6); /* return MFLOPS */

}

Note that loop counters are protected automatically.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 111/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Loop

Example (OpenMP parallel vector triad)

double triad(double *a, double *b, double *c, double *d, int length){
int i,j;
const int repeat=100;
double start, end;

get_walltime(&start);
for (j=0; j<repeat; j++){

#pragma omp parallel for
for (i=0 ; i<length; i++){
a[i]=b[i] + c[i] * d[i];

} /*end of parallel section*/
}
get_walltime(&end);
return repeat*length*2.0 / ((end-start) * 1.0e6); /* return MFLOPS */

}

Note that loop counters are protected automatically.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 111/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Sections

When different tasks are to be distributed among the encountering team
of threads the sections construct can be used

#pragma omp sections [clause[[,] clause]...]
{
[#pragma omp section]
structured code block

[#pragma omp section
structured code block]

...
}

Available clauses for sections:
private(list)

firstprivate(list)

lastprivate(list)

reduction(operator:list)

nowait

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 112/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Sections

Analogous to the for construct, also sections can be used only inside
a parallel construct. The parallel sections construct merges
them for easier use

#pragma omp parallel sections [clause[[,] clause]...]
{
[#pragma omp section]
structured code block

[#pragma omp section
structured code block]

...
}

Available clauses are those available for parallel and sections with
the exception of nowait, as in the case of for.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 113/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Sections

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 50

int main (int argc, char *argv[]) {
int i, nthrd, tid;
float a[N], b[N], c[N], d[N];

/* Some initializations */
for (i=0; i<N; i++) {
a[i] = i * 1.5;
b[i] = i + 42.0;
c[i] = d[i] = 0.0;

}
/* Start 2 threads */

#pragma omp parallel shared(a,b,c,d,nthrd) private(i,tid) num_threads(2)
{
tid = omp_get_thread_num();
if (tid == 0) {
nthrd = omp_get_num_threads();
printf("Number of threads = %d\n", nthrd);

}
printf("Thread %d starting...\n",tid);

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 114/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Sections

#pragma omp sections
{

#pragma omp section
{
printf("Thread %d doing section 1\n",tid);
for (i=0; i<N; i++) {

c[i] = a[i] + b[i];
}
sleep(tid+2); /* Delay the thread for a few seconds */

} /* End of first section */

#pragma omp section
{
printf("Thread %d doing section 2\n",tid);
for (i=0; i<N; i++) {

d[i] = a[i] * b[i];
}
sleep(tid+2); /* Delay the thread for a few seconds */

} /* End of second section */
} /* end of sections */
printf("Thread %d done.\n",tid);

} /* end of omp parallel */

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 115/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Parallel Sections

/* Print the results */
printf("c: ");
for (i=0; i<N; i++) {
printf("%.2f ", c[i]);

}
printf("\n\nd: ");
for (i=0; i<N; i++) {
printf("%.2f ", d[i]);

}
printf("\n");
exit(0);

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 116/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Single

A construct that makes sure that a structured code block is executed by
only one thread in a team of threads is given by the single directive.

#pragma omp single [clause[[,] clause]...]

Available clauses for the single construct are:
private(list)

firstprivate(list)

lastprivate(list)

nowait

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 117/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Single

Example (OpenMP 3.1 Example A.14.1c)

#include <stdio.h>

void work1() {}
void work2() {}
void main()
{
#pragma omp parallel
{
#pragma omp single

printf("Beginning work1.\n");
work1();
#pragma omp single

printf("Finishing work1.\n");
#pragma omp single nowait

printf("Finished work1 and beginning work2.\n");
work2();
}

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 118/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP directives: Barrier

A synchronization construct that makes the threads wait until all threads
in the team have reached this point and only then continues execution.

#pragma omp barrier

Note that all constructs that allow the nowait clause have an implicit
barrier at their end. Still sometimes explicit synchronization is desirable.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 119/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Classification

The OpenMP clauses we have seen above can be divided into two classes

1 Attribute clauses related to data sharing
2 clauses controlling data copying

clauses usually take a list of arguments

lists are comma separated and enclosed by ().

all list items must be visible to the clause

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 120/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Classification

The OpenMP clauses we have seen above can be divided into two classes

1 Attribute clauses related to data sharing
2 clauses controlling data copying

clauses usually take a list of arguments

lists are comma separated and enclosed by ().

all list items must be visible to the clause

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 120/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct
can be one of

predetermined, e.g. loop counters in for or parallel for
constructs are always private, const qualified variables are
shared, more can be found in Section 2.9.1 of the OpenMP
standard

explicitly determined are those attributes where variables are
referenced in a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a
given construct but are neither predetermined nor explicitly specified

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 121/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct
can be one of

predetermined, e.g. loop counters in for or parallel for
constructs are always private, const qualified variables are
shared, more can be found in Section 2.9.1 of the OpenMP
standard

explicitly determined are those attributes where variables are
referenced in a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a
given construct but are neither predetermined nor explicitly specified

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 121/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Data sharing attributes of a variable in a parallel or task construct
can be one of

predetermined, e.g. loop counters in for or parallel for
constructs are always private, const qualified variables are
shared, more can be found in Section 2.9.1 of the OpenMP
standard

explicitly determined are those attributes where variables are
referenced in a clause setting the attributes

implicitly determined, are the attributes of variables referenced in a
given construct but are neither predetermined nor explicitly specified

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 121/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

default(shared|none)

determines the default attributes of variables in the context of a
task or parallel construct.

defaults to shared when not explicitly given in a parallel
construct

all other (except task) constructs inherit the default from the
enclosing construct if no default clause is given explicitly.

shared(list)
Sets the data sharing attributes of all variables in list to be of shared
type. That means the variable is considered to be in the shared memory
of the team of threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 122/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

default(shared|none)

determines the default attributes of variables in the context of a
task or parallel construct.

defaults to shared when not explicitly given in a parallel
construct

all other (except task) constructs inherit the default from the
enclosing construct if no default clause is given explicitly.

shared(list)
Sets the data sharing attributes of all variables in list to be of shared
type. That means the variable is considered to be in the shared memory
of the team of threads.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 122/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)
Each variable of the list is declared to be a private copy of the thread
and not accessible from other threads in the team. It can not be applied
to variables that are part of other variables. (elements in arrays
or members of a structure).

firstprivate(list)
As above but additionally the value of the item in the list is initialized
from the corresponding original item when the construct is encountered.
The clause has a few more restrictions found in the standard.

lastprivate(list)
As private but causes the original item to be updated after the end of
the region from the last iterate of the enclosed loop or the lexically last
section in a sections region.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 123/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)
Each variable of the list is declared to be a private copy of the thread
and not accessible from other threads in the team. It can not be applied
to variables that are part of other variables. (elements in arrays
or members of a structure).

firstprivate(list)
As above but additionally the value of the item in the list is initialized
from the corresponding original item when the construct is encountered.
The clause has a few more restrictions found in the standard.

lastprivate(list)
As private but causes the original item to be updated after the end of
the region from the last iterate of the enclosed loop or the lexically last
section in a sections region.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 123/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

private(list)
Each variable of the list is declared to be a private copy of the thread
and not accessible from other threads in the team. It can not be applied
to variables that are part of other variables. (elements in arrays
or members of a structure).

firstprivate(list)
As above but additionally the value of the item in the list is initialized
from the corresponding original item when the construct is encountered.
The clause has a few more restrictions found in the standard.

lastprivate(list)
As private but causes the original item to be updated after the end of
the region from the last iterate of the enclosed loop or the lexically last
section in a sections region.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 123/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

reduction(operator:list)
Accumulates all items of the list into a private copy according to the
given operator and then combines it with the original instance.

+ (0) | (0)
* (1) ˆ (0)
- (0) && (1)
& (˜0) || (0)
max (Least number in reduction list item type)
min (Largest number in reduction list item type)

Table: Operators for reduction with initialization values in ()

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 124/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Sharing

Example (OpenMP reduction minimal example)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int i, n;
float a[100], b[100], sum;

/* Some initializations */
n = 100;
for (i=0; i < n; i++)
a[i] = b[i] = i * 1.0;

sum = 0.0;

#pragma omp parallel for reduction(+:sum)
for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);
}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 125/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP clauses: Data Copying

The following are cited from OpenMP 3.1 API C/C++ Syntax Quick
Reference Card:
“These clauses support the copying of data values from private or
threadprivate variables on one implicit task or thread to the
corresponding variables on other implicit tasks or threads in the team.”

copyin(list)
“Copies the value of the master thread’s threadprivate variable to the
threadprivate variable of each other member of the team executing the
parallel region.”

copyprivate(list)
“Broadcasts a value from the data environment of one implicit task to
the data environments of the other implicit tasks belonging to the
parallel region.”

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 126/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an
OpenMP process without recompiling the binary at runtime.

OMP SCHEDULE
Specifies the runtime schedule type. Available values are static,
dynamic, guided, or auto together with an optional chunk size.

OMP NUM THREADS
Must be set to a list of positive integers determining the numbers of
threads at the corresponding nested level.

OMP PROC BIND
The value of this variable must be true or false. It determines
whether threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP
standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 127/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an
OpenMP process without recompiling the binary at runtime.

OMP SCHEDULE
Specifies the runtime schedule type. Available values are static,
dynamic, guided, or auto together with an optional chunk size.

OMP NUM THREADS
Must be set to a list of positive integers determining the numbers of
threads at the corresponding nested level.

OMP PROC BIND
The value of this variable must be true or false. It determines
whether threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP
standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 127/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an
OpenMP process without recompiling the binary at runtime.

OMP SCHEDULE
Specifies the runtime schedule type. Available values are static,
dynamic, guided, or auto together with an optional chunk size.

OMP NUM THREADS
Must be set to a list of positive integers determining the numbers of
threads at the corresponding nested level.

OMP PROC BIND
The value of this variable must be true or false. It determines
whether threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP
standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 127/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an
OpenMP process without recompiling the binary at runtime.

OMP SCHEDULE
Specifies the runtime schedule type. Available values are static,
dynamic, guided, or auto together with an optional chunk size.

OMP NUM THREADS
Must be set to a list of positive integers determining the numbers of
threads at the corresponding nested level.

OMP PROC BIND
The value of this variable must be true or false. It determines
whether threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP
standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 127/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP Environment Variables

Environment variables can be used to influence the behavior of an
OpenMP process without recompiling the binary at runtime.

OMP SCHEDULE
Specifies the runtime schedule type. Available values are static,
dynamic, guided, or auto together with an optional chunk size.

OMP NUM THREADS
Must be set to a list of positive integers determining the numbers of
threads at the corresponding nested level.

OMP PROC BIND
The value of this variable must be true or false. It determines
whether threads may be moved between processors at runtime.

More environment variables can be found in Section 4 of the OpenMP
standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 127/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

We only treat thread and processor number related functions

void omp_set_num_threads(int num_threads)

Determines the number of threads in subsequent parallel regions that do
not specify a num threads clause.

int omp_get_num_threads(void)

Returns the number of threads in the current team.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 128/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

int omp_get_max_threads(void)

Provides the maximum number of threads that could be used in a
subsequent parallel construct.

int omp_get_thread_num(void)

Returns the thread ID of the current thread. IDs are integers from zero
(the master thread) to the number of threads in the team minus one.

int omp_get_num_procs(void)

returns the number of processors available to the program.

More runtime library functions and detailed descriptions can be found in
Section 3 of the OpenMP standard.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 129/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Example (Hello World revisited)

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int th_id, nthreads;

#pragma omp parallel private(th_id)
{

th_id = omp_get_thread_num();

printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}
return EXIT_SUCCESS;

}

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 130/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Two important rules of thumb:

In case of nested loops it is usually best to apply the
parallelization to the outermost possible loop.

It is in general a good idea to first optimize the sequential
code and only then add parallelism to further increase the
speed of execution.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 131/337

OpenMP

Open Multi-Processing (OpenMP)
OpenMP runtime library functions

Two important rules of thumb:

In case of nested loops it is usually best to apply the
parallelization to the outermost possible loop.

It is in general a good idea to first optimize the sequential
code and only then add parallelism to further increase the
speed of execution.

Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 131/337

